Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Patrizia, Pretto (2008) Microbes and mercury biogeochemical cycle in the Venice lagoon. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
931Kb

Abstract (inglese)

The Venice lagoon is an environment threatened by pollution and bottom floor erosion which are both leading to a rapid decline of the ecosystem. Mercury is a pollutant of major concern since its high toxicity and capability of bio accumulate in the food chain present in the lagoon sediment because of the long period activity of the Marghera chemical plant. Microbes play a central role in the element biogeochemical cycle and among them sulfate-reducing bacteria are well know to produce methyl-mercury, one of the most poisonous mercury compound.
In the frame of the SIOSED project, sediment from the Venice lagoon have been dredged and used to build sub-tidal banks with the meaning of keeping shipping channel clean and improving the diversity of the bottom floor.
The microbial community in the sites of interest for the project have been studied for a total of two year period in order to monitor the effects of sediment dredging and transplanting on methyl-mercury production


Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Bertoloni, Giulio
Correlatore:Bradley, Tebo - Obraztsova, Anna
Dottorato (corsi e scuole):Ciclo 20 > Corsi per il 20simo ciclo > VIROLOGIA E BIOTECNOLOGIE MICROBICHE
Data di deposito della tesi:Luglio 2008
Anno di Pubblicazione:Luglio 2008
Parole chiave (italiano / inglese):SRB, mercury, methyl-mercury, microbial community, TRFLP, sediment
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/19 Microbiologia generale
Struttura di riferimento:Dipartimenti > pre 2012 Dipartimento di Istologia, Microbiologia e Biotecnologie Mediche
Codice ID:1087
Depositato il:25 Lug 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Amyot, M., Gill, GA., Morel, FMM. (1997) Production and loss of dissolved gaseous mercury in the coastal waters of the Gulf of Mexico. Environ Sci Technol, 31: 3606-3611 Cerca con Google

2. Annai, YS., Berdicevsky, I., Duek, L. (1991) Transformations of inorganic mercury by Candida albicans and Saccharomyces cerevisiae. Appl Environ Microbiol 57(1): 245–247 Cerca con Google

3. Barkay, T., Gillman, M., and Turner, RR., (1997) Effects of dissolved organic carbon and salinity on bioavailability of mercury. Appl Environ Microbiol , 63:4267-4261 Cerca con Google

4. Barkay, T, Liebert, C, Gillman, M. (1989) Environmental significance of the potential for mer-mediated reduction of Hg2+ to Hg0 in natural waters. Appl Environ Microbiol 55, 1196 Cerca con Google

5. Barkay, T., Miller, SM., Summers, AO., (2003) Bacterial mercury resistance from atoms to ecosystem. FEMS Microbiol. Rev. 27:355-384. Cerca con Google

6. Barnes, HL. Seward, TM, (1997). Geothermal systems and mercury deposits. In Geochemisty of hydrothermal ore deposits, 3rd ed.; Barnes, H.L., Ed.; Wiley: New York, Cerca con Google

7. Ben-Bassat, D, Mayer, AM, (1977) Reduction of mercury chloride by Chlorella: evidence for a reducing factor. Physiol. Plant. 40, 157 Cerca con Google

8. Beldowsky, J; Pempkowiak,J. (2003) Horizontal and vertical variabilities of mercury concentration and speciation in sediments of the Gdansk Basin, Southern Baltic Sea Chemosphere, 52, 645-654 Cerca con Google

9. Benes, P. and Havlík, B. (1979) Speciation of mercury in natural waters, in: The Biogeochemistry of Mercury in the Environment, J.O. Nriagu, Ed., Elsevier/North-Holland Biomedical Press, Amsterdam, 175–202. Cerca con Google

10. Benoit, JM; Gilmour, CC; Mason, RP; Heyes, A. (1999a) Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore water. Environ. Sci. Technol. 33, 951 Cerca con Google

11. Benoit, J.M., Mason, R.P.,Gilmour, C.C. (1999b) Estimation of mercury-sulfide speciation in sediment pore waters using octanol-water partitioning and implications for availability to methylating bacteria, Environ. Toxicol. Chem. 18, 2138. Cerca con Google

