Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Colussi, Marco (2018) Massive fatigue assessment of welded megastructures by advanced methods. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document
Thesis not accessible until 15 January 2021 for intellectual property related reasons.
Visibile to: nobody

20Mb

Abstract (english)

In steel megastructures welding is a widely used and accepted joining technique. However, welds are geometrical discontinuities, resulting in severe local stress gradients, which strongly affect the fatigue strength of components. Advanced fatigue assessments are usually based on the local stress and strain state in the close neighborhood of such stress raisers. Despite this, current standards are lacking in giving a real guidance on how to perform a reliable fatigue assessment. Still, most of them do not refer to any local concept and lead to the nominal stress method. Even so, no recommendations exist on how to derive the nominal stress from a finite element (FE) model and it is left to the engineering assessment of a designer to establish which nominal stress is the right one.
Within this framework, the present Ph.D. thesis, focused on making the fatigue assessment of large steel structures possible, is divided into ten chapters. Purposes of this thesis are both giving scientific contributions to advanced local approaches for fatigue assessment and developing a method fully compliant with current standards, in order to be employed in the industrial context.
In the first chapter, a general introduction and the state of the art on fatigue design of welded structures are presented, with the aim to clarify the motivations of the present research work. In the second chapter, the adopted local approaches, namely the notch stress intensity factor (NSIF) based approach, the averaged strain energy density (SED) criterion and the peak stress method (PSM), are briefly introduced and described along with their theoretical frameworks. The third chapter deals with the fatigue behavior of large-scale welded cover plates, for which non uniform fatigue classification is highlighted at standards’ level. Through the application of the SED approach and adopting both bi-dimensional and three-dimensional FE models, parameters which mainly affect the fatigue strength are identified and alternatives to those provided by standards are proposed. Experimental data of four geometric variants are successfully summarized into a unique scatter band in terms of SED, regardless of the weld geometry. The suitability of the SED approach and of the related design curve to perform the fatigue assessment of welded cover plates is, therefore, not proven wrong. The fourth chapter is focused on the local SED numerical computation. Its principal drawback, consisting in the need of a specific control volume centered on a notch tip (i.e. at the weld toe and at the weld root in case of welded joints), within which the strain energy density has to be averaged, is overcome by using coarse meshes completely free-generated. The method and its limitations are formalized. For the sake of generality, some practical applications are given by using both Ansys® and Straus7® FE software. Robustness in terms of insensitivity to mesh pattern, mesh refinement and FE formulation are proven advantages of the method. The fifth chapter establishes a link between local stress fields, near weld toes and roots, and the nominal stress components evaluated at a proper distance from the weld. An analytical relationship between such distance and the loaded plate thickness is provided. A criterion to estimate SED values, both at the weld toe and at the weld root, as well as a posteriori the related NSIFs, as an explicit function of the nominal load components (membrane loads, shear loads and bending moments) is also presented. The proposed method is suitable for automation to perform the large number of fatigue assessments that a nowadays complex steel structure requires. However, the current lack of normative compliance of both SED and NSIF approaches can be a possible obstacle in industrial applications. That is why in the sixth chapter a method, scientifically and normatively compliant, to improve the classical nominal stress approach for welded structures, which is still the most widely accepted and recognized in standards, is proposed. The methodological problem of the nominal stress definition is overcome through an original, finite element based approach, which takes into account both membrane and bending effects. An experimental validation is presented and the implications in fatigue design of large steel structures are discussed. The seventh and eighth chapters present a finite element post-processor, developed to perform the almost automatic fatigue assessment of a large structure. The post-processor is compatible with Straus7® finite element solver and it is based on shell models to be suitable for large assemblies. Many of the findings of the present research work are automated: local SED and NSIF approaches are implemented, as well as the modified nominal stress and, finally, the classical nominal stress and hot spot stress approaches. A very good agreement between “manually” performed assessments, both through global and local approaches, and those rapidly performed by using the post-processor is found. Further good agreement is found between expected fatigue lives estimated through the local SED approach and those estimated through the modified nominal stress, in the presence of bending stresses. The ninth chapter deals with the rapid estimation of residual notch stress intensity factors (R-NSIFs), due to the welding process, by using the PSM and Sysweld® FE dedicated software. First, the calibration of the PSM in Sysweld® environment is presented; afterwards, practical applications of the PSM to evaluate the R-NSIFs are illustrated. Finally, the tenth chapter presents some overall concluding remarks, in order to discuss the main obtained results.

Abstract (italian)

