Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Costanzi, Elisa (2018) Structural analysis of molecular recognition and ligand association processes. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document
Thesis not accessible until 16 January 2021 for intellectual property related reasons.
Visibile to: nobody

4Mb

Abstract (english)

Molecular recognition is a fundamental step in essentially any biochemical process. Detailed structural knowledge is crucial to have a better understanding of the processes in which the two interacting molecular partners are involved and can be exploited in several applied fields such as supramolecular design of new molecular assemblies, rational drug design, and enzyme engineering. In the context of molecular recognition, I have investigated (mainly by single crystal x-ray crystallography) some relevant protein-protein and protein-ligand systems in order to gain detailed structural insights on the interactions involved, at atomic level.
First, the STAS domain of prestin, an anion-dependent motor protein, and its interaction with monovalent anions and with calmodulin.
Second, the interaction between protein kinases (CDK2 and CK2) and BCLXL, and inhibitors, for the rational design of specific drugs targeting these proteins involved in different types of cancer.

Abstract (italian)

Il riconoscimento molecolare è uno step fondamentale nei processi biochimici. Una conoscenza strutturale dettagliata è cruciale per capire meglio i processi in cui sono coinvolti due partner molecolari interagenti e può essere sfruttata in vari campi come il disegno di nuovi assemblamenti sopramolecolari, il disegno razionale di farmaci e l’ingegnerizzazione di enzimi. In questo contesto, ho investigato (prevalentemente tramite cristallografia a raggi x su cristallo singolo) alcuni sistemi proteina-proteina
e proteina-ligando per ottenere dettagli strutturali delle interazioni coinvolte, a livello atomico.
In primis, il dominio STAS di prestina, una proteina motrice anionidipendente, e la sua interazione con anioni monovalenti e con calmodulina.
Poi, l’interazione tra protein chinasi (CDK2 e CK2) e BCL-XL, e inibitori, per il disegno razionale di farmaci specifici nel colpire queste proteine coinvolte in vari tipi di cancro.

EPrint type:Ph.D. thesis
Tutor:Battistutta, Roberto
Ph.D. course:Ciclo 30 > Corsi 30 > SCIENZE MOLECOLARI
Data di deposito della tesi:14 January 2018
Anno di Pubblicazione:14 January 2018
Key Words:crystallography protein molecular recognition ligand association
Settori scientifico-disciplinari MIUR:Area 03 - Scienze chimiche > CHIM/06 Chimica organica
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Chimiche
Codice ID:10837
Depositato il:20 Nov 2018 13:49
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Adams P. D., Afonine P. V., Bunkóczi G., Chen V. B., I. Davis W., Echols N., Headd J. J., Hung L.-W., Kapral G. J., Grosse-Kunstleve R. W., McCoy A. J., Moriarty N. W., Oeffner R., Read R. J., Richardson D. C., Richardson J. S., Terwilliger T. C. and Zwart P. H., “PHENIX: a comprehensive Python-based system for macromolecular structure solution.” Acta Cryst. D66: 213-221 (2010). Cerca con Google

Aravind L., Koonin E.V., “The STAS domain—a link between anion transporters and antisigma- factor antagonists.” Curr Biol. 10: R53–5 (2000). Cerca con Google

Ashmore J.F., “A fast motile response in guinea-pig outer hair cells: the cellular basis of the cochlear amplifier.” J. Physiol. 388: 323-347 (1987). Cerca con Google

Babu, M. et al. “Structure of a SLC26 anion transporter STAS domain in complex with acyl carrier protein: implications for E. coli YchM in fatty acid metabolism.” Structure 18: 1450–1462 (2010). Cerca con Google

Birke AS. & Javelle A. “Prestin and the good vibrations” Biochem J. 473: 2425–2427 (2016). Cerca con Google

Brennich, M. E., Kieffer, J., Bonamis, G., De Maria Antolinos, A., Hutin, S., Pernot P., and Round, A.
 “Online data analysis at the ESRF BioSAXS beamline.” J. Appl. Cryst. 49: 203-212 (2016). Cerca con Google

Dallos P. “The active coclea.” J. Neurosci. 2: 4575-4585. (1992). Cerca con Google

Dallos P., Zheng J., Cheatham M.A. “Prestin and the cochlear amplifier.” J. Physiol. 76: 37-42 (2006). Cerca con Google

Dallos, P. & Fakler, B. “Prestin, a new type of motor protein.” Nat. Rev. Mol. Cell Biol. 3: 104–111 (2002). Cerca con Google

Dawson, P. A. & Markovich, D. “Pathogenetics of the human SLC26 transporters.” Curr. Med. Chem. 12: 385–396 (2005). Cerca con Google

De Maria Antolinos, A., Pernot, P., Brennich, M. E., Kieffer, J., Bowler, M. W., Delageniere, S., Ohlsson, S., Malbet Monaco, S., Ashton, A., Franke, D., Svergun, D., McSweeney, S., Gordon, E., and Round, A. “ISPyB for BioSAXS, the gateway to user autonomy in solution scattering experiments.” Acta Crystallogr. D Biol. Crystallogr. 71: 76-85 (2015). Cerca con Google

Dorwart, M. R., Shcheynikov, N., Yang, D. & Muallem, S. “The solute carrier 26 family of proteins in epithelial ion transport.” Physiology (Bethesda) 23: 104–114 (2008). Cerca con Google

Emsley P. and Cowtan K. “Coot: model-building tools for molecular graphics.” Acta Crystallographica D60: 2126-2132 (2004). Cerca con Google

Emsley P., Lohkamp B., Scott W.G. and Cowtan K. “Features and Development of Coot.” Acta Crystallographica D66: 486-501 (2010). Cerca con Google

Evans P.R., “An introduction to data reduction: space-group determination, scaling and intensity statistics” Acta Crystallographica D67: 282-292 (2011). Cerca con Google

Evans P., “Scaling and assessment of data quality.” Acta Crystallographica D62: 72–82 (2005). Cerca con Google

Fischer H., de Oliveira Neto M., Napolitano H.B., Craievich A.F., Polikarpov I. “The molecular weight of proteins in solution can be determined from a single SAXS measurement on a relative scale.” 43: 101-109 (2010). Cerca con Google

Franke, D. and Svergun, D.I. “DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering.” J. Appl. Cryst., 42: 342-346 (2009). Cerca con Google

Géléoc G.S.G., Holt J.R., “Auditory amplification: outer hair cells pres the issue.” Trends Neurosci. 26: 115-117 (2003). Cerca con Google

Greetsma E.R., Chang Y.N., Shaik F.R., Neldner Y., Pardon E., Steyaert J., Dutzler R., “Structure of a prokaryotic fumarate transporter reveals the architecture of the SLC26 family.” Nat Struct Mol Biol. 10: 803-8 (2015). Cerca con Google

Gorbunov D., Sturlese M., Nies F., Kluge M., Bellanda M., Battistutta R., Oliver D. "Molecular architecture and the structural basis for anion interaction in prestin and SLC26 transporters." NatCommun. 5: 3622-3634 (2014). Cerca con Google

Hediger M.A., Romero M.F., Peng J.B., Rolfs A., Takanaga H., Bruford E.A. “The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins—Introduction.” Pflugers Arch 447: 465–468 (2004). Cerca con Google