12. Berman, M., and Bartha R. (1986) Levels of chemical vs. biological methylation of mercury in sediments. Bull. Environ. Contam. Toxicol. 36: 401-404. Cerca con Google

13. Bloom NS, Moretto LM, Scopece P, Ugo P. (2004) Seasonal cycling of mercury and monomethyl mercury in the Venice Lagoon (Italy). Mar Chem 91:85-99. Cerca con Google

14. Bloom, N. S. and Lasorsa, BK. (1999) Changes in mercury speciation and the release of methyl mercury as a result of marine sediment dredging activities, Sci. Total Environ., 238, 385, Cerca con Google

15. Boening, DW. (2000) Ecological effects, transport and fate of mercury: a general review. Chemosphere,40, 1335, Cerca con Google

16. Bostrom, K; Peterson, MNA; Joensuu, O; Fisher, DEJ. (1969). Aluminum-Poor Ferromanganoan Sediments on Active Oceanic Ridges Geophys. Res., 74, 3261 Cerca con Google

17. Branfireun, BA., Heyes, A., and Roulet, NT. (1996) The hydrology and methylmercury dynamics of a Precambrian Shield headwater peatland, Water Resources Res. 32, 1785, Cerca con Google

18. Caldwell, CA., Canavan, CM., and Bloom, NS. (2000). Potential effects of forest fire and storm flow on total mercury and methylmercury in sediments of an arid-lands reservoir, Sci. Total Environ., 260, 125. Cerca con Google

19. Canavan, CM., Caldwell, CA., and Bloom, NS. (2000) Discharge of methylmercury-enriched hypolimnetic water from a stratified reservoir, Sci. Total Environ., 260, 159. Cerca con Google

20. Carpi, A., Lindberg, SE., Prestbo, EM., and Bloom, NS. (1997). Methyl mercury contamination and emission to the atmosphere from soil amended with municipal sewage sludge, J. Environ. Qual., 26, 1650. Cerca con Google

21. Choe K–Y, Gill GA, Lehman RD, Han S, Heim WA, Coale KH. (2004). Sediment-water exchange of total mercury and monomethyl mercury in the San Francisco Bay-Delta. Limnol Oceanogr 49:1512-1527. Cerca con Google

22. Choi SC, Chase T, Bartha R. (1994). Metabolic pathways leading to mercury methylation in Desulfovibrio desulfuricans LS. Appl Environ Microbiol 60:4072-4077. Cerca con Google

23. Clark, DL., Weiss, AA., and Silver S. (1977). Mercury and organomercurial resistances determined by plasmids in Pseudomonas. J. Bacteriol. 132:186-196. Cerca con Google

24. Clark, R.B. (1997). Marine Pollution. Oxford, Oxford University Press. Cerca con Google

25. Compeau, G, and Bartha, R. (1987). Effect of salinity on mercury methylating activity of sulphate reducing bacteria in estuarine sediments. Appl. Environ. Microbiol. 53: 261.265. Cerca con Google

26. Compeau, G. and Bartha, R.,(1984) Methylation and demethylation of mercury under controlled redox, pH and salinity conditions, Appl. Environ. Microbiol., 48: 1203. Cerca con Google

27. Compeau, G., and Bartha, R. (1985). Sulphate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediments. Appl.Environ. Microbiol. 50: 498-502. Cerca con Google

28. Conaway, CH., Squire, S., Mason RP., Flegal AR. (2003). Mercury speciation in the San Francisco Bay estuary Mar. Chem.80:199-225 Cerca con Google

29. Cossa, D. and Gobeil, C. (2000) Mercury speciation in the Lower St. Lawrence Estuary, Fish. Aquat. Sci. 57, 138, Cerca con Google

30. Cossa D., Coquery M. The Mediterranean mercury anomaly, a geochemical or a biological issue. The Mediterranean Sea; Saliot, A., Ed.; Springer: Berlin,(2005); Chapter 6, http://dx.doi.org/10.1007/b10721 Vai! Cerca con Google

31. Costa, M., Liss PS. (1999). Photoreduction of mercury in sea water and its possible implication for Hg. 0. air-sea fluxes. Mar. Chem. 68:87-95 Cerca con Google