Nelle megastrutture in acciaio la saldatura è una tecnica di giunzione ampiamente utilizzata. Tuttavia, le saldature rappresentano delle discontinuità geometriche e introducono elevati gradienti tensionali locali che influiscono negativamente sulla resistenza a fatica dei componenti. Secondo la letteratura scientifica recente, le analisi di resistenza a fatica più avanzate si basano sugli stati di tensione o deformazione locali calcolati in prossimità dei punti singolari. Ciononostante, le normative vigenti mancano di fornire una guida reale su come eseguire tali stime della resistenza fatica: la maggior parte di esse non fa riferimento agli approcci locali e prevede l'impiego del metodo della tensione nominale. Tuttavia, non esistono raccomandazioni su come ottenere la tensione nominale mediante un modello agli elementi finiti ed è demandato alla capacità ingegneristica del progettista stabilire quale sia quella adeguata.
In questo contesto, la presente tesi di dottorato, focalizzata sul rendere possibile la stima della resistenza a fatica delle grandi strutture in acciaio, è divisa in dieci capitoli. Scopo della tesi è sia fornire un contributo scientifico ad alcuni tra i più avanzati approcci locali per la stima della resistenza fatica, che sviluppare un metodo pienamente conforme alle normative vigenti, al fine di poter essere impiegato nel contesto industriale.
Il primo capitolo rappresenta l'introduzione generale sul tema trattato, lo stato dell'arte in materia di progettazione a fatica delle strutture saldate e le motivazioni della presente ricerca. Nel secondo capitolo vengono introdotti gli approcci locali adottati e le loro basi teoriche: l'approccio basato sui fattori di intensificazione delle tensioni (NSIF), il criterio della densità di energia di deformazione (SED) e il metodo della tensione di picco (PSM). Il terzo capitolo riguarda la caratterizzazione a fatica dei coprigiunti saldati, tipicamente impiegati come rinforzo nelle travi da ponte, per i quali è stata evidenziata una non uniforme classificazione a fatica a livello normativo. Mediante l'impiego dell'approccio locale SED e adottando modelli agli elementi finiti sia bidimensionali che tridimensionali, sono stati isolati i parametri che influiscono sensibilmente la resistenza e proposte soluzioni ottimizzate rispetto a quelle fornite dalle normative. I dati sperimentali ottenuti testando a fatica quattro differenti soluzioni geometriche sono sintetizzati con successo in un'unica banda di dispersione in termini di SED, indipendentemente dalla geometria della saldatura. L'approccio locale SED e la relativa curva di progettazione si sono dimostrati quindi adatti a stimare la resistenza a fatica dei coprigiunti saldati in acciaio. Il quarto capitolo è incentrato sul calcolo numerico del SED. La principale criticità dell'approccio, rappresentata dalla necessità di uno specifico il volume di controllo localizzato all'apice di un intaglio strutturale (al piede e alla radice dei cordoni di saldatura, nel caso dei giunti saldati), entro il quale l'energia di deformazione deve essere calcolata e mediata, è superata mediante l'utilizzo di maglie di calcolo (mesh) rade e generate in maniera completamente automatica da un generico algoritmo di meshatura. La soluzione proposta e le relative limitazioni di applicabilità sono stati formalizzati. La robustezza in termini di insensibilità alla tipologia di mesh, alla sua raffinatezza e alla formulazione degli elementi finiti sono alcuni dei vantaggi provati. La generalità del metodo è dimostrata anche mediante alcune applicazioni pratiche con l'impiego di differenti software agli elementi finiti. Il quinto capitolo stabilisce un collegamento tra i campi di tensione locali, in prossimità del piede e della radice dei cordoni di saldatura, e le componenti di tensione nominale valutate ad una adeguata distanza dalla saldatura stessa. Nel capitolo viene fornita una relazione analitica tra tale distanza e lo spessore della piastra caricata; inoltre, viene presentato un criterio per stimare il valore del SED, sia al piede che alla radice dei cordoni di saldatura, e, a posteriori, i relativi NSIFs, come esplicita funzione delle componenti di tensione nominale (sollecitazione membranale, flessionale e tagliante). Tale metodo si presta all'automatizzazione e, quindi, a condurre l'enorme quantità di verifiche a fatica richieste per una complessa struttura saldata in acciaio. Tuttavia, l'attuale mancanza di conformità normativa degli approcci locali SED e NSIF rappresenta un possibile ostacolo nelle applicazioni industriali. Per questo motivo nel sesto capitolo viene proposto un metodo, conforme alle normative vigenti e alla letteratura scientifica, per modificare il classico approccio nominale, che tuttora è il metodo di riferimento ampiamente accettato e riconosciuto. Il problema metodologico della definizione di tensione nominale in un modello agli elementi finiti viene superato attraverso un approccio originale che tiene conto sia degli effetti membranali che di quelli di flessionali. Viene presentata una validazione sperimentale e vengono discusse le implicazioni nella progettazione a fatica delle grandi strutture in acciaio. I capitoli settimo e ottavo presentano un post-processore ad elementi finiti, sviluppato per automatizzare l'analisi della resistenza a fatica di una struttura di grandi dimensioni. Il post-processore è basato sul solutore ad elementi finiti Straus7® ed è compatibile con modelli di tipo shell per essere adatto ai grandi assiemi strutturali. Molte delle proposte illustrate nella presente tesi sono state quindi automatizzate: gli approcci locali SED e NSIF, il metodo della tensione nominale modificato e, infine, gli approcci classici basati sulla tensione nominale e di hot spot. È inoltre mostrato un ottimo accordo tra le analisi condotte "manualmente", sia attraverso approcci globali che locali, e quelle eseguite rapidamente utilizzando il post-processore, riscontrando generalmente un ottimo accordo tra la vita a fatica stimata mediante l'approccio locale SED e quella stimata attraverso il metodo della tensione nominale modificata. Il nono capitolo tratta la stima rapida dei fattori di intensificazione delle tensioni residue (R-NSIFs), conseguenti al processo di saldatura, utilizzando il PSM e il software agli elementi finiti dedicato Sysweld®. Innanzitutto, viene presentata la calibrazione del PSM in ambiente Sysweld®; quindi vengono illustrate alcune applicazioni pratiche. Infine, il decimo capitolo riporta alcune osservazioni conclusive di carattere generale e la discussione dei principali risultati ottenuti.

EPrint type:Ph.D. thesis
Tutor:Berto, Filippo
Ph.D. course:Ciclo 30 > Corsi 30 > INGEGNERIA MECCATRONICA E DELL'INNOVAZIONE MECCANICA DEL PRODOTTO
Data di deposito della tesi:15 January 2018
Anno di Pubblicazione:15 January 2018
Key Words:Analisi a fatica automatica / Automatic fatigue assessment, Giunti saldati / Welded joints, Megastrutture / Megastructures, Tensione nominale / Nominal stress, Approcci locali / Local approaches, Metodi avanzati / Advanced methods, Fattori di intensificazione delle tensioni / Notch stress intensity factors, Densità di energia di deformazione / Strain energy density, Metodo della tensione di picco / Peak stress method, Metodo degli elementi finiti / Finite element method, Mesh rada / Coarse mesh
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/14 Progettazione meccanica e costruzione di macchine
Struttura di riferimento:Dipartimenti > Dipartimento di Tecnica e Gestione dei Sistemi Industriali
Codice ID:10878
Depositato il:19 Nov 2018 10:17
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Literature: Cerca con Google