Kabsch W., “XDS”, Acta Cryst. D66: 125-132 (2010). Cerca con Google

Keller J.P., Homma K., Duan C., Zheng J., Cheatham M.A., Dallos P., “Functional Regulation of the SLC26-Family Protein Prestin by Calcium/Calmodulin” The Journal of Neuroscience 34(4): 1325–1332 (2014). Cerca con Google

Konarev P.V., Volkov V.V., Sokolova A.V., Koch M.H.J., Svergun D.I. “PRIMUS - a Windows-PC based system for small-angle scattering data analysis.” J. Appl. Cryst. 36: 1277-1282 (2003). Cerca con Google

Konarev P.V., and Svergun D.I. “A posteriori determination of the useful data range for small-angle scattering experiments on dilute monodisperse systems.” IUCr J. 2: 352-360 (2015). Cerca con Google

Liu X.Z., Ouyang X.M., Xia X.J., Zheng J., Pandya A., Li F., Du L.L., Welch K.O., Petit C., Smith R.J.H., Webb B.T., Yan D., Arnos K.S., Corey D., Dallos P., Nance W.E., Chen Z.Y., “Prestin, a cochlear motor protein, is detective in non-syndromic hearing loss.” Hum. Mol. Genet. 12: 1155-1162 (2003). Cerca con Google

Lolli G., Pasqualetto E., Costanzi E., Bonetto G., Battistutta R. “The STAS domain of mammalian SLC26A5 prestin harbours an anion-binding site.” Biochem J, 473(4): 365-70 (2016). Cerca con Google

Ludwig J., Oliver D., Frank G., Klöcker N., Gummer A.W., Fakler B., “Reciprocal electromechanical properties of rat prestin: The motor molecule from rat outer hair cells.” Proc. Natl. Acad. Sci. USA 98: 4178–4183 (2001). Cerca con Google

McCoy A.J., Grosse-Kunstleve R.W., Adams P.D., Winn M.D., Storoni L.C., Read R.J. “Phaser crystallographic software.” J. Appl. Cryst 40: 658-674 (2007). Cerca con Google

Mount D.B., Romero M.F. “The SLC26 gene family of multifunctional anion exchangers.” Pflugers Arch. 447: 710–721 (2004). Cerca con Google

Oliver D., He D.Z., Klöcker N., Ludwig J., Schulte U., Waldegger S., Ruppersberg J.P., Dallos P., Fakler B. “Intracellular anions as the voltage-sensor of prestin, the outer hair cell motor protein.” Science 292: 2340–2343 (2001). Cerca con Google

Pasqualetto E., Aiello R., Gesiot L., Bonetto G., Bellanda M., Battistutta R. “Structure of the cytosolic portion of the motor protein prestin and functional role of the STAS domain in SLC26/SulP anion transporters.” J. Mol. Biol. 400: 448–462 (2010). Cerca con Google

Pernot P., Round A., Barrett R., De Maria Antolinos A., Gobbo A., Gordon E., Huet J., Kieffer J., Lentini M., Mattenet M., Morawe C., Mueller-Dieckmann C., Ohlsson S., Schmid W., Surr J., Theveneau P., Zerrad L., McSweeney S. “Upgraded ESRF BM29 beamline for SAXS on macromolecules in solution.” J. Synchrotron Radiat. 20: 660-664 (2013). Cerca con Google

Petoukhov M.V., Svergun D.I., “Global rigid body modelling of macromolecular complexes against small-angle scattering data.” Biophys. J., 89: 1237-1250 (2009). Cerca con Google

Petoukhov M.V., Franke D., Shkumatov A.V., Tria G., Kikhney A.G., Gajda M., Gorba C., Mertens H.D., Konarev P.V., Svergun D.I. “New developments in the ATSAS program package for small-angle scattering data analysis.” J. Appl. Cryst. 45: 342-350 (2012). Cerca con Google

Povey S., Lovering R., Bruford E., Wright M., Lush M., Wain H. “The HUGO Gene Nomenclature Committee (HGNC).” Hum Genet 109: 678–680 (2001). Cerca con Google

Price G.D., Howitt S.M., “Topology mapping to characterize cyanobacterial bicarbonate transporters: BicA (SulP/SLC26 family) and SbtA”, Mol Membr Biol, 31(6): 177–182 (2014). Cerca con Google

Rambo R.P., Tainer J.A. “Accurate assessment of mass, models and resolution by small-angle scattering.” Nature 496: 477-481 (2013). Cerca con Google

Saier M.H. Jr, Eng B.H., Fard S., Garg J., Haggerty D.A., Hutchinson W.J., Jack D.L., Lai E.C., Liu H.J., Nusinew D.P., Omar A.M., Pao S.S., Paulsen I.T., Quan J.A., Sliwinski M., Tseng T.T., Wachi S., Young G.B. “Phylogenetic characterization of novel transport protein families revealed by genome analyses.” Biochim Biophys Acta 1422: 1–56 (1999). Cerca con Google

Sambrook J., Russel D.W. “Molecular Cloning. A Laboratory Manual.” Cold Spring Harbor Laboratory Press: Cold Spring Harbor, N.Y. U.S.A. (2001). Cerca con Google

Santos-Sacchi J. “Reversible inhibition of voltage-dependent outer hair cell motility and capacitance.” J. Neurosci. 11: 3096–3110 (1991). Cerca con Google

Schaechinger T.J., Oliver D. “Nonmammalian orthologs of prestin (SLC26A5) are electrogenic divalent/chloride anion exchangers.” Proc Natl Acad Sci USA 104: 7693–7698 (2007). Cerca con Google

Schlessinger A. Matsson P., Shima J.E., Pieper U., Yee S.W., Kelly L., Apeltsin L., Stroud R.M., Ferrin T.E., Giacomini K.M., Sali A. “Comparison of human solute carriers.” Protein Science 19: 412–428 (2010). Cerca con Google

Sharma A.K., Ye L., Baer C.E., Shanmugasundaram K., Alber T., Alper S.L., Rigby A.C. “Solution Structure of the Guanine Nucleotide-binding STAS Domain of SLC26-related SulP Protein Rv1739c from Mycobacterium tuberculosis.” J. Biol. Chem. 286: 8534–8544 (2011). Cerca con Google

Sharma A.K., Rigby A.C., Alper S.L. “STAS domain structure and function.” Cell. Physiol. Biochem. 28: 407–422 (2011). Cerca con Google

Shehata W.E., Brownell W.E., Dieler R. “Effects of salicylate on shape, electromotility and membrane characteristics of isolated outer hair cells from guinea pig cochlea.” Acta Otolaryngol. 111: 707–718 (1991). Cerca con Google

Svergun D.I. “Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing.” Biophys J. 76(6): 2879-2886 (1999). Cerca con Google

Tidow H., Nissen P. “Structural diversity of calmodulin binding to its target sites” FEBS J., 280: 5551-5565 (2013). Cerca con Google

Toth T., Deak L., Fazakas F., Zheng J., Muszbek L., Sziklai I. “A new mutation in the human pres gene and its effect on prestin function.” Int. J. Mol. Med. 20: 545-550 (2007). Cerca con Google

