Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Medeossi, Fabrizio (2017) Enhancing optical measuring systems for manufacturing process control. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document - Accepted Version
Thesis not accessible until 31 October 2020 for intellectual property related reasons.
Visibile to: nobody

12Mb

Abstract (english)

Modern industries are stressed by the market for a crazy and continuous reduction of time-to-market and an increase of required quality of final products. Manufacturing should evolve in order to satisfy market, by increasing the process complexity and fighting against requirements (in terms of batch sizes and tolerances). Production should be fast and accurate and this implies that measuring systems have to be faster, more flexible and possibly in-line, in order to continuously adjust the process. Optical metrology seems to be the perfect solution for this challenging context. However, optical metrology is characterized by binding physical limitations that reduce accuracy and sometimes applicability. Nevertheless, the exponential increase of computational power helps the evolution and optimization of optical measuring systems by permitting real time corrections and fast post-process. The aim of this work is the development of different correction and numerical methods to enhance optical measuring system capabilities. Confocal microscopy, optical CMM (coordinate measuring systems) and X-ray computed tomography are analysed in different types of applications, ensuring a reduction of measuring process variability and increasing measurement accuracy. Algorithms developed specifically for quantification and minimization of influencing factors are presented and implemented for real time correction and control of manufacturing process. Void pixels in confocal microscopy are studied and managed, thus reducing variability of surface roughness parameters and increasing capabilities of measuring instrument for micro-milling process control. Optical systems are analysed for thread measurements proposing a correction method for inline, fast and reliable evaluation of threads geometry. Finally, surface roughness is taken into account for correction of computed tomography dimensional measurements. Different technologies applied in different fields are joined by the common need of correction for enhancing measuring capabilities.

Abstract (italian)

L’industria moderna è messa sotto pressione dalla costante riduzione del tempo disponibile per l’immissione sul mercato dei prodotti e dall’incessante aumento dei requisiti richiesti sui prodotti finali. I sistemi di produzione devono dunque evolversi per poter soddisfare il mercato, incrementando la complessità dei processi e confrontandosi continuamente con le richieste (in termini sia di produttività sia di tolleranze). La produzione deve quindi essere veloce e allo stesso tempo accurata: questo implica che i sistemi di misura, per poter controllare continuamente il processo, debbano essere a loro volta veloci, flessibili e possibilmente in linea. Per poter essere competitivi in questo contesto appare evidente che i sistemi ottici siano un’ottima soluzione. Tuttavia, la metrologia ottica è vincolata da alcune limitazioni fisiche insite nella tecnologia che ne inficiano l’accuratezza e talvolta l’applicabilità. Ciononostante, l’aumento esponenziale della potenza di calcolo ha aiutato notevolmente lo sviluppo e l’ottimizzazione dei sistemi di misura ottici, permettendo l’applicazione delle correzioni in tempo reale e accelerando il processo di elaborazione dei dati raccolti. L’obiettivo di questo lavoro è lo sviluppo di diverse correzioni e metodi numerici che assicurino un miglioramento delle caratteristiche di alcuni sistemi di misura ottici. Microscopia confocale, macchine di misura a coordinate ottiche e tomografia computerizzata ai raggi X vengono analizzate in diversi campi di applicazione, assicurando una riduzione della variabilità dei processi produttivi attraverso un miglioramento dell’accuratezza della misura. Gli algoritmi, sviluppati specificatamente per quantificare e minimizzare i fattori di influenza, sono presentati e implementati in modo da permettere una correzione in tempo reale delle misure e un maggior controllo del processo di produzione. I void pixels nella microscopia confocale vengono analizzati e controllati al fine di ridurre la variabilità dei parametri di finitura superficiale e aumentare le capacità e l’applicabilità di tale tecnologia per il controllo del processo di micro-fresatura. I sistemi ottici vengono analizzati anche per la misura delle filettature, proponendo un metodo di correzione flessibile, affidabile e applicabile direttamente sulla linea di produzione. Il metodo studiato permette di ottenere i parametri geometrici che descrivono le filettature direttamente dalla proiezione d’ombra senza la necessità di alcun input da parte dell’operatore. Infine, la rugosità superficiale viene considerata e analizzata per ridurre la variabilità delle misure geometriche nella tomografia computerizzata. Tecnologie molto diverse applicate in campi molto diversi sono qui legate dalla comune necessità di migliorare le capacità e le potenzialità dei sistemi di misura.