Abdelaziz Y, Hamouine A (2008). A survey of the extended finite element. Computers and Structures, 86, 1141–1151. Cerca con Google

Ahola A, Nykänen T, Björk T (2016). Effect of loading type on the fatigue strength of asymmetric and symmetric transverse non-load carrying attachments. Fatigue Fract. Eng. Mater. Struct., 1–13. Cerca con Google

Akin JE (1976). The generation of elements with singularities. Int. J. Numer. Methods Eng., 10, 1249–1259. Cerca con Google

Andrews RM (1996). The effect of misalignment on the fatigue strength of welded cruciform joints. Fatigue Fract. Eng. Mater. Struct., 19, 755–768. Cerca con Google

Atzori B, Lazzarin P, Tovo R (1999). From a local stress approach to fracture mechanics : a comprehensive. Fatigue Fract. Eng. Mater. Struct., 22, 369–381. Cerca con Google

Atzori B, Lazzarin P, Tovo R (1997). Stress distributions for v-shaped notches under tensile and bending loads. Fatigue Fract. Eng. Mater. Struct., 20, 1083–1092. Cerca con Google

Atzori B, Lazzarin P, Tovo R (1999). Stress field parameters to predict the fatigue strength of notched components. J. Strain Anal. Eng. Des., 34, 437–453. Cerca con Google

Atzori B, Meneghetti G (2001). Fatigue strength of fillet welded structural steels: finite elements, strain gauges and reality. Int. J. Fatigue, 23, 713–721. Cerca con Google

Babuška I, Miller A (1984). The post‐processing approach in the finite element method—part 1: Calculation of displacements, stresses and other higher derivatives of the displacements. Int. J. Numer. Methods Eng., 20, 1085–1109. Cerca con Google

1Bäckström M, Marquis G (2004). Interaction equations for multiaxial fatigue assessment of welded structures. Fatigue Fract. Eng. Mater. Struct., 27, 991–1003. Cerca con Google

Baik B, Yamada K, Ishikawa T (2011). Fatigue crack propagation analysis for welded joint subjected to bending. Int. J. Fatigue, 33, 746–758. Cerca con Google

Bampton MCC, Craig RR (1968). Coupling of substructures for dynamic analyses. AIAA J., 6, 1313–1319. Cerca con Google

Barsoum RS (1975). Further application of quadratic isoparametric finite elements to linear fracture mechanics of plate bending and general shells. Int. J. Fract., 11, 167–169. Cerca con Google

Bazant Z (2005). Scaling of structural strength. Oxford: Elsevier. Cerca con Google

Beghini M, Bertini L, Vitale E (1994). Fatigue residual stress fields. Experimental results and modelling. Fat. Fract. Eng. Mater. Struct., 17, 1433–1444. Cerca con Google

Beltrami E (1885). Sulle condizioni di resistenza dei corpi elastici (in Italian). Rend. del Reg. Ist. Lomb., XVIII, 704–714. Cerca con Google

Benzley SE (1974). Representation of singularities with isoparametric finite elements. Int. J. Numer. Methods Eng., 8, 537–545. Cerca con Google

Bertini L, Fontanari V, Straffelini G (1998). Influence of post weld treatments on the fatigue behaviour of Al-alloy welded joints. Science (80-. )., 20, 749–755. Cerca con Google

Berto F, Campagnolo A, Lazzarin P (2015). Fatigue strength of severely notched specimens made of Ti-6Al-4V under multiaxial loading. Fatigue Fract. Eng. Mater. Struct., 38, 503–517. Cerca con Google

Berto F, Lazzarin P, Ayatollahi MR (2013). Brittle fracture of sharp and blunt V-notches in isostatic graphite under pure compression loading. Carbon N. Y., 63, 101–116. Cerca con Google

Berto F, Lazzarin P (2009). The volume-based Strain Energy Density approach applied to static and fatigue strength assessments of notched and welded structures. Procedia Eng., 1, 155–158. Cerca con Google

Berto F, Lazzarin P (2014). Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches. Mater. Sci. Eng. R, 75, 1–48. Cerca con Google

Berto F, Lazzarin P (2009). A review of the volume-based strain energy density approach applied to V-notches and welded structures. Theor. Appl. Fract. Mech., 52, 183–194. Cerca con Google

Boukharouba T, Tamine T, Niu L, Chehimi C, Pluvinage G (1995). The use of notch stress intensity factor as a fatigue crack initiation parameter. Eng. Fract. Mech., 52, 503–512. Cerca con Google

Boukharouba T, Tamine T, Niu L, Chehimi C, Pluvinage G (1995). The use of notch stress intensity factor as a fatigue crack initiation parameter. Eng. Fract. Mech., 52, 503–512. Cerca con Google

Campagnolo A, Meneghetti G, Berto F (2016). Rapid finite element evaluation of the averaged strain energy density of mixed-mode (I + II) crack tip fields including the T-stress contribution. Fatigue Fract. Eng. Mater. Struct., 39, 982–998. Cerca con Google

Catanzano A, Colussi L, Romaro C, Romaro G (2003). Sollevamento con un’unica manovra a 40 metri di altezza, di una copertura di circa 3 ettari di area e del peso di 8500 tonnellate (in Italian). In: III Settimana delle costruzioni in acciaio. Collegio dei Tecnici dell’Acciaio. Cerca con Google

Chattopadhyay A, Glinka G, El-Zein M, Qian J, Formas R (2011). Stress analysis and fatigue of welded structures. Weld. World, 55, 2–21. Cerca con Google

Davidenkov NN, Shevandin E, Wittmann F (1947). The Influence of Size on the Brittle Strength of Steel. J. Appl. Mech., 14, A63–A67. Cerca con Google

Doerk O, Fricke W, Weissenborn C (2003). Comparison of different calculation methods for structural stresses at welded joints. Int. J. Fatigue, 25, 359–369. Cerca con Google

Dong P (2001). A structural stress definition and numerical implementation for fatigue analysis of welded joints. Int. J. Fatigue, 23, 865–876. Cerca con Google