32. Costa, R., Gotz M., Mrotzek N., Lottman, J., Berg, G., Smalla K., (2006). Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of different microbial guilds. FEMS Microbiol. Ecol. 56:236-249. Cerca con Google

33. De Liptay, JR., Rasmussen LD., Oregaard, G., Simmonsen, K., Bahl, MI., Kroer, N., and Sorensen, SJ., (2008). Acclimation of subsurface microbial community to mercury. FEMS Microb Ecol. 65:145-155 Cerca con Google

34. Devereux,R., Winfrey MR., Winfrey J., and Stahl DA. (1996). Depth profiles of sulfate-reducing bacterial ribosomal RNA and mercury methylation in an estuarine sediment. FEMS Microbiol. Ecol. 20:23-31 Cerca con Google

35. Ekstrom EB, Morel FMM, Benoit JM. (2003). Mercury methylation independent of the Acetyl-Coenzyme A pathway in sulfate-reducing bacteria. Appl Environ Microbiol 69(9):5414-5422 Cerca con Google

36. Faganelli J, Horvat M, Covelli S, Fajon V, Logar M, Lipej L, Cermelj B.( 2003). Mercury and methylmercury in the Gulf of Trieste (northern Adriatic Sea) Sci. Total. Environ., 304: 315-326 Cerca con Google

37. Farrelly , V., Rainey, FA. and Stackebrandt, E. (1995). Effect of genome size and rnn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl Environ Microbiol. 61:2798-2801. Cerca con Google

38. Fitzgerald WF, Lamborg CH. Geochemistry of mercury in the environment. In Treatise on geochemistry. Vol 9: Environmental geochemistry; Lollar, B.S., Ed, Elsevier inc. New York , 2004 Cerca con Google

39. Fleming EJ, Mack EE, Green PG, Nelson DC. (2006). Mercury methylation from unexpected sources: Molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Appl Environ Micorbiol 72:457-464. Cerca con Google

40. Foster, TJ., Nakahara, H., Weiss, AA., and Silver, S. (1979) Transposon A-generated mutation in the mercuric resistance genes of plasmid R100-1. J. Bacteriol., 140:167-181. Cerca con Google

41. Francois, MM Morel; Anne ML Kraepiel; Amyot, M .(1998). The chemical cycle and bioaccumulation of mercury. Annual review of ecology and systematics. 29:543-566 Cerca con Google

42. Frignani M, Bellucci LG, Langgone L, Muntau H. (1997). Metal fluxes to the sediments of the northern Venice Lagoon. Mar Chem 58:275-292. Cerca con Google

43. Gill, GA, Bruland, KW. EOS. (1987). Mercury in the Northeast Pacific. 68,1763 Cerca con Google

44. Gilmour, CC., Henry EA., and Henry Mitchell.(1992). Sulfate stimulation of mercury methylation in freshwater sediments. Environ. Sci. Technol. 26:2281-2287 Cerca con Google

45. Gilmour CC, Riedel GS, Ederington MC, Bell JT, Benoit JM, Gill GA, Stordal MC. 1998. Methylmercury concentrations and production rates across a trophic gradient in the northern Everglades. Biogeochemistry 40:327-345. Cerca con Google

46. Hamdy, MK, Noyes OR. (1975). Formation of methyl mercury by bacteria. Appl Environ Microbiol 30(3):424-432 Cerca con Google

47. Han, S., Obraztsova, A., Pretto, P., Choe, KJ., Gieskes, J., Deheyn, DD., Tebo, BM., (2007). Biogeochemical factors affecting mercury methylation in sediment of the Venice lagoon, Italy. Environ Tox Chem.26:655-663. Cerca con Google

48. Han, S., Obraztsova, A., Pretto, P., Deheyn, D., Gieskes, J., Tebo, B.(2008). Sulfide and iron control on mercury speciation in anoxic estuarine sediment slurries. Mar Chem. In press Cerca con Google

49. Heyes, A, Miller C, Mason RP. Mar. Chem.(2004). Mercury and methylmercury in the Hudson River sediment: impact of resuspension on partitioning and methylation. 90, 75-89 Cerca con Google