EPrint type:Ph.D. thesis
Tutor:Savio, Enrico
Supervisor:Carmignato, Simone
Ph.D. course:Ciclo 30 > Corsi 30 > INGEGNERIA INDUSTRIALE
Data di deposito della tesi:15 January 2018
Anno di Pubblicazione:31 October 2017
Key Words:Metrologia ottica, voi pixels, microscopia confocale, misura filettature, bave /optical metrology, void pixels, confocal microscopy, thread measurement, burrs
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/16 Tecnologie e sistemi di lavorazione
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Industriale
Codice ID:10889
Depositato il:16 Nov 2018 09:03
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Aloisi, V. & Carmignato, S., 2016. Influence of surface roughness on X-ray computed tomography dimensional measurements of additive manufactured parts. Case studies in nondestructive testing and evaluation, 6(1), pp.104–110. Cerca con Google

Aloisi, V., Carmignato, S. & Savio, E., 2015. Effect of surface roughness on uncertainty of X-ray CT dimensional measurements of additive manufactured parts. Proceedings of the 15th International Conference of the European Society for Precision Engineering and Nanotechnology, EUSPEN 2015, pp.187–188. Cerca con Google

Andreini S., 2012. Metodo di determinazione optoelettronica di parametri di filettatura. Italian patent Nr. ITRN20110031 (A1). Cerca con Google

Aramcharoen, a. & Mativenga, P.T., 2009. Size effect and tool geometry in micromilling of tool steel. Precision Engineering, 33(4), pp.402–407. Cerca con Google

Aurich, J.C. et al., 2009. Burrs-Analysis, control and removal. CIRP Annals - Manufacturing Technology, 58(2), pp.519–542. Cerca con Google

Aurich, J.C. et al., 2009. Burrs—Analysis, control and removal. CIRP Annals - Manufacturing Technology, 58(2), pp.519–542. Cerca con Google

Bartscher, M. et al., 2010. Performance assessment of geometry measurements with micro-CT using a dismountable work-piece-near reference standard. 10th European Conference on Non-Destructive testing. Cerca con Google

Bergstrom, D., 2008. The absorption of laser light by rough metal surfaces. Luleå University of Technology. Cerca con Google

Bissacco, G., Hansen, H.N. & De Chiffre, L., 2006. Size Effects on Surface Generation in Micro Milling of Hardened Tool Steel. CIRP Annals - Manufacturing Technology, 55(1), pp.593–596. Cerca con Google

Blateyron, F., 2011. Chromatic confocal microscopy. In R. K. Leach, ed. Optical Measurement of Surface topography. Springer, Berlin, Heidelberg, pp. 71–105. Cerca con Google

Boeckmans, B. et al., 2015. eu spen ’ s 15 th International Conference & Roughness offset differences between contact and non-contact measurements. , (June), pp.189–190. Cerca con Google

Bruzzone, A.A.G. et al., 2008. Advances in engineered surfaces for functional performance. CIRP Annals - Manufacturing Technology, 57(2), pp.750–769. Cerca con Google

Butte, V.K. & Tang, L.C., 2008. Engineering process control: a review. In B. M. Krishna, ed. Handbook of performability engineering. Springer London, pp. 203–223. Cerca con Google

Câmara, M.A. et al., 2012. State of the Art on Micromilling of Materials, a Review. Journal of Materials Science and Technology, 28(8), pp.673–685. Cerca con Google

Carmignato, S., 2012. Accuracy of industrial computed tomography measurements: Experimental results from an international comparison. CIRP Annals - Manufacturing Technology, 61(1), pp.491–494. Available at: http://dx.doi.org/10.1016/j.cirp.2012.03.021. Vai! Cerca con Google

Carmignato, S. et al., 2017. Influence of surface roughness on computed tomography dimensional measurements. CIRP Annals - Manufacturing Technology, 66(1), pp.499–502. Available at: http://dx.doi.org/10.1016/j.cirp.2017.04.067. Vai! Cerca con Google