Dong P, Hong JK, Osage DA, Dewees DJ, Prager M (2010). The Master SN Curve Method an Implementation for Fatigue Evaluation of Welded Components in the ASME B&PV Code, Section VIII, Division 2 and API 579-1/ASME FFS-1. Weld. Res. Counc. Bull.. Cerca con Google

Dowling NE (2012). Mechanical behavior of materials: engineering methods for deformation, fracture, and fatigue. Pearson. Cerca con Google

Draper J (2008). Modern metal fatigue analysis. EMAS publications. Cerca con Google

Dunn M, Suwito W (1997). Fracture initiation at sharp notches under mode I, mode II, and mild mixed mode loading. Int. J. Fract., 84, 367–381. Cerca con Google

Fatemi A, Shamsaei N (2010). Multiaxial fatigue modeling and some simple approximations. In: ICMFF9. Cerca con Google

Feldmann M, Eichler B, Sedlacek G, Dahl W, Langenberg P, Butz C, Leendertz H, Hanswille G, Amorim-Varum H (2012). Choice of steel material for bridge bearings to avoid brittle fracture. Cerca con Google

Feng Z (2005). Processes and Mechanisms of Welding Residual Stress and Distortion. Woodhead Publishing. Cerca con Google

Ferro F (2004). Un modello bidimensionale per lo studio delle tensioni indotte dal processo di saldatura. In: Atti Convegno Nazionale XIV ADM – XXXIII AIAS (In italian). Cerca con Google

Ferro P (2014). The local strain energy density approach applied to pre-stressed components subjected to cyclic load. Fatigue Fract. Eng. Mater. Struct., 37, 1268–1280. Cerca con Google

Ferro P, Berto F, Lazzarin P (2006). Generalized stress intensity factors due to steady and transient thermal loads with applications to welded joints. Fatigue Fract. Eng. Mater. Struct., 29, 440–453. Cerca con Google

Ferro P, Colussi M, Meneghetti G, Berto F, Lachin M, Castiglione SA (2017). On the use of the Peak Stress Method for the calculation of Residual Notch Stress Intensity Factors: a preliminary investigation. Procedia Struct. Integr., 3, 191–200. Cerca con Google

Ferro P, Petrone N (2009). Asymptotic thermal and residual stress distributions due to transient thermal loads. Fatigue Fract. Eng. Mater. Struct., 32, 936–948. Cerca con Google

Ferro P, Porzner H, Tiziani A, Bonollo F (2006). The influence of phase transformations on residual stresses induced by the welding process - 3D and 2D numerical models. Model. Simul. Mater. Sci. Eng., 117–136. Cerca con Google

Ferro P, Zambon A, Bonollo F (2005). Investigation of electron beam welding in wrought Inconel 706 – experimental and numerical analysis. Mater. Sci. Eng. A, 94–105. Cerca con Google

Ferro P, Bonollo F, Tiziani A (2010). Methodologies and experimental validations of welding process numerical simulation. Int. J. Comput. Mater. Sci. Surf. Eng., 3, 114–132. Cerca con Google

Fett T (1996). Failure of brittle materials near stress singularities. Eng. Fract. Mech., 53, 511–518. Cerca con Google

Fisher JW, Frank KH, Hirt MA, McNamee BM (1970). Effect of weldments on the fatigue strength of steel beams. TRB. Cerca con Google

Fricke W (2013). IIW guideline for the assessment of weld root fatigue. Weld. World, 57, 753–791. Cerca con Google

Fricke W (2003). Fatigue analysis of welded joints: State of development. Mar. Struct., 16, 185–200. Cerca con Google

Friedman E (1975). Thermomechanical analysis of the welding process using the finite element method. J. Press. Vessel Technol., 97, 206–213. Cerca con Google

Frost NE, Marsh KJ, Pook LP (1974). Metal fatigue. Courier Corporation. Cerca con Google

Gallo P, Berto F, Lazzarin P (2015). High temperature fatigue tests of notched specimens made of titanium Grade 2. Theor. Appl. Fract. Mech., 76, 27–34. Cerca con Google

Givoli D, Rivkin L (1993). The DtN finite element method for elastic domains with cracks and re-entrant corners. Comput. Struct., 49, 633–642. Cerca con Google

Glinka G (1985). Energy density approach to calculation of inelastic strain-stress near notches and cracks. Eng. Fract. Mech., 22, 485–508. Cerca con Google

Goldak J, Chakravarti A, Bibby M (1984). A new finite element model for welding heat sources. Metall. Trans. B, 15, 299–305. Cerca con Google

Gómez, F.J., Elices, M., Berto, F., Lazzarin P (2009). Fracture of U-notched specimens under mixed mode: Experimental results and numerical predictions. Eng. Fract. Mech., 76, 236–249. Cerca con Google

Gómez, F.J., Elices, M., Berto, F., Lazzarin P (2009). Fracture of V-notched specimens under mixed mode (I + II) loading in brittle materials. Int. J. Fract., 159, 121. Cerca con Google

Gross B, Mendelson A (1972). Plane elastostatic analysis of V-notched plates. Int. J. Fract. Mech., 8, 267–276. Cerca con Google

Gumbel EJ (1958). Statistics of extremes. 1958. Columbia Univ. Press. New York. Cerca con Google

Gurney TR (1991). The fatigue strength of transverse fillet welded joints. Cambridge: Abington Publishing. Cerca con Google

Gurney TR (1997). Fatigue of thin walled joints under complex loading. Abingdon Publishing. Cerca con Google

Gustafsson M (2002). Thickness effect in fatigue of welded extra high strength steel joints. Des. Anal. Welded High Strength Steel Struct., 205–224. Cerca con Google

Haibach E (2002). Service fatigue strength-methods and data for structural analysis. Springer Verlag, Berlin. Cerca con Google

Haibach E, Matschke C (1982). The concept of uniform scatter bands for analyzing SN curves of unnotched and notched specimens in structural steel. In: Low-Cycle Fatigue and Life Prediction. ASTM International. Cerca con Google