50. Huertas-Diaz, MA and Morse, JW. (1992) Pyritization of trace metals in anoxyc marine sediement. Geochim. Cosmochim. Acta. 56:2681-2702 Cerca con Google

51. Iverfeldt, A. Mar. Chem. (1988). Mercury in the Norwegian Fjord Framvaren 23: 441-456. Cerca con Google

52. Jackson, WJ., and Summer AO. (1982) Polypeptides encoded by the mer operon. J. Bacteriol.149:479-487. Cerca con Google

53. Jones, GJ, Palenik, BP, Morel FMM. (1987). Trace metal reduction by phytoplankton: the role of plasmalemma redox enzymes. J. Phycol. 23, 237 Cerca con Google

54. Kerin EJ, Gilmour CC, Roden E, Suzuki MT, Coates JD, Mason RP. (2006). Mercury methylation by dissimilatory iron-reducing bacteria. Appl Environ Microbiol 72(12):7919-7921. Cerca con Google

55. Kim, JP. (1987). Volatilization and efflux of mercury from biologically-productive ocean regions. PhD thesis, University of Connecticut. Cerca con Google

56. Kim JP, Fitzgerald WF. (1986). An equatorial Pacific source of atmospheric mercury. Science 231, 1131 Cerca con Google

57. King JK, Kostka JE, Frischer ME, Saunders FM. (2000). Sulfate-reducing bacteria methylate mercury at variable rates in pure cultures and in marine sediments. Appl Environ Microbiol 66:2430-2437. Cerca con Google

58. King JK, Kostka JE, Frischer ME, Saunders FM., Richard AJ., (2001). A quantitative relationship that demonstrates mercury methylation rates in marine sediment are based on the community composition and activity of Sulfate-Reducing Bacteria. Environ Sci Technol. 35:2491-2496. Cerca con Google

59. King JK, Saunders FM, Lee RF, Jahnke RA. (1999). Coupling mercury methylation rates to sulfate reduction rates in marine sediments. Environ Toxicol Chem 18:1362-1369. Cerca con Google

60. Könneke M, Bernhard AE, Torre JR, Walker CB, Waterbury JB, Stahl DA. (2005). Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543-546 Cerca con Google

61. Kreader, CA. (1996). Relief of amplification in PCR with bovine serum albumin or T4 gene 32 protein. Appl Environ Microbiol. 62:1102-1106. Cerca con Google

62. Lamborg, CH; Von Damm, KL; Fitzgerald, WF; Hammerschmidt, CR; Zierenberg, RA. (2006). Hg and Monomethylmercury in Fluids from Sea Cliff Submarine Hydrothermal Field, Gorda Ridge. Geophys. Res. Lett. 33/17, L17606 Cerca con Google

63. Lamborg, CH; Yigiterhan, O; Fizgerald, WF; Balcom, PH; Hammerschimdt, CR; Murray, JW. Vertical distribution of mercury species at two sites in the Western Black Sea. Mar. Chem., In press Cerca con Google

64. Landner L. (1971). Biochemical model for the biological methylation of mercury suggested from methylation studies in vivo with Neurospora crassa. Nature 230:452-453. Cerca con Google

65. Lauriel, FJG; Mason, RP; Gill, GA; Whalin, L.(2004). Mercury distribution in the North pacific Ocean- 20 years of observations. Mar. Chem.,90:3-19 Cerca con Google

66. Lindqvist, O. et al. (1991). Mercury in the Swedish environment. Water Air Soil Pollut. 55:23-30 Cerca con Google

67. Mack, EE. (1998). PhD. Dissertation. University of California , Davis. Cerca con Google

68. Macalady, JL., Mack EE., Nelson, DC and Scow KM. (2000). Sediment microbial community structure and mercury methylation in mercury-polluted Clear Lake, California. Appl. Environ. Microb. 66:1479-1488 Cerca con Google

69. Magistrato alle Acque di Venezia. (2003). Environmental monitoring activity in the Venice Lagoon. CVN 499358. Final Report. Consorzio Venezia Nuova, Venice, Italy. Cerca con Google