Winn M.D., Ballard C.C., Cowtan K.D., Dodson E.J., Emsley P., Evans P.R., Keegan R.M., Krissinel E.B., Leslie A.G., McCoy A., McNicholas S.J., Murshudov G.N., Pannu N.S., Potterton E.A., Powell H.R., Read R.J., Vagin A., Wilson K.S. “Overview of the CCP4 suite and current developments.” Acta Crytsallographica D67: 235-242 (2011). Cerca con Google

Zheng J., Long K.B., Shen W., Madison L.D., Dallos P. “Prestin topology: localization of protein epitopes in relation to the plasma membrane.” NeuroReport 12: 1929-1935 (2001). Cerca con Google

Zheng J., Madison L.D., Oliver D., Fakler B., Dallos P. “Prestin is the motor protein of cochlear outer hair cells.” Nature 405: 149–155 (2000). Cerca con Google

Zheng, J. Du G.G., Matsuda K., Orem A., Aguiñaga S., Deák L., Navarrete E., Madison L.D., Dallos P. “The C-terminus of prestin influences nonlinear capacitance and plasma membrane targeting.” J. Cell. Sci. 118: 2987–2996 (2005). Cerca con Google

Ahn N. G., Resing K.A. “Toward the phospho-proteome.” Nat. Biotechnol. 19: 317-318 (2001). Cerca con Google

Cohen P. “The regulation of protein function by multisite phosphorylation –a 25 year update.” Trends Bio-chem. Sci. 25: 596-601 (2000). Cerca con Google

Hanks S.K., Hunter T. “The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification.” FASEB J. 9: 576-596 (1995). Cerca con Google

Krebs E.G. “An accidental biochemist.” Annu. Rev. Biochem. 67: xii-xxxii (1998). Cerca con Google

Kornev A.P., Haste N.M., Taylor S.S., Ten Eyck L.F. “Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism.” Proc. Natl Acad. Sci. USA 103(47): 17783–17788 (2006). Cerca con Google

Kornev A.P., Taylor S.S., Ten Eyck L.F. “A helix scaffold for the assembly of active protein kinases.” Proc Natl Acad Sci USA. 105: 14377-14382 (2008). Cerca con Google

Manning G., Whyte D.B., Martinez R., Hunter T., Sudarsanam S. “The Protein Kinase Complement of the Human Genome.” Science 298(5600): 1912-1934 (2002). Cerca con Google

Manning G., Plowman G. D., Hunter T., Sudarsanam S. “Evolution of protein kinase signaling from yeast to man.” Trends Biochem. Sci. 27: 514-520 (2002 b). Cerca con Google

Taylor S.S., Kornev A.P. “Protein kinases: evolution of dynamic regulatory proteins.” Trends Biochem. Sci. 36: 65-77 (2011). Cerca con Google

Taylor S.S., Keshwani M.M., Steichen J.M., Kornev A.P. “Evolution of the eukaryotic protein kinases as dynamic molecular switches.” Phil. Trans. R. Soc. B 367: 2517-2528 (2012). Cerca con Google

Walsh D.A., Perkins J.P., Krebs E.G. “An adenosine 3’,5’-monophosphate-dependant protein kinase from rabbit skeletal muscle.” J. Biol. Chem. 243: 3763-3765 (1968). Cerca con Google

Adams P.D., Afonine P.V., Bunkóczi G., Chen V.B., Davis W.I., Echols N., Headd J.J., Hung L.W., Kapral G.J., Grosse-Kunstleve R.W., McCoy A.J., Moriarty N.W., Oeffner R., Read R.J., Richardson D.C., Richardson J.S., Terwilliger T.C., Zwart P.H., “PHENIX: a comprehensive Python-based system for macromolecular structure solution.” Acta Cryst. D66: 213-221 (2010). Cerca con Google

Ali S., Heathcote D.A., Kroll S.H., Jogalekar A.S., Scheiper B., Patel H., Brackow J., Siwicka A., Fuchter M.J, Periyasamy M., “The development of a selective cyclin-dependent kinase inhibitor that shows antitumor activity.” Cancer Res. 69: 6208–6215 (2009). Cerca con Google

Battistutta R., Cozza G., Pierre F., Papinutto E., Lolli G., Sarno S., O’Brien S. E., Siddiqui-Jain A., Haddach M., Anderes K., Ryckman D. M., Meggio F., Pinna L. A., “Unprecedented selectivity and structural determinants of a new class of protein kinase CK2 inhibitors in clinical trials for the treatment of cancer.” Biochemistry 50(39):8478-88 (2011). Cerca con Google

Barrett C.P., Noble M.E., “Molecular motions of human cyclin-dependent kinase 2.” J. Biol. Chem. 280: 13993–14005 (2005). Cerca con Google

Betzi S., Alam R., Martin M., Lubbers D.J., Han H., Jakkaraj S.R., Georg G.I., Schonbrunn E., “Discovery of a potential allosteric ligand binding site in CDK2.” ACS Chem. Biol. 6: 492–501 (2011). Cerca con Google

Brown N.R., Noble M.E., Endicott J.A., Johnson L.N., “The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases.” Nat. Cell Biol. 1: 438–443 (1999). Cerca con Google

Brown N.R., Noble M.E., Lawrie A.M., Morris M.C., Tunnah P., Divita G., Johnson, L.N., Endicott J.A., “Effects of phosphorylation of threonine 160 on cyclin-dependent kinase 2 structure and activity.” J. Biol. Chem. 274: 8746–8756 (1999). Cerca con Google

Brown N.R., Lowe E.D., Petri E., Skamnaki V., Antrobus R., Johnson L.N., “Cyclin B and cyclin A confer different substrate recognition properties on CDK2.” Cell Cycle 6: 1350–1359 (2007). Cerca con Google

Christodoulou M.S., Caporuscio F., Restelli V., Carlino L., Cannazza G., Costanzi E., Citti C., Lo Presti L., Pisani P., Battistutta R., Broggini M., Passarella D., Rastelli G. “Probing an allosteric pocket of CDK2 with small-molecules” ChemMedChem 12(1): 33-41 (2017). Cerca con Google

Cox S., Radzio-Andzelm E., Taylor S.S., “Domain movements in protein kinases.” Curr. Opin. Struct. Biol. 4: 893–901 (1994). Cerca con Google

Cozza G., Zanin S., Sarno S., Costa E., Girardi C., Ribaudo G., Salvi M., Zagotto G., Ruzzene M., Pinna L. A. “Design, validation and efficacy of bisubstrate inhibitors specifically affecting ecto-CK2 kinase activity.” Biochem J. 471(3):415-30 (2015). Cerca con Google

Davies T.G., Tunnah P., Meijer L., Marko D., Eisenbrand G., Endicott J.A., Noble M.E., “Inhibitor binding to active and inactive CDK2: The crystal structure of CDK2-cyclin A/indirubin-5-sulphonate.” Structure 9: 389–397 (2001). Cerca con Google

De Bondt H.L., Rosenblatt J., Jancarik J., Jones H.D., Morgan D.O., Kim S.H., “Crystal structure of cyclin-dependent kinase 2.” Nature, 363: 595–602 (1993). Cerca con Google