De Chiffre, L. et al., 2014. Industrial applications of computed tomography. CIRP Annals - Manufacturing Technology, 63(2), pp.655–677. Available at: http://dx.doi.org/10.1016/j.cirp.2014.05.011. Vai! Cerca con Google

Colledani, M. et al., 2014. Design and management of manufacturing systems for production quality. CIRP Annals - Manufacturing Technology, 63(2), pp.773–796. Cerca con Google

EURAMET, 2007. Determination of Pitch Diameter of Parallel Thread Gauges by Mechanical Probing. , 1(July). Cerca con Google

Fang, F.Z. et al., 2017. Nanomanufacturing—Perspective and applications. CIRP Annals - Manufacturing Technology, 66(2), pp.683–705. Available at: http://dx.doi.org/10.1016/j.cirp.2017.05.004. Vai! Cerca con Google

Fiedler, D. et al., Misurazioni dimensionali di un tomografo industriale 2D : influenza della rugosità del componente. Cerca con Google

Filiz, S. et al., 2007. An experimental investigation of micro-machinability of copper 101 using tungsten carbide micro-endmills. International Journal of Machine Tools and Manufacture, 47(7–8), pp.1088–1100. Cerca con Google

Gonzalez, R. & Woods, R., 2008. Digital image processing 2nd editio., Pearson Education. Cerca con Google

Hocken, R.J., Chakraborty, N. & Brown, C., 2005. Optical Metrology of Surfaces. CIRP Annals - Manufacturing Technology, 54(2), pp.169–183. Cerca con Google

Hocken, R.J. & Pereira, P.H., 2017. Coordinate measuring machines and systems, CRC Taylor & Francis Group. Cerca con Google

Hunsicker, R.J. et al., 1994. Automatic Vision Inspection and measurement system for external screw threads. Journal of Manufacturing Systems, 13(5), pp.360–384. Cerca con Google

Ismail, M.F., Yanagi, K. & Fujii, A., 2010. An outlier correction procedure and its application to areal surface data measured by optical instruments. Measurement Science and Technology, 21(10), p.105105. Cerca con Google

ISO13565-2:1996, Geometrical Product Specifications(GPS) - Surface texture: Profile method: Surfaces having stratified functional properties-Part 2:Height characterization using the linear curve. Cerca con Google

ISO16610-30:2015, Geometrical Product Specification (GPS) - Filtration - Part 30: Robust profile filters:basic concepts. Cerca con Google

ISO16610-60:2015, Geometrical Product Specification (GPS) - Filtration - Part 60: Linear areal filters: Basic concepts. , (November). Cerca con Google

ISO25178-2:2012, Geometrical Product Specification (GPS)-Surface texture: areal - part 2: Terms, definitions and surface texture parameters. Cerca con Google

ISO261:1998, ISO general purpose metric screw threads-General plan. Cerca con Google

ISO4287:1997, Geometrical Product Specifications(GPS) - Surface texture: Profile method - Terms, definitions and surface texture parameters, Cerca con Google

ISO4288:1996, Geometrical Product Specifications(GPS) - Surface texture: Profile method - Rules and procedures for the assessment of surface texture. Cerca con Google

ISO5408:2009, Screw threads-Vocabulary. Cerca con Google

ISO5436-1:2000, Geometrical Product Specifications(GPS) - Surface texture: Profile method - Part 1: material measures. Cerca con Google

ISO724:1993, ISO general purpose metric screw threads-Basic dimensions. Cerca con Google

ISO965-1:2013, ISO general purpose metric screw threads-Tolerances-Part 1: Principles and basic data. Cerca con Google

Jahanmir, S., 2011. Surface integrity in ultrahigh speed micromachining. In Procedia Engineering. pp. 156–161. Cerca con Google

Jiang, J. & Zhang, Q., 2012. Research on screw thread vision measurement. Advanced materials research, 346, pp.600–606. Cerca con Google

Junhua, C., Xiancheng, W. & Shaofeng, S., 2011. Method for eliminating error of cylinder screw thread non-contact measurement. Chinese Patent CN102221349 (B). Cerca con Google