Hall LR, Stallmeyer JE (1959). The fatigue strength of flexural members. University of Illinois, Department of Civil Engineering. Cerca con Google

Hensel J, Nitschke-pagel T, Dilger K (2017). Engineering model for the quantitative consideration of residual stresses in fatigue design of welded components. Weld. World, 997–1002. Cerca con Google

Henshell RD, Shaw KG (1975). Crack tip finite elements are unnecessary. Int. J. Numer. Methods Eng., 9, 495–507. Cerca con Google

Heyliger PR, Kriz RD (1989). Stress intensity factors by enriched mixed finite elements. Int. J. Numer. Methods Eng., 28, 1461–1473. Cerca con Google

Hibbitt HD, Marcal P V (1973). A numerical, thermo-mechanical model for the welding and subsequent loading of a fabricated structure. Comput. Struct., 3, 1145–1174. Cerca con Google

Hobbacher AF (1993). Stress intensity factors of welded joints. Eng. Fract. Mech., 46, 173–182. Cerca con Google

Hobbacher AF (2016). Recommendations for Fatigue Design of Welded Joints and Components. Springer International Publishing. Cerca con Google

Hobbacher AF (2008). Recommendations for Fatigue Design of Welded Joints and Components. International Institute of Welding. Cerca con Google

Hobbacher AF (2010). New developments at recent update of the IIW recommendations for fatigue of welded joints and components. Steel Constr., 3. Cerca con Google

Hobbacher AF (2009). The new IIW recommendations for fatigue assessment of welded joints and components - A comprehensive code recently updated. Int. J. Fatigue, 31, 50–58. Cerca con Google

Ida K, Uemura T (1996). Stress concentration factor formulae widely used in Japan. Fatigue Fract. Eng. Mater. Struct., 19, 779–786. Cerca con Google

Jonsson B, Dobmann G, Hobbacher A, Kassner ME, Marquis G, International Institute of Welding. (2016). IIW guidelines on weld quality in relationship to fatigue strength. Cerca con Google

Kang S-W, Kim W-S, Paik Y-M (2002). Fatigue strength of fillet welded steel structure under out-of-plane bending load. Int. J. Korean Weld. Soc., 2, 33–39. Cerca con Google

Karihaloo BL, Xiao QZ (2000). Hybrid stress elements for accurate solution of elasticity problems with traction-free segments. In: International conference on engineering computational technology, pp. 109–125. Cerca con Google

Kihara S, Yoshii A (1991). A Strength Evaluation Method of a Sharply Notched Structure by a New Parameter, ‘The Equivalent Stress Intensity Factor’. JSME Int. journal. Ser. 1, Solid Mech. strength Mater., 34, 70–75. Cerca con Google

Kihl DP, Sarkani S (1997). Thickness effects on the fatigue strength of welded steel cruciforms. Int. J. Fatigue, 19, 311–316. Cerca con Google

Koistinen DP, Marburger RE (1959). A general equation prescribing extent of austenite-martensite transformation in pure iron-carbon alloys and carbon steels. Acta Metall., 7, 59–68. Cerca con Google

Kyuba H, Dong P (2005). Equilibrium-equivalent structural stress approach to fatigue analysis of a rectangular hollow section joint. Int. J. Fatigue, 27, 85–94. Cerca con Google

Launert B, Rhode M, Kromm A, Pasternak H, Kannengiesser T (2017). Measurement and numerical modeling of residual stresses in welded HSLA component-like I-girders. Weld. World, 61, 223–229. Cerca con Google

Lazzarin, P., Berto F (2005). Some Expressions for the Strain Energy in a Finite Volume Surrounding the Root of Blunt V-notches. Int. J. Fract., 135, 161–185. Cerca con Google

Lazzarin P, Berto F, Gomez FJ, Zappalorto M (2008). Some advantages derived from the use of the strain energy density over a control volume in fatigue strength assessments of welded joints. Int. J. Fatigue, 30, 1345–1357. Cerca con Google

Lazzarin P, Campagnolo A, Berto F (2014). A comparison among some recent energy- and stress-based criteria for the fracture assessment of sharp V-notched components under mode I loading. Theor. Appl. Fract. Mech., 71, 21–30. Cerca con Google

Lazzarin P, Lassen T, Livieri P (2003). A notch stress intensity approach applied to fatigue life predictions of welded joints with different local toe geometry. Fatigue Fract. Eng. Mater. Struct., 26, 49–58. Cerca con Google

Lazzarin P, Berto F (2005). From Neuber’s elementary volume to Kitagawa and Atzori’s diagrams: an interpretation based on local energy. Int. J. Fract., 135, L33--L38. Cerca con Google

Lazzarin P, Berto F, Radaj D (2006). Uniform fatigue strength of butt and fillet welded joints in terms of the local strain energy density. In: Proc. Fatigue. Cerca con Google

Lazzarin P, Livieri P (2001). Notch stress intensity factors and fatigue strength of aluminium and steel welded joints. Int. J. Fatigue, 23, 225–232. Cerca con Google

Lazzarin P, Livieri P, Berto F, Zappalorto M (2008). Local strain energy density and fatigue strength of welded joints under uniaxial and multiaxial loading. Eng. Fract. Mech., 75, 1875–1889. Cerca con Google

Lazzarin P, Sonsino CM, Zambardi R (2004). A notch stress intensity approach to assess the multiaxial fatigue strength of welded tube-to-flange joints subjected to combined loadings. Fatigue Fract. Eng. Mater. Struct., 27, 127–140. Cerca con Google

Lazzarin P, Tovo R (1996). A unified approach to the evaluation of linear elastic stress fields in the neighborhood of cracks and notches. Int. J. Fract., 78, 3–19. Cerca con Google

Lazzarin P, Tovo R (1998). A Notch Intensity Factor Approach To the Stress Analysis of Welds. Fatigue Fract. Eng. Mater. Struct., 21, 1089–1103. Cerca con Google