De Vivo M., Bottegoni G., Berteotti A., Recanatini M., Gervasio F.L., Cavalli A. “Cyclin-dependent kinases: Bridging their structure and function through computations.” Future Med. Chem. 3: 1551–1559 (2011). Cerca con Google

Draetta G., Beach D. “Activation of cdc2 protein kinase during mitosis in human cells: cell cycle-dependent phosphorylation and subunit rearrangement.” Cell 54: 17–26 (1988). Cerca con Google

Emsley P., Cowtan K. “Coot: model-building tools for molecular graphics.” Acta Crystallographica D60: 2126-2132 (2004). Cerca con Google

Emsley P., Lohkamp B., Scott W.G., Cowtan K. “Features and Development of Coot.” Acta Crystallographica D66: 486-501 (2010). Cerca con Google

Endicott J. A., Noble M. E., Tucker J. A. “Cyclin-dependent kinases: inhibition and substrate recognition.” Curr. Opin. Struct. Biol. 9: 738–744 (1999). Cerca con Google

Esposito L., Indovina P., Magnotti F., Conti D., Giordano A., “Anticancer therapeutic strategies based on CDK inhibitors.” Curr. Pharm. Des. 19: 5327–5332 (2013). Cerca con Google

Evans P. “Scaling and assessment of data quality.” Acta Crystallographica D62: 72–82 (2005). Cerca con Google

Evans P.R. “An introduction to data reduction: space-group determination, scaling and intensity statistics” Acta Crystallographica D67: 282-292 (2011). Cerca con Google

Gray N., Detivaud L., Doerig C., Meijer L., “ATP-site directed inhibitors of cyclin-dependent kinases.” Curr. Med. Chem. 6: 859–875 (1999). Cerca con Google

Holmes J.K., Solomon M.J., “The role of Thr160 phosphorylation of Cdk2 in substrate recognition.” Eur. J. Biochem. 268: 4647–4653 (2001). Cerca con Google

Jeffrey P.D., Russo A.A., Polyak K., Gibbs E., Hurwitz J., Massague J., Pavletich N.P. “Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex.” Nature 376: 313–320 (1995). Cerca con Google

Kabsch W., “XDS”, Acta Cryst. D66: 125-132 (2010). Cerca con Google

Kawana H., Tamaru J.-I., Tanaka T. Hirai A., Saito Y., Kitagawa M., Mikata A., Harigaya K., Kuriyama T. “Role of p27Kip1 and cyclin-dependent kinase 2 in the proliferation of non-small cell lung cancer.” Am. J. Pathol. 153: 505–513 (1998). Cerca con Google

Knighton D.R., Zheng J.H., Ten Eyck L.F., Ashford V.A., Xuong N.H., Taylor S.S., Sowadski J.M. “Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase.” Science 253: 407–414 (1991). Cerca con Google

Lees J.A., Weinberg R.A., “Tossing monkey wrenches into the clock: New ways of treating cancer.” Proc. Natl. Acad. Sci. USA 96: 4221–4223 (1999). Cerca con Google

Li Y., Zhang J., Gao W., Zhang L., Pan Y., Zhang S., Wang Y. “Insights on Structural Characteristics and Ligand Binding Mechanisms of CDK2.” Int. J. Mol. Sci. 16(5): 9314-40 (2015). Cerca con Google

Lolli G., Johnson L.N., “CAK-Cyclin-dependent Activating Kinase: A key kinase in cell cycle control and a target for drugs?” Cell Cycle 4: 572–577 (2005). Cerca con Google

Malumbres M., Pevarello P., Barbacid M., Bischoff J.R., “CDK inhibitors in cancer therapy: What is next?” Trends Pharmacol. Sci., 29: 16–21 (2008). Cerca con Google

Martin M.P., Alam R., Betzi S., Ingles D.J., Zhu J.Y., Schonbrunn E., “A novel approach to the discovery of small-molecule ligands of CDK2.” Chembiochem 13: 2128–2136 (2012). Cerca con Google

Matsushime H., Ewen M.E., Strom D.K., Kato J.Y., Hanks S.K., Roussel M.F., Sherr C.J. “Identification and properties of an atypical catalytic subunit (p34PSK-J3/cdk4) for mammalian D type G1 cyclins.” Cell 71: 323–334 (1992). Cerca con Google

Meyerson M., Harlow E. “Identification of G1 kinase activity for cdk6, a novel cyclin D partner.” Mol. Cell. Biol. 14: 2077–2086 (1994). Cerca con Google

McCoy A.J., Grosse-Kunstleve R.W., Adams P.D., Winn M.D., Storoni L.C., Read R.J. “Phaser crystallographic software.” J. Appl. Cryst 40: 658-674 (2007). Cerca con Google

Morgan D.O. “Principles of CDK regulation.” Nature 374: 131–134 (1995). Cerca con Google

Nelson P.J., Shankland S.J. “Therapeutics in renal disease: the road ahead for antiproliferative targets” Nephron Exp. Nephrol. 103: 6-15 (2005). Cerca con Google

Nolen B., Taylor S., Ghosh G. “Regulation of protein kinases: Controlling activity through activation segment conformation.” Mol. Cell 15: 661–675 (2004). Cerca con Google

Norbury C., Nurse P. “Animal cell cycles and their control” Annu. Rev. Biochem. 61: 441–470 (1992). Cerca con Google

Pagano M., Pepperkok R., Verde F., Ansorge W., Draetta G. “Cyclin A is required at two points in the human cell cycle.” EMBO J. 11: 961–971 (1992). Cerca con Google

Palmieri L., Rastelli G., “αC displacement as a general approach for allosteric modulation of protein kinases” Drug Discov. Today 18(7-8): 407-14 (2013). Cerca con Google

Pavletich N.P. “Mechanisms of cyclin-dependent kinase regulation: Structures of cdks, their cyclin activators, and cip and INK4 inhibitors.” J. Mol. Biol. 287: 821–828 (1999). Cerca con Google

Pines J. “Cyclins: Wheels within wheels.” Cell Growth Differ. 2: 305–310 (1991). Cerca con Google

Pines J. “Four-dimensional control of the cell cycle.” Nat. Cell Biol. 1: 73–79 (1999). Cerca con Google

Rastelli G., Anighoro A., Chripkova M., Carrassa L., Broggini M. “Structure-based discovery of the first allosteric inhibitors of cyclin-dependent kinase 2.” Cell Cycle 13: 2296–2305 (2014). Cerca con Google

Russo A.A., Jeffrey P.D., Pavletich N.P. “Structural basis of cyclin-dependent kinase activation by phosphorylation.” Nat. Struct. Biol. 3: 696–700 (1996). Cerca con Google

Sambrook J., Russel D.W. “Molecular Cloning. A Laboratory Manual.” Cold Spring Harbor Laboratory Press: Cold Spring Harbor, N.Y. U.S.A. (2001). Cerca con Google

Shapiro G.I. “Cyclin-dependent kinase pathways as targets for cancer treatment.” J. Clin. Oncol. 24: 1770–1783 (2006). Cerca con Google

Sherr C.J. “Cancer cell cycles.” Science 274: 1672–1677 (1996). Cerca con Google

Smith P.D., Crocker S.J., Jackson-Lewis V., Jordan-Sciutto K.L., Hayley S., Mount M.P., O'Hare M.J., Callaghan S., Slack R.S., Przedborski S. “Cyclin dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson's disease” Proc. Natl. Acad. Sci. 100: 13650-13655 (2003). Cerca con Google