70. Martin JM, Huang WW, Yoon YY. (2000). Dissolved trace metals in the Venice Lagoon. In Lasserre P, Marzollo A, eds, The Venice Lagoon Ecosystem: Inputs and Interactions Between Land and Sea, 1st ed. United Nations Educational, Scientific and Cultural Organization, Paris, France, pp 23-24. Cerca con Google

71. Mason, RP, Fitzgerald WF, Hurley J, Hanson Jr AK, Donaghay PL, Sieburth JM.(1993). Mercury biogeochemical cycling in a stratified estuary. Limnol. Oceanogr. 38 (6), 1227 Cerca con Google

72. Mason, RP, Gill, GA.(2005). Mercury in the marine environment. In Mercury: sources, measurements, cycles and effects; Parsons, M.B., Percival, J.B., Eds.; Mineralogical association of Canada; Vol.34, Chapter 10. Cerca con Google

73. Mason RP, Lawrence AL. 1999. Concentration, distribution, and bioavailability of mercury and methylmercury in sediments of Baltimore harbor and Chesapeake Bay, Maryland, USA. Environ Toxicol Chem 18:2438-2447. Cerca con Google

74. Mason RP, Rolfhus KR and Fitzgerald WF.(1995). Methylated and elemental mercury cycling in surface and deep ocean waters of the North Atlantic. Water, Air, Soil Pollut. 80:665-677 Cerca con Google

75. Mason RP, Reinfelder JR, Morel FMM.(1996). Uptake, toxicity, and trophic transfer of mercury in a coastal diatom. Environ. Sci. Technol. 30:1835-45 Cerca con Google

76. Mason RP, Rolfhus KR, Fitzgerald WF. (1998). Mercury in the North Altantic Mar. Chem. 61: 37-53 Cerca con Google

77. Mason, RP; Sheu, GR. (2002). Role of the ocean in the global mercury cycle. Global Biogeochem. Cycles 16 (4), 1093 Cerca con Google

78. McBride, BC, and Edwards, TL. (1977). Role of the methanogenic bacteria in the alkylation of arsenic and mercury. In Biological Implications of Metals in the Environment: Proceedings of the 15th Annual Hanford Life Sciences Symposium, Richland, Washington, September 29.October 1, 1975. Edited by H. Drucker and R.E. Wildung. Technical Information Center and Energy Research and Development Administration, Springfield, Va. pp. 1.19. Cerca con Google

79. Moretto LM, Bloom NS, Scopece P, Ugo P. (2003). Application of ultra clean sampling and analysis methods for the speciation of mercury in the Venice lagoon (Italy). Journal de Physique IV 107:887-890. Cerca con Google

80. Novitsky, JA.(1990). Evidence for sedimenting particles as the origin of the microbial community in a coastal marine sediment. Mar Ecol Prog Ser.60:161-166. Cerca con Google

81. Pak, KR., Bartha, R., (1998). Mercury methylation by interspecies hydrogen and acetate transfer between sulfidogens and methanogens. Appl Environ Microbiol 64:1987-1990 Cerca con Google

82. Pranovi F, Libralato S, Raicevich S, Granzotto A, Pastres R, Giovanardi O. (2003). Mechanical clam dredging in Venice lagoon: Ecosystem effects evaluated with a trophic mass-balance model. Mar Biol 143:393-403 Cerca con Google

83. Poltz M.F., Cavanaugh C.M. (1998) Bias in template-to-product ratios in multitemplate PCR.Appl Environ Microbiol 64:3724-3730 Cerca con Google

84. Rasmussen, PE. (1994). Current methods of estimating atmospheric mercury fluxes in remote areas. Environ. Sci. Technol. 28:2233-41 Cerca con Google

85. Ravenschlag, K., Kerstin S., Pernthaler, J., Aman, R. (1999). High bacterial diversity in permanently cold marine sediment. Appl. Environ. Microiol. 65:3982-3989 Cerca con Google

86. Rolfhus, KR, Fitzgerald, WF. Geochim. Cosmochim. Acta (2001). The evasion and spatial/temporal distribution of mercury species in Long Island Sound, CT-NY. 65: 407-418 Cerca con Google

87. Rowe, R., Todd R., Waide, J., (1976). Microtechnique for Most-Probable-Number analysis. Appl Environ Microbiol. 33:675-680. Cerca con Google