Lazzarin P, Tovo R, Filippi S (1998). Elastic stress distributions in finite size plates with edge notches. Int. J. Fract., 91, 269–282. Cerca con Google

Lazzarin P, Zambardi R (2002). The Equivalent Strain Energy Density approach re-formulated and applied to sharp V-shaped notches under localized and generalized plasticity. Fatigue Fract. Eng. Mater. Struct., 25, 917–928. Cerca con Google

Lazzarin P, Zambardi R (2001). A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches. Int. J Fract., 112, 275–298. Cerca con Google

Lazzarin P, Berto F, Zappalorto M (2010). Rapid calculations of notch stress intensity factors based on averaged strain energy density from coarse meshes: Theoretical bases and applications. Int. J. Fatigue, 32, 1559–1567. Cerca con Google

Leblond JB, Devaux J (1984). A new kinetic model for anisothermal metallurgical transformations in steels including effect of austenite grain size. Acta Metall., 32, 137–146. Cerca con Google

Lin KY, Tong P (1980). Singular finite elements for the fracture analysis of V-notched plate. Int. J. Numer. Methods Eng., 15, 1343–1354. Cerca con Google

Lindley C, Bateson PH (1993). Influence of attachment thickness on fatigue endurance of welded joints. In: Proceedings of the International Conference on Offshore mechanics and Artic Engineering, p. 689. Cerca con Google

Livieri P, Lazzarin P (2005). Fatigue strength of steel and aluminium welded joints based on generalised stress intensity factors and local strain energy values. Int. J. Fract., 133, 247–276. Cerca con Google

Lotsberg I, Sigurdsson G (2006). Hot Spot Stress S-N Curve for Fatigue Analysis of Plated Structures. J. Offshore Mech. Arct. Eng., 128, 330–336. Cerca con Google

Lotsberg I (2017). Development of Fatigue Design Standards for Marine Structures. In: Volume 9: Offshore Geotechnics; Torgeir Moan Honoring Symposium. ASME. Cerca con Google

Lotsberg I (2016). Fatigue design of marine structures. Cambridge University Press. Cerca con Google

Maddox SJ (2015). Allowance for bending in fatigue design rules for welded joints. Int. Inst. welding, Doc, 13, 2515–2580. Cerca con Google

Maddox SJ (1987). The Effect of Plate Thickness on the Fatigue Strength of Fillet Welded Joints. Cerca con Google

Mahin KW, MacEwen S, Winters W (1988). Evaluation of residual stress distributions in a traveling GTA weld using finite element and experimental techniques. Model. Control Cast. Weld. Process. IV, 339–350. Cerca con Google

Marquis G (2007). Current Trends in Multiaxial Fatigue Research and Assessment. In: ICMFF9. Cerca con Google

Meneghetti G, Campagnolo A et al. (2017). Rapid Evaluation of notch stress intensity factors in welded joints using the peak stress method: comparison of commercial finite element codes for a range of mesh patterns. IIW-document XIII-2696-17. Cerca con Google

Meneghetti G, Campagnolo A, Berto F (2016). Averaged strain energy density estimated rapidly from the singular peak stresses by FEM: Cracked bars under mixed-mode (I + III) loading. Eng. Fract. Mech., 167, 20–33. Cerca con Google

Meneghetti G, Campagnolo A, Berto F, Atzori B (2015). Averaged strain energy density evaluated rapidly from the singular peak stresses by FEM: cracked components under mixed-mode (I + II) loading. Theor. Appl. Fract. Mech., 79, 113–124. Cerca con Google

Meneghetti G, Guzzella C, Atzori B (2014). The peak stress method combined with 3D finite element models for fatigue assessment of toe and root cracking in steel welded joints subjected to axial or bending loading. In: Fatigue and Fracture of Engineering Materials and Structures, pp. 722–739. Cerca con Google

Meneghetti G, Lazzarin P (2011). The Peak Stress Method for Fatigue Strength Assessment of welded joints with weld toe or weld root failures. Weld. World, 55, 22–29. Cerca con Google

Meneghetti G, Lazzarin P (2007). Significance of the elastic peak stress evaluated by FE analyses at the point of singularity of sharp V-notched components. Fatigue Fract. Eng. Mater. Struct., 30, 95–106. Cerca con Google

Meneghetti G (2013). The peak stress method for fatigue strength assessment of tube-to-flange welded joints under torsion loading. Weld. World, 57, 265–275. Cerca con Google

Meneghetti G (2008). The peak stress method applied to fatigue assessments of steel and aluminium fillet-welded joints subjected to mode I loading. Fatigue Fract. Eng. Mater. Struct., 31, 346–369. Cerca con Google

Meneghetti G (2012). The use of peak stresses for fatigue strength assessments of welded lap joints and cover plates with toe and root failures. Eng. Fract. Mech., 89, 40–51. Cerca con Google

Meneghetti G, Atzori B, Manara G (2010). The Peak Stress Method applied to fatigue assessments of steel tubular welded joints subject to mode-I loading. Eng. Fract. Mech., 77, 2100–2114. Cerca con Google

Meneghetti G, Guzzella C (2014). The peak stress method to estimate the mode I notch stress intensity factor in welded joints using three-dimensional finite element models. Eng. Fract. Mech., 115, 154–171. Cerca con Google

Moes N, Dolbow J (1999). A finite element method for crack growth without remeshing. Int. J. Numer., 150, 131–150. Cerca con Google

Mok DHB, Pick RJ (1990). Finite element study of residual stresses in a plate T-joint fatigue specimen. Proc. Inst. Mech. Eng. Part C Mech. Eng. Sci., 204, 127–134. Cerca con Google

Munse WH, Stallmeyer JE (1962). Fatigue in welded beams and girders. Highw. Res. Board Bull.. Cerca con Google

Neuber H (1985). Kerbspannungslehre (in German), 3rd Edition. Berlin: Springer Verlag. Cerca con Google

Neuber H (1958). Kerbspannungslehre (in German), 2nd Edition. Berlin: Springer Verlag. Cerca con Google