Suryadinata R., Sadowski M., Sarcevic B. “Control of cell cycle progression by phosphorylation of cyclin-dependent kinase (CDK) substrates.” Biosci. Rep. 30(4): 243-55 (2010). Cerca con Google

Tsai L.H., Lee M.S., Cruz J. “Cdk5, a therapeutic target for Alzheimer's disease?” Biochim. Biophys. Acta-Proteins Proteom. 1697: 137-142 (2004). Cerca con Google

Wang J., Liu S., Fu Y., Wang J.H., Lu Y. “Cdk5 activation induces hippocampal CA1 cell death by directly phosphorylating NMDA receptors” Nat. Neurosci. 6: 1039-1047 (2003). Cerca con Google

Winn M.D., Ballard C.C., Cowtan K.D., Dodson E.J., Emsley P., Evans P.R., Keegan R.M., Krissinel E.B., Leslie A.G., McCoy A., McNicholas S.J., Murshudov G.N., Pannu N.S., Potterton E.A., Powell H.R., Read R.J., Vagin A., Wilson K.S. “Overview of the CCP4 suite and current developments.” Acta Crytsallographica D67: 235-242 (2011). Cerca con Google

Adams P.D., Afonine P.V., Bunkóczi G., Chen V.B., Davis W.I., Echols N., Headd J.J., Hung L.W., Kapral G.J., Grosse-Kunstleve R.W., McCoy A.J., Moriarty N.W., Oeffner R., Read R.J., Richardson D.C., Richardson J.S., Terwilliger T.C. and Zwart P.H., “PHENIX: a comprehensive Python-based system for macromolecular structure solution.” Acta Cryst. D66: 213-221 (2010). Cerca con Google

Battistutta R., Lolli G. “Structural and functional determinants of protein kinase CK2α: facts and open questions.” Mol Cell Biochem. 356: 67-73 (2011). Cerca con Google

Burnett G., Kennedy E.P. “The enzymatic phosphorylation of proteins.” J. Biol. Chem. 211: 969-980 (1954). Cerca con Google

Canton D.A., Zhang C., Litchfield D.W. “Assembly of protein kinase CK2: investigation of complex formation between catalytic and regulatory subunits using a zinc-finger deficient mutant of CK2β.” Biochem J. 358: 87-94 (2001). Cerca con Google

Chantalat L., Leroy D., Filhol O., Nueda A., Benitez M. J., Chambaz E.M., Cochet C., Dideberg O. “Crystal structure of the human protein kinase CK2 regulatory subunit reveals its zinc finger-mediated dimerization.” EMBO J. 18: 2930-2940 (1999). Cerca con Google

Emsley P., Cowtan K. “Coot: model-building tools for molecular graphics.” Acta Crystallographica D60: 2126-2132 (2004). Cerca con Google

Emsley P., Lohkamp B., Scott W.G., Cowtan K. “Features and Development of Coot.” Acta Crystallographica D66: 486-501 (2010). Cerca con Google

Evans P. “Scaling and assessment of data quality.” Acta Crystallographica D62: 72–82 (2005). Cerca con Google

Evans P.R. “An introduction to data reduction: space-group determination, scaling and intensity statistics” Acta Crystallographica D67: 282-292 (2011). Cerca con Google

Filhol O., Nueda A., Martel V., Gerber-Scokaert D., Benitez M.J., Souchier C., Saoudi Y., Cochet C. “Live-cell fluorescence imaging reveals the dynamics of protein kinase CK2 individual subunits.” Mol. Cell. Biol. 23: 975–987 (2003). Cerca con Google

Glover C.V. “A filamentous form of Drosophila casein kinase II.” J Biol Chem. 261: 14349-14354 (1986). Cerca con Google

Guerra B., Issinger O.G. “Protein kinase CK2 in human diseases.” Curr. Med. Chem. 15: 1870–1886 (2008). Cerca con Google

Hanahan D., Weinberg R. A. “The hallmarks of cancer.” Cell 100: 57-705 (2000). Cerca con Google

Hübner G.M., Larsen J.N., Guerra B., Niefind K., Vrecl M., Issinger O.G. “Evidence for aggregation of protein kinase CK2 in the cell: a novel strategy for studying CK2 holoenzyme interaction by BRET2.” Mol. Cell. Biochem. 397: 285–293 (2014). Cerca con Google

Kabsch W., “XDS”, Acta Cryst. D66: 125-132 (2010). Cerca con Google

Leroy D., Schmid N., Behr J. P., Filhol O., Pares S., Garin J., Bourgarit J. J., Chambaz E. M., Cochet C. “Direct identification of a polyamine binding domain on the regulatory subunit of the protein kinase casein kinase 2 by photoaffinity labeling.” J Biol Chem. 270: 17400-17406 (1995). Cerca con Google

Litchfield D.W., Lozeman F.J., Cicirelli M.F., Harrylock M., Ericsson L.H., Piening C.J., Krebs E.G. “Phosphorylation of the beta subunit of casein kinase II in human A431 cells. Identification of the autophosphorylation site and a site phosphorylated by p34cdc2.” J. Biol. Chem. 266(30): 20380-20389 (1991). Cerca con Google

Lolli G., Pinna L.A., Battistutta R. “Structural determinants of protein kinase CK2 regulation by autoinhibitory polymerization.” ACS Chem Biol 7(7): 1158-1163 (2012). Cerca con Google

Lolli G., Ranchio A., Battistutta R. “Active form of the protein kinase CK2 α2β2 holoenzyme is a strong complex with symmetric architecture.” ACS Chem. Biol. 9: 366–371 (2014). Cerca con Google

Lolli G., Naressi D., Sarno S., Battistutta R. “Characterization of the oligomeric states of the CK2 α2β2 holoenzyme in solution” Biochemical Journal 474: 2405–2416 (2017). Cerca con Google

McCoy A.J., Grosse-Kunstleve R.W., Adams P.D., Winn M.D., Storoni L.C., Read R.J. “Phaser crystallographic software.” J. Appl. Cryst 40: 658-674 (2007). Cerca con Google

Niefind K., Guerra B., Pinna L.A., Issinger O.G., Schomburg D. “Crystal structure of the catalytic subunit of protein kinase CK2 from Zea mays at 2.1 Å resolution.” EMBO J. 17: 2451-2462 (1998). Cerca con Google

Niefind K., Guerra B., Ermakowa I., Issinger O.G. “Crystal structure of human protein kinase CK2: insights into basic properties of the CK2 holoenzyme.” EMBO J. 20: 5320-5331 (2001). Cerca con Google

Niefind K., Raaf J., Issinger O.G. “Protein kinase CK2 in health and disease: Protein kinase CK2: from structures to insights.” Cell Mol Life Sci. 66: 1800-1816 (2009). Cerca con Google

Niefind K., Battistutta R. “Structural bases of protein kinase CK2 function and inhibition. In Protein Kinase CK2” (Pinna, L.A., ed.) Wiley-Blackwell, Oxford, U.K 3–75, (2013). Cerca con Google