88. Rolfhus, KR, Fitzgerald, WF.(2004). Mechanisms and temporal variability of dissolved gaseous mercury production in coastal sea water. Mar. Chem. 90, 125. Cerca con Google

89. Schottel, JL., (1978). The mercuric and organomercurial detoxifying enzymes from a plasmid-bearing strain of Escherichia coli. J. Biol. Chem. 253:4341-4349. Cerca con Google

90. Schottel, J., Mandal, A., Clark, D., Silver, S., and Hedges, RW., (1974). Volatilization of of mercury and organomercurials determined by inducible R-factor system in enteric bacteria. Nature 251:335-337. Cerca con Google

91. Smith, CN; Kesler, SE; Klaue, B; Blum, JD. (2005) Mercury Isotope Fractionation in Fossil Hydrothermal Systems. Geology 33:825-828 Cerca con Google

92. Sorokin, PY., Sorokin, YI., Zakuskina, OY. and Ravagnan, G.P. (2002). On the changing ecology of Venice lagoon. Hydrobiologia 487: 1-18. Cerca con Google

93. Summers, AO., and Sugarman, LI., (1974) Cell-free mercury(II) reducing activity in a plasmid-bearing strain of Escherichia coli. J. Bacteriol. 119:242-249. Cerca con Google

94. Sunderland EM, Gobas FAPC, Branfireun BA, Heyes A. 2006. Environmental controls on the speciation and distribution of mercury in coastal sediments. Mar Chem 102:111-123. Cerca con Google

95. Tebbe, CC. and Vahjen, W. (1993). Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and yeast. Appl Environ Microbiol. 59:2657-2665. Cerca con Google

96. Tillman, L., and Friedrich MW. (2002) Evaluation of PCR amplification bias by Terminal Restriction Fragment Lenght Polymorphism analysis of small-subunit rRNA and mcrA genes by using defined template mixtures of methanogenic pure cultures and soil DNA extract. Appl Environ Microbiol 69,320-326 Cerca con Google

97. Tonomura, K., Maeda, K., Futai, F., Nakagami, T., and Yamada, M. (1968). Stimulative vaporization of phenylmercuric acetate by mercury-resistant bacteria. Nature 217, 644-646. Cerca con Google

98. Torsvik, V., Ovreas, L., Thingstad, TF. (2008). Prokaryotic diversity- Magnitude, Cerca con Google

99. dynamics, and controlling factors. Science. 296:1064-1066 Cerca con Google

100. Urakawa, H., Yoshida, T., Nishimura, M., and Ohwada, K., (2000), Characterization of depth-related population variation in microbial communities on a marine sediment using 16S rDNA based approaches and quinone profiling. Environ. Microbiol. 2:542-554. Cerca con Google

101. Wagner, M., Loy, A., Klein, M., Lee, N., Ramsing, NB., Stahl, DA., Friedrich, MW., (2005), Functional marker genes for identification of sulphate-reducing prokaryotes. In Methods in enzymology. Eds Spinger-verlag: New York Cerca con Google

102. Wagner, M., Roger , AJ., Flax, JL., Brusseau, GA., Stahl, DA., (1998). Phylogeny of dissimilatory sulfite reductase supports an early origin of sulphate respiration. J. Bacteriol.180:2975-2982 Cerca con Google

103. Widdel, F. and Bak, F. (1992) Gram negative mesophilic sulfate-reducing bacteria. In: The Prokaryotes,pp.3352-378. Eds.A. Balows,H.G. Truper, M.Dworking,W. Arder,K.H. Scleider. Spinger-verlag: New York Cerca con Google

104. Winfrey MR, Rudd JWM, 1990. Environmental factors affecting the formation of methylmercury in low pH lakes. Environ Toxicol Chem 9:853-869. Cerca con Google

105. Wood JM, Kennedy FS, Rosen CG. (1968). Synthesis of methyl-mercury compounds by extracts of a methanogenic bacterium. Nature 220:173-174. Cerca con Google

106. Suzuky, MT., and Giovannoni, SJ. (1996). Bias caused by template annealing in the amplification of mixture of 16S rRNA genes by PCR. Appl Environ Microbiol. 62:625-630. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record