Neumann A (1961). Schweißtechnisches Handbuch für Konstrukteure (in German). F. Vieweg. Cerca con Google

Niemi E (1995). Stress determination for fatigue analysis of welded components. Cambridge: Woodhead Publishing. Cerca con Google

Niemi E, Fricke W, Maddox SJ (2006). Fatigue analysis of welded components: Designer’s guide to the structural hot-spot stress approach. Cambridge: Woodhead Publishing. Cerca con Google

Niemi E, Tanskanen P (2000). Hot spot stress determination for welded edge gussets. Weld. World, 44, 31–37. Cerca con Google

Nisitani H, Teranishi T (2004). KI of a circumferential crack emanating from an ellipsoidal cavity obtained by the crack tip stress method in FEM. Eng. Fract. Mech., 71, 579–585. Cerca con Google

Nui LS, Chehimi C, Pluvinage G (1994). Stress field near a large blunted tip V-notch and application of the concept of the critical notch stress intensity factor (NSIF) to the fracture toughness of very brittle materials. Eng. Fract. Mech., 49, 325–335. Cerca con Google

Nussbaumer A, Borges L, Davaine L (2012). Fatigue Design of Steel and Composite Structures: Eurocode 3: Design of Steel Structures, Part 1-9 Fatigue; Eurocode 4: Design of Composite Steel and Concrete Structures. John Wiley & Sons. Cerca con Google

Ottersböck M, Leitner M, Stoschka M (2015). Effect of Loading Type on Welded and HFMI-treated T-joints. IIW-document, 13, 2515–2584. Cerca con Google

Pook LP (1983). The role of crack growth in metal fatigue. Met. Soc. 1 Carlt. House Terrace, London SW 1 Y 5 DB, England, 1983. Cerca con Google

Popper K (2005). The logic of scientific discovery. Routledge. Cerca con Google

Portela A, Aliabadi MH, Rooke DP (1991). Efficient boundary element analysis of sharp notched plates. Int. J. Numer. Methods Eng., 32, 445–470. Cerca con Google

Poutiainen I, Marquis G (2006). A fatigue assessment method based on weld stress. Int. J. Fatigue, 28, 1037–1046. Cerca con Google

Poutiainen I, Tanskanen P, Marquis G (2004). Finite element methods for structural hot spot stress determination—a comparison of procedures. Int. J. Fatigue, 26, 1147–1157. Cerca con Google

Pu SL, Hussain MA, Lorensen WE (1978). The collapsed cubic isoparametric element as a ingular element for crack probblems. Int. J. Numer. Methods Eng., 12, 1727–1742. Cerca con Google

Qian J, Hasebe N (1997). Property of eigenvalues and eigenfunctions for an interface V-notch in antiplane elasticity. Eng. Fract. Mech., 56, 729–734. Cerca con Google

Radaj D (2014). State-of-the-art review on extended stress intensity factor concepts. Fatigue Fract. Eng. Mater. Struct., 37, 1–28. Cerca con Google

Radaj D (2015). State-of-the-art review on the local strain energy density concept and its relation to the J-integral and peak stress method. Fatigue Fract. Eng. Mater. Struct., 38, 2–28. Cerca con Google

Radaj D (1996). Review of fatigue strength assessment of non-welded and welded structures based on local parameters. Int. J. Fatigue, 18, 153–170. Cerca con Google

Radaj D (1990). Design and analysis of fatigue resistant welded structures. Cambridge: Woodhead Publishing. Cerca con Google

Radaj D, Sonsino CM (1998). Fatigue assessment of welded joints by local approaches. Woodhead Publishing. Cerca con Google

Radaj D, Sonsino CM, Fricke W (2006). Fatigue assessment of welded joints by local approaches. Cambridge: Woodhead Publishing. Cerca con Google

Rybicki EF, Schmueser DW, Stonesifer RW, Groom JJ, Mishler HW (1978). A finite-element model for residual stresses and deflections in girth-butt welded pipes. J. Press. Vessel Technol., 100, 256–262. Cerca con Google

Rybicki EF, Stonesifer RB (1979). Computation of residual stresses due to multipass welds in piping systems. J. Press. Vessel Technol., 101, 149–154. Cerca con Google

Sakane M, Zhang S, Kim T (2011). Notch effect on multiaxial low cycle fatigue. Int. J. Fatigue, 33, 959–968. Cerca con Google

Schütz W (1996). A history of fatigue. Eng. Fract. Mech., 54, 263–300. Cerca con Google

Seweryn A (1994). Brittle fracture criterion for structures with sharp notches. Eng. Fract. Mech., 47, 673–681. Cerca con Google

Seweryn A (2002). Modeling of singular stress fields using finite element method. Int. J. Solids Struct., 39, 4787–4804. Cerca con Google

Slockbower RE, Fisher JW (1976). Fatigue resistance of full scale cover-plated beams. Cerca con Google

Sonsino CM (2009). Multiaxial fatigue assessment of welded joints--recommendations for design codes. Int. J. Fatigue, 31, 173–187. Cerca con Google

Stephens RI, Fatemi A, Stephens RR, Fuchs HO (2000). Metal fatigue in engineering. John Wiley & Sons. Cerca con Google

Szabò BA, Yosibash Z (1996). Numerical analysis of singularities in two dimensions. Part 2: computation of generalized flux/stress intensity factors. Int. J. Numer. Methods Eng., 39, 409–434. Cerca con Google

Taylor D, Barrett N, Lucano G (2002). Some new methods for predicting fatigue in welded joints. Int. J. Fatigue, 24, 509–518. Cerca con Google

Teng T-L, Fung C-P, Chang P-H, Yang W-C (2001). Analysis of residual stresses and distortions in T-joint fillet welds. Int. J. Press. Vessel. Pip., 78, 523–538. Cerca con Google

Timoshenko S (1953). History of strength of materials: with a brief account of the history of theory of elasticity and theory of structures. Courier Corporation. Cerca con Google