Pagano M.A., Sarno S., Poletto G., Cozza G., Pinna L.A., Meggio, F. “Autophosphorylation at the regulatory beta subunit reflects the supramolecular organization of protein kinase CK2.” Mol. Cell. Biochem. 274: 23−29 (2005). Cerca con Google

Papinutto E., Ranchio A., Lolli G., Pinna L.A., Battistutta R. “Structural and functional analysis of the flexible regions of the catalyticα-subunit of protein kinase CK2.” J. Struct. Biol. 177: 382–391 (2012). Cerca con Google

Pinna L.A. “Protein kinase CK2: a challenge to canons.” J Cell Sci. 115: 3873-3878 (2002). Cerca con Google

Pinna L.A. (ed.) “Protein Kinase CK2.” Wiley-Blackwell, Oxford, U.K (2013). Cerca con Google

Ruzzene M., Pinna L. A. “Addiction to protein kinase CK2: a common denominator of diverse cancer cells?” Biochimica et Biophysica Acta 1804(3): 499-504 (2010). Cerca con Google

Sambrook J., Russel D.W. “Molecular Cloning. A Laboratory Manual.” Cold Spring Harbor Laboratory Press: Cold Spring Harbor, N.Y. U.S.A., (2001). Cerca con Google

Schnitzler A., Olsen B.B., Issinger O.G., Niefind K. “The protein kinase CK2 Andante holoenzyme structure supports proposed models of autoregulation and trans-autophosphorylation.” J. Mol. Biol. 426: 1871–1882 (2014). Cerca con Google

St-Denis N.A., Litchfield D.W. “From birth to death: The role of protein kinase CK2 in the regulation of cell proliferation and survival.” Cell. Mol. Life Sci. 66: 1817-1829 (2009). Cerca con Google

Theis-Febvre N., Martel V., Laudet B., Souchier C., Grunwald D., Cochet C., Filhol O. “Highlighting protein kinase CK2 movement in living cells.” Mol Cell Biochem 274: 15-22 (2005). Cerca con Google

Valero E., De Bonis S., Filhol O., Wade R.H., Langowski J., Chambaz E.M., Cochet C. “Quaternary structure of casein kinase 2 characterization of multiple oligomeric states and relation with its catalytic activity.” J. Biol. Chem. 270: 8345–8352 (1995). Cerca con Google

Winn M.D., Ballard C.C., Cowtan K.D., Dodson E.J., Emsley P., Evans P.R., Keegan R.M., Krissinel E.B., Leslie A.G., McCoy A., McNicholas S.J., Murshudov G.N., Pannu N.S., Potterton E.A., Powell H.R., Read R.J., Vagin A., Wilson K.S. “Overview of the CCP4 suite and current developments.” Acta Crytsallographica D67: 235-242 (2011). Cerca con Google

Adams P.D., Afonine P.V., Bunkóczi G., Chen V.B., Davis W.I., Echols N., Headd J.J., Hung L.W., Kapral G.J., Grosse-Kunstleve R.W., McCoy A.J., Moriarty N.W., Oeffner R., Read R.J., Richardson D.C., Richardson J.S., Terwilliger T.C. and Zwart P.H., “PHENIX: a comprehensive Python-based system for macromolecular structure solution.” Acta Cryst. D66: 213-221 (2010). Cerca con Google

Besbes S., Mirshahi M., Pocard M., Billard C. “New dimension in therapeutic targeting of Bcl-2 family proteins.” Oncotarget 6: 12862-71 (2015). Cerca con Google

Czabotar P.E., Lee E.F., Thompson G.V., Wardak A.Z., Fairlie D.W., Colman P.M. “Mutation to Bax beyond the BH3 Domain disrupts interactions with pro-apoptotic survival proteins and promotes apoptosis.” The journal of biological chemistry 286: 7123-7131 (2011). Cerca con Google

Emsley P., Cowtan K. “Coot: model-building tools for molecular graphics.” Acta Crystallographica D60: 2126-2132 (2004). Cerca con Google

Emsley P., Lohkamp B., Scott W.G., Cowtan K. “Features and Development of Coot.” Acta Crystallographica D66: 486-501 (2010). Cerca con Google

Evans P. “Scaling and assessment of data quality.” Acta Crystallographica D62: 72–82 (2005). Cerca con Google

Evans P.R. “An introduction to data reduction: space-group determination, scaling and intensity statistics” Acta Crystallographica D67: 282-292 (2011). Cerca con Google

Follis A.V., Chipul J.E., Fisher J.C., Yun M.K., Grace C.R., Nourse A., Baran K., Ou L., Min L., White S.W., Green D.R., Kriwacki R.W. “PUMA binding induces partial unfolding within BCL-xL to disrupt p53 binding and promote apoptosis.” Nature Chemical Biology 9: 163-168 (2013). Cerca con Google

Gaulard P. “Expression of the bcl-2 gene product in follicular lymphoma.” Am. J. Pathol 140(5): 1089-1095 (1992). Cerca con Google

Gewies A. “Introduction to Apoptosis.” ApoRewiev 1-26 (2003). Cerca con Google

Harada N. “Expression of Bcl-2 family of proteins in fresh myeloma cells.” Leukemia 12(11): 1817-1820 (1998). Cerca con Google

Higashiyama M., Doi O., Kodoama K., Yokouchi H., Tateishi R. “High prevalence of bcl-2 oncoprotein expression in small cell lung cancer.” Anticancer Res. 15(2): 503-505 (1995). Cerca con Google

Kabsch W. “XDS.” Acta Cryst. D66: 125-132 (2010). Cerca con Google

Kerr J.F., Wyllie A.H., Currie A.R. “Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics.” British Journal of Cancer 26: 239-257 (1972). Cerca con Google

Keshgegian A. A., Johnston E., Cnaan A. “Bcl-2 oncoprotein positivity and hogh MIB-1 (Ki-67) proliferative rate are independent predictive markers for recurrence in prostate carcinoma.” Am. J. Clin. Pathol. 110: 443-439 (1998). Cerca con Google

Lee E.F., Czabotar P.E., Smith B.J., Deshayes K., Zobel K., Colman P. M., Fairlie W.D. “Crystal structure of ABT-737 complexed with Bcl-xL: implications for selectivity of antagonists of the Bcl-2 family.” Nature 14: 1711-13 (2007). Cerca con Google

Leiter U., Schmid R.M., Kaskel P., Peter R.U., Krahn G. “Antiapoptotic bcl-2 and bcl-xL in advanced malignant melanoma.” Arch. Dermatol. Res. 292(5): 225-232. (2000). Cerca con Google

Lessene G., Czabotar P., Colman P.M. “Bcl-2 family antagonists for cancer therapy.” Nature Reviews 7: 989-1000 (2008). Cerca con Google

Lipponen P. “Apoptosis suppressing protein bcl-2 is expressed in well-differentiated breast carcinomas with favourable prognosis.” J. Pathol 177(1): 49-55 (1995). Cerca con Google

Liu X., Beugelsdijk A., Chen J. “Dynamics of the BH3-only protein binding interface of Bcl-xL.” Biophysical Journal 109: 1049-57 (2015). Cerca con Google

Lodish H.F., Berk A., Kaiser C.A., Krieger M., Bretscher, Ploegh, “Molecular Cell Biology.” New York: Katherine Ahr Parker (2013). Cerca con Google