Kiswanto, G., Zariatin, D.L. & Ko, T.J., 2015. The effect of spindle speed, feed-rate and machining time to the surface roughness and burr formation of Aluminum Alloy 1100 in micro-milling operation. Journal of Manufacturing Processes, 16(4), pp.435–450. Cerca con Google

Ko, S. & Park, S., 2006. Development of an effective measurement system for burr geometry. Proc. IMechE, 220, pp.507–512. Cerca con Google

Kosarevsky, S., 2010. Alignment problem while measuring thread pitch of large thread gauges on the profile-measuring machines. International Journal of Advanced Manufacturing Technology, 48(1–4), pp.267–272. Cerca con Google

Kou, Z. et al., 2015. Burr Controlling in Micro Milling with Supporting Material Method. Procedia Manufacturing, 1, pp.501–511. Cerca con Google

Kratsch, N., 2008. Method for optoelectronic determination of screw thread parameters, whereby a shadow image of the thread is generated and a correction value determined by comparison of measured thread pitch and diameter values with known values. German Patent Nr.DE10152038 (C5). Cerca con Google

Kruth, J.P. et al., 2011. Computed tomography for dimensional metrology. CIRP Annals - Manufacturing Technology, 60(2), pp.821–842. Available at: http://dx.doi.org/10.1016/j.cirp.2011.05.006. Vai! Cerca con Google

Kumar, P. et al., 2017. Recent advances in characterization, modeling and control of burr formation in micro-milling. Manufacturing Letters, 13, pp.1–5. Available at: http://linkinghub.elsevier.com/retrieve/pii/S221384631730007X. Vai! Cerca con Google

Kunzmann, H., Pfeifer, T. & Schmitt, R., 2005. Productive metrology-Adding value to manufacture. CIRP Annals- Manufacturing Technology, 54(1), pp.155–168. Available at: http://www.sciencedirect.com/science/article/pii/S0007850607600249. Vai! Cerca con Google

Leach, R., 2013. Welcome to surface topography: Metrology and properties. Surface Topography: Metrology and Properties, 1(1). Cerca con Google

Leach, R.K., 2011. Optical Measurement of Surface Topography, Cerca con Google

Lee, K. & Dornfeld, D.A., 2005. Micro-burr formation and minimization through process control. Precision Engineering, 29(2), pp.246–252. Cerca con Google

Lonardo, P.M. & Bruzzone, A.A.G., 2000. No Title. CIRP Annals, 40(1), pp.427–430. Cerca con Google

Lotze, W. & Will, J., 1991. Measurement By Optical Coordinate Measuring Systems. , 9(4), pp.153–156. Cerca con Google

MacAulay, G., 2015. Characterization of structured surfaces and assessment of associated measurement uncertainty, National Phisical Laboratory. Cerca con Google

Marinello, F. et al., 2007. Increase of maximum detectable slope with optical profilers, through controlled tilting and image processing. Measurement Science and Technology, 18(2), pp.384–389. Available at: http://stacks.iop.org/0957-0233/18/i=2/a=S09?key=crossref.d6b65036c415a3c50adc7a336759a27d. Vai! Cerca con Google

Medeossi, F. et al., 2016. Effect of void pixels on the quantification of surface topography parameters. Proceedings of the 16th International Conference of the European Society for Precision Engineering and Nanotechnology, EUSPEN 2016. Cerca con Google

Medeossi, F. et al., 2017. Micro-milling tool wear monitoring through a novel method for burrs evaluation. Proceedings of the 17h International Conference of the European Society for Precision Engineering and Nanotechnology, EUSPEN 2017. Cerca con Google

Mian, A.J., Driver, N. & Mativenga, P.T., 2010. A comparative study of material phase effects on micro-machinability of multiphase materials. The International Journal of Advanced Manufacturing Technology, 50(1–4), pp.163–174. Cerca con Google

Özel, T. et al., 2011. Experiments and finite element simulations on micro-milling of Ti–6Al–4V alloy with uncoated and cBN coated micro-tools. CIRP Annals - Manufacturing Technology, 60(1), pp.85–88. Cerca con Google