Tong P, Pian THH, Lasry SJ (1973). A hybrid‐element approach to crack problems in plane elasticity. Int. J. Numer. Methods Eng., 7, 297–308. Cerca con Google

Topping BH V., International Conference on Computational Structures Technology (5th : 2000 : Leuven B, International Conference on Engineering Computational Technology (2nd : 2000 : Leuven B (2000). Computational mechanics for the twenty-first century. Saxe-Coburg Publications. Cerca con Google

Torabi, A.R., Berto F (2013). Fracture Assessment of Blunt V-Notched Graphite Specimens by Means of the Strain Energy Density. Strength Mater., 45, 635–647. Cerca con Google

Tovo R, Lazzarin P (1999). Relationships between local and structural stress in the evaluation of the weld toe stress distribution. Int. J. Fatigue, 21, 1063–1078. Cerca con Google

Tracey DM (1971). Finite elements for determination of crack tip elastic stress intensity factors. Eng. Fract. Mech., 3, 255–265. Cerca con Google

Verreman Y, Nie B (1997). Short crack fatigue propagation at fillet welds. In: Proc Int Conf on Performance of Dynamically Loaded Welded Structures. New York, WRC, pp. 240–253. Cerca con Google

Verreman Y, Nie B (1996). Early development of fatigue cracking at manual fillet welds. Fatigue Fract. Eng. Mater. Struct., 19, 669–681. Cerca con Google

Weinberg S (1992). Dreams of a final theory. Vintage. Cerca con Google

Williams ML (1952). Stress singularities resulting from various boundary conditions in angular corners of plates in tension. J. Appl. Mech., 19, 526–528. Cerca con Google

Withers PJ (2007). Residual stress and its role in failure. Reports Prog. Phys., 70, 2211–2264. Cerca con Google

Xiao QZZ, Karihaloo BLL, Liu XYY (2004). Direct determination of SIF and higher order terms of mixed mode cracks by a hybrid crack element. Int. J. Fract., 125, 207–225. Cerca con Google

Xiao Z-G, Chen T, Zhao X-L (2012). Fatigue strength evaluation of transverse fillet welded joints subjected to bending loads. Int. J. Fatigue, 38, 57–64. Cerca con Google

Yosibash Z, Bussiba AR, Gilad I (2004). Failure criteria for brittle elastic materials. Int. J. Fract., 125, 307–333. Cerca con Google

Yung J-Y, Lawrence F V (1985). Analytical and graphical aids for the fatigue design of weldments. Fatigue Fract. Eng. Mater. Struct., 8, 223–241. Cerca con Google

Yung J, Lawrence F (2013). Predicting the fatigue life of welds under combined bending and torsion. ICBMFF2. Cerca con Google

Zhu XK, Chao YJ (2002). Effects of temperature-dependent material properties on welding simulation. Comput. Struct., 80, 967–976. Cerca con Google

Standards: Cerca con Google

ASME VIII - Rules for Construction of Pressure Vessels - Division 2: Alternative Rules. Brussels: American Society of Mechanical Engineers, 2013. Cerca con Google

BS 7608 British Standard - Code of Practice for Fatigue Design and Assessment of Steel Structures. British Standard institution, 1993. Cerca con Google

BS 7608 British Standard - Code of Practice for Fatigue Design and Assessment of Steel Structures. British Standard institution, 2014. Cerca con Google

DIN 15018 - Cranes - Steel structures - Verification and analyses. German Institute for Standardization, 1984. Cerca con Google

DNVGL-RP-C203 - Fatigue design of offshore steel structures. Det Norske Veritas - Germanischer Lloyd, 2016. Cerca con Google

DVS 1612 - Design and endurance strength assessment of welded joints with steels in rail vehicle construction. Brussels: German Welding Society, 2009. Cerca con Google

EN 1993-1-1+A1 Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings. Brussels: European Committee for Standardization, 2014. Cerca con Google

EN 1993-1-6 Eurocode 3 - Design of steel structures - Part 1-6: Strength and stability of shell structures. Brussels: European Committee for Standardization, 2007. Cerca con Google

EN 1993-1-8 Eurocode 3 - Design of steel structures - Part 1-8: Design of joints. Brussels: European Committee for Standardization, 2005. Cerca con Google

EN 1993-1-9 Eurocode 3 - Design of steel structures - Part 1-9: Fatigue. Brussels: European Committee for Standardization, 2005. Cerca con Google

EN 1993-2 Eurocode 3 - Design of steel structures - Part 2: Steel bridges. Brussels: European Committee for Standardization, 2006. Cerca con Google

EN 1993-6 Eurocode 3 - Design of steel structures - Part 6: Crane supporting structures. Brussels: European Committee for Standardization, 2007. Cerca con Google

EN 13445-3 Unfired pressure vessels - Part 3: Design. Brussels: European Committee for Standardization, 2014. Cerca con Google

EN 13001-3-1+A1 Cranes - General Design - Part 3-1: Limit States and proof competence of steel structure. European Committee for Standardization, 2013. Cerca con Google

FKM Guideline - Analytical strength assessment of components. 6th Editio. VDMA Verlag, 2012. Cerca con Google

IACS Common structural rules for bulk carriers. International Association of Classification Societies, 2012. Cerca con Google

IACS Common structural rules for double hull oil tankers. International Association of Classification Societies, 2012. Cerca con Google

ISO 16881-1 Cranes - Design calculation for rail wheels and associated trolley track supporting structure - Part 1: General. International Organization for Standardization, 2005. Cerca con Google

ISO 19901-3 Petroleum and natural gas industries - Specific requirements for offshore structures - Part 3: Topsides structure. International Organization for Standardization, 2014. Cerca con Google

PD 6705-2+A1 Structural use of steel and aluminium. Recommendations for the execution of steel bridges to BS EN 1090-2. British Standard institution, 2013. Cerca con Google

prEN 1990-2:2016 Execution of steel structures and aluminium structures - Part 2: Technical requirements for steel structures. European Committee for Standardization, 2016. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record