McCoy A.J., Grosse-Kunstleve R.W., Adams P.D., Winn M.D., Storoni L.C., Read R.J. “Phaser crystallographic software.” J. Appl. Cryst 40: 658-674 (2007). Cerca con Google

Min K. H., Reynods, C.P. “Bcl-2 Inhibitors: Targeting Mitochondrial Apoptotic Pathways in Cancer Therapy.” Clinical Cancer Research 15(4): 1126-1132 (2009). Cerca con Google

Muchmore S.W., Sattler M., Liang H., Meadows R.P., Harlan J.E., Yoon H.S., Nettesheim D., Chang B.S., Thompson C.B., Wong S.L., Ng S.L., Fesik S.W. “X-ray and NMR structure of human Bcl-xL, an inhbitor of programmed cell death.” Nature 381: 335-341 (1996). Cerca con Google

Nguyen M., Marcellus R.C., Roulston A., Watson M., Serfass L., Murthy Madiraju S. R., Goulet D., Viallet J., Bélec L., Billot X., Acoca S., Purisima E., Wiegmans A., Cluse L., Johnstone R.W., Beauparlant P., Shore G.C. “Small molecule obatoclax (GX15-070) antagonizes Mcl-1 and overcomes Mcl-1-mediated resistace to apoptosis.” Proc. Natl. Acad. Sci. 104: 19512-17 (2007). Cerca con Google

Obersatain A., Jeffrey P., Shi Y. “Crystal structure of the Bcl-XL-Beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein.” Journal of Biological Chemistry 282: 13123-32 (2007). Cerca con Google

Oltersdorf T., Elmore S.W., Shoemaker A.R., Armstrong R.C., Augeri D.J., Belli B.A., Bruncko M., Deckwerth T.L., Dinges J., Hajduk P.J., Joseph M.K., Kitada S., Korsmeyer S.J., Kunzer A.R., Letai A., Li C., Mitten M.J., Nettesheim D.G., Ng S., Nimmer P.M., O'Connor J.M., Oleksijew A., Petros A.M., Reed J.C., Shen W., Tahir S.K., Thompson C.B., Tomaselli K.J., Wang B., Wendt M.D., Zhang H., Fesik S.W., Rosenberg S.H. “An inhibitor of Bcl-2 family proteins induces regression of solid tumors.” Nature 435: 677-681 (2005). Cerca con Google

Petros A.M., Nettesheim D.G., Wang Y., Olejniczak E.T., Meadows R.P., Mack J., Swift K., Matayoshi E.D., Zhang H., Thompson C.B., Fesik S.W. “Rationale for Bcl-XL/Bad peptide complex formation from structure, mutagenesis, and biophysical studies.” Protein Science 9: 2528-34 (2000). Cerca con Google

Petros A.M., Olejniczak E.T., Fesik S.W. “Structural biology of the Bcl-2 family of proteins.” Biochimica et Biophysica Acta 1664(2-3): 83-94 (2004). Cerca con Google

Rajan S., Choi M., Baek K., Yoon H.S. “Bh3 induced conformational changes in Bcl-Xl revealed by crystal structure and comparative analysis.” Proteins: structure, function and bioinformatics 83: 1262-72 (2015). Cerca con Google

Sambrook J., Russel D.W. “Molecular Cloning. A Laboratory Manual.” Cold Spring Harbor Laboratory Press: Cold Spring Harbor, N.Y. U.S.A., (2001). Cerca con Google

Sattler M., Liang H., Nettesheim D., Meadows R.P., Harlan J.E., Eberstadt M., Yoon H.S., Shuker S.B., Chang B.S., Minn A.J., Thompson C.B., Fesik S.W. “Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis.” Science 275: 983-986 (1997). Cerca con Google

Shamas-Din A., Kale J., Leber B., Andrews D.W. “Mechanism of Action of Bcl-2 Family Proteins.” Cold Spring Harb Perspect Biol 5(4): a008714. (2013). Cerca con Google

Touzeau C., Dousset C., Le Gouille S., Sampath D., Leverson J.D., Souers A.J., Maïga S., Béné M.C., Moreau P., Pellat-Deceunynck C., Amiot M. “The Bcl-2 specific BH3 mimetic ABT-199: a promising targeted therapy for t(11;14) multiple myeloma.” Leukemia 28: 210-12 (2014). Cerca con Google

Tse C., Shoemaker A.R., Adickes J., Anderson M.G., Chen J., Jin S., Johnson E.F., Marsh K.C., Mitten M.J., Nimmer P., Roberts L., Tahir S.K., Xiao Y., Yang X., Zhang H., Fesik S., Rosenberg S.H., Elmore S.W. “ABT-263: A potent and orally bioavailable Bcl-2 family inhibitor.” Cancer Res 68(9): 3421-28 (2008). Cerca con Google

Tsujimoto Y., Croce C.M. “Analysis of the structure, transcripts, and protein products of bcl-2, the gene involved in human follicular lymphomas.” Proc. Natl. Acad. Sci. USA 83: 5214-18 (1986). Cerca con Google

Vela L., Isabel M. “Bcl-2 family of proteins as drug targets for cancer chemotherapy: the long way of BH3 mimetics from bench to beside.” Current Opinion in Pharmacology 23: 74-81 (2015). Cerca con Google

Wang G., Nikolovska-Coleska Z., Yang C.Y., Wang R., Tang G., Guo J., Shangary S., Qiu S., Gao W., Yang D., Meagher J., Stuckey J., Krajewski K., Jiang S., Roller P.P., Abaan H.O., Tomita Y., Wang S. “Structure-based design of potent small-molecule inhibitors of anti-apoptotic Bcl-2 proteins.” J Med Chem 49: 6139-42 (2006). Cerca con Google

Winn M.D., Ballard C.C., Cowtan K.D., Dodson E.J., Emsley P., Evans P.R., Keegan R.M., Krissinel E.B., Leslie A.G., McCoy A., McNicholas S.J., Murshudov G.N., Pannu N.S., Potterton E.A., Powell H.R., Read R.J., Vagin A., Wilson K.S. “Overview of the CCP4 suite and current developments.” Acta Crytsallographica D67: 235-242 (2011). Cerca con Google

Youle R. J., Strasser A. “The BCL-2 protein family: opposing activities that mediate cell death.” Nat Rev Mol Cell Biol 9(1): 47-59. (2008). Cerca con Google

Agbulut O., Destombes J., Thiesson D., Butler-Browne G. “Age-related appearance of tubular aggregates in the skeletal muscle of almost all male inbred mice.” Histochem Cell Biol 114: 477–481 (2000). Cerca con Google

Barone V., Del Re V., Gamberucci A., Polverino V., Galli L., Costanzi E., Toniolo L., Berti G., Malandrini A., Ricci G., Siciliano G., Vattemi G., Tomelleri G., Pierantozzi E., Spinozzi S., Volpi N., Fulceri R., Battistutta R., Reggiani C., Sorrentino V. “Identification and characterization of three novel variants in the CASQ1 gene in four patients with tubular aggregate myopathy.” Hum mutat (2017). Cerca con Google

Beard N.A., Dulhunty A.F. “C-terminal residues of skeletal muscle calsequestrin are essential for calcium binding and for skeletal ryanodine receptor inhibition.” Skelet Muscle 5: 6 (2015). Cerca con Google

Böhm J., Chevessier F., De Paula A.M., Koch C., Attarian S., Feger C., Hantaï D., Laforêt P., Ghorab K., Vallat J., Fardeau M., Figarella-Branger D., Pouget J., Romero N.B., Koch M., Ebel C., Levy N., Krahn M., Eymard B., Bartoli M., Laporte J. “Constitutive activation of the calcium sensor STIM1 causes tubular-aggregate myopathy.” Am J Hum Genet 92: 271-278 (2013). Cerca con Google

Böhm J., Bulla M., Urquhart J.E., Malfatti E., Williams S.G., O’Sullivan J., Szlauer A., Koch C., Baranello G., Mora M., Ripolone M., Violano R., Moggio M., Kingston H., Dawson T., DeGoede C.G., Nixon J., Boland A., Deleuze J.F., Romero N., Newman W.G., Demaurex N., Laporte J. “ORAI1 mutations with distinct channel gating defects in tubular aggregate myopathy.” Hum Mutat 38: 426-438 (2017). Cerca con Google

Boncompagni S., Protasi F., Franzini-Armstrong C. “Sequential stages in the age-dependent gradual formation and accumulation of tubular aggregates in fast twitch muscle fibers: SERCA and calsequestrin involvement.” Age (Dordr) 34(1): 27-41 (2012). Cerca con Google

Chevessier F., Bauche-Godard S., Leroy J.P., Koenig J., Paturneau-Jouas M., Eymard B., Hantai D., Verdiere-Sahuque M. “The origin of tubular aggregates in human myopathies.” J Pathol 207: 313-323 (2005). Cerca con Google

Endo Y., Noguchi S., Hara Y., Hayashi Y.K., Motomura K., Miyatake S., Murakami N., Tanaka S., Yamashita S., Kizu R., Bamba M., Goto Y., Matsumoto N., Nonaka I., Nishino I. “Dominant mutations in ORAI1 cause tubular aggregate myopathy with hypocalcemia via constitutive activation of store-operated Ca2+ channels.” Hum Mol Genet 24: 637-648 (2015). Cerca con Google

Engel W.K., Bishop D.W., Cunningham G.G. “Tubular aggregates in type II muscle fibers: ultrastructural and histochemical correlation.” J Ultrastruct Res 31: 507–525 (1970). Cerca con Google

Giacomello E., Quarta M., Paolini C., Squecco R., Fusco P., Toniolo L., Blaauw B., Formoso L., Rossi D., Birkenmeier C., Peters L.L., Francini F., Protasi F., Reggiani C., Sorrentino V. “Deletion of small ankyrin 1 (sAnk1) isoforms results in structural and functional alterations in aging skeletal muscle fibers.” Am J Physiol Cell Physiol 308: C123-38 (2015). Cerca con Google

Kuncl R.W., Pestronk A., Lane J., Alexander E. “The MRL +/+ mouse: a new model of tubular aggregates which are gender- and age-related.” Acta Neuropathol 78: 615–620 (1989). Cerca con Google

Lewis K.M., Ronish L.A., Ríos E., Kang C. “Characterization of Two Human Skeletal Calsequestrin Mutants Implicated in Malignant Hyperthermia and Vacuolar Aggregate Myopathy.” J Biol Chem 290: 28665-28674 (2015). Cerca con Google

Okuma H., Saito F., Mitsui J., Hara Y., Hatanaka Y., Ikeda M., Shimizu T., Matsumura K., Shimizu J., Tsuji S., Sonoo M. “Tubular aggregate myopathy caused by a novel mutation in the cytoplasmic domain of STIM1.” Neurol Genet 2(1):e50 (2016). Cerca con Google

Park H., Wu S., Dunker A.K., Kang C. “Polymerization of calsequestrin. Implications for Ca2+ regulation.” J Biol Chem 278: 16176-16182 (2003). Cerca con Google

Park H., Park I.Y., Kim E., Youn B., Fields K., A. Keith Dunker K.A., Chul Hee Kang C. “Comparing Skeletal and Cardiac Calsequestrin Structures and Their Calcium Binding.” J Biol Chem 279: 18026-18033 (2004). Cerca con Google

Perni S., Close M., Franzini-Armstrong C. “Novel details of calsequestrin gel conformation in situ.” J Biol Chem 288: 31358-31362 (2013). Cerca con Google

Rossi D., Vezzani B., Galli L., Paolini C., Toniolo L., Pierantozzi E., Spinozzi S., Barone V., Pegoraro E., Bello L., Cenacchi G., Vattemi G., Tomelleri G., Ricci G., Siciliano G., Protasi F., Reggiani C., Sorrentino V. “A mutation in the CASQ1 gene causes a vacuolar myopathy with accumulation of sarcoplasmic reticulum protein aggregates.” Hum Mutat 35(10): 1163-1170 (2014). Cerca con Google

Salviati G., Pierobon-Bormioli S., Betto R., Damiani E., Angelini C., Ringel S.P., Salvatori S., Margreth A. “Tubular aggregates: sarcoplasmic reticulum origin, calcium storage ability, and functional implications.” Muscle Nerve 8(4): 299–306 (1985). Cerca con Google

Schiaffino S., Reggiani C. “Fiber types in mammalian skeletal muscles.” Physiol Rev 91: 1447–1531 (2011). Cerca con Google

Schiaffino S. “Tubular aggregates in skeletal muscle: just a special type of protein aggregates?” Neuromuscul Disord 22: 199–207 (2012). Cerca con Google

Shin D.W., Pan Z., Kim E.K., Lee J.M., Bhat M.B., Parness J., Kim D.H., Ma J. “A retrograde signal from calsequestrin for the regulation of store-operated Ca2+ entry in skeletal muscle.” J Biol Chem. 278: 3286-92 (2003). Cerca con Google

Tomelleri G., Palmucci L., Tonin P., Mongini T., Marini M., L'Erario R., Rizzuto N., Vattemi G. “SERCA1 and calsequestrin storage myopathy: a new surplus protein myopathy.” Brain 129: 2085-2092 (2006). Cerca con Google

Wang S., Trumble W.R., Liao H., Wesson C.R., Dunker A.K., Kang C.H. “Crystal structure of calsequestrin from rabbit skeletal muscle sarcoplasmic reticulum.” Nat Struct Biol 5: 476-483 (1998). Cerca con Google

Wang L., Zhang L., Li S., Zheng Y., Yan X., Chen M., Wang H., Putney J.W., Luo D. “Retrograde regulation of STIM1-Orai1 interaction and store-operated Ca2+ entry by calsequestrin.” Sci Rep 5: 11349 (2015). Cerca con Google

Zhang L., Wang L., Li S., Xue J., Luo D. “Calsequestrin-1 Regulates Store-Operated Ca2+ Entry by Inhibiting STIM1 Aggregation.” Cell Physiol Biochem 38(6): 2183-2193 (2016). Cerca con Google

Zhao X., Min C.K., Ko J.K., Parness J., Kim D.H., Weisleder N., Ma J. “Increased store-operated Ca2+ entry in skeletal muscle with reduced calsequestrin-1 expression” Biophys J. 99: 1556-64 (2010). Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record