Piquard, R. et al., 2014. Micro-end milling of NiTi biomedical alloys, burr formation and phase transformation. Precision Engineering, 38(2), pp.356–364. Available at: http://dx.doi.org/10.1016/j.precisioneng.2013.11.006. Vai! Cerca con Google

Salzinger, M., Hornberger, P. & Hiller, J., 2016. Analysis and comparison of the surface filtering characteristics of computed tomography and tactile measurements. , 1(iCT), pp.1–8. Cerca con Google

Savio, E., 2012. A methodology for the quantification of value-adding by manufacturing metrology. CIRP Annals - Manufacturing Technology, 61(1), pp.503–506. Available at: http://dx.doi.org/10.1016/j.cirp.2012.03.019. Vai! Cerca con Google

Savio, E. et al., 2016. Economic benefits of metrology in manufacturing. CIRP Annals - Manufacturing Technology, 65(1), pp.495–498. Available at: http://dx.doi.org/10.1016/j.cirp.2016.04.020. Vai! Cerca con Google

Schmitt, R. & Niggemann, C., 2010. Uncertainty in measurement for x-ray-computed tomography using calibrated work pieces. Measurement Science and Technology, 21(5), p.54008. Cerca con Google

Schwenke, H. et al., 2002. Optical methods for dimensional metrology in production engineering. CIRP Annals-Manufacturing Technology, 51(2), pp.685–699. Cerca con Google

Senin, N., Blunt, L.A. & Tolley, M., 2012. Dimensional metrology of micro parts by optical three-dimensional profilometry and areal surface topography analysis. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 226(11), pp.1819–1832. Available at: http://journals.sagepub.com/doi/10.1177/0954405412461240. Vai! Cerca con Google

Senin, N., Blunt, L. & Tolley, M., 2012. The use of areal surface topography analysis for the inspection of micro-fabricated thin foil laser targets for ion acceleration. Measurement Science and Technology, 23(10), p.105004. Available at: http://stacks.iop.org/0957-0233/23/i=10/a=105004?key=crossref.3a4e0521f8e4cafeb99fc37660386139. Vai! Cerca con Google

Shchurov, I.A., 2011. Calculation of the virtual pitch thread diameter using the cloud of points from CMM. International Journal of Advanced Manufacturing Technology, 53(1–4), pp.241–245. Cerca con Google

Sheng, C., Dongbiao, Z. & Yonghua, L., 2014. A New Compensation Method for Measurement of Thread Pitch Diameter by Profile Scanning. , 14(6), pp.323–330. Cerca con Google

Stanley, P.J. & Lawrence, J.Z., 2011. Apparatus and methods for measuring at least one physical characteristic of a threaded object. United Sates Patent US8039827 (B2). Cerca con Google

Takata, S. et al., 2004. Maintenance: Changing Role in Life Cycle Management. CIRP Annals, 53(2), pp.643–655. Available at: http://www.sciencedirect.com/science/article/pii/S000785060760033X?via%3Dihub [Accessed October 29, 2017]. Vai! Cerca con Google

Thepsonthi, T. & Özel, T., 2012. Multi-objective process optimization for micro-end milling of Ti-6Al-4V titanium alloy. The International Journal of Advanced Manufacturing Technology, 63(9–12), pp.903–914. Cerca con Google

Trujillo-Pino, A. et al., 2013. Accurate subpixel edge location based on partial area effect. Image and Vision Computing, 31(1), pp.72–90. Available at: http://dx.doi.org/10.1016/j.imavis.2012.10.005. Vai! Cerca con Google

Tsai, D. & Lu, W., 1996. Detecting and locating burrs of industrial parts. International journal of production research, 34(1), pp.3187–3205. Cerca con Google

Vipindas, K., Kuriachen, B. & Mathew, J., 2016. Investigations into the effect of process parameters on surface roughness and burr formation during micro end milling of TI-6AL-4V. The International Journal of Advanced Manufacturing Technology. Available at: http://link.springer.com/10.1007/s00170-016-9210-3. Vai! Cerca con Google

Wang, Y. & Feng, H.Y., 2014. Modeling outlier formation in scanning reflective surfaces using a laser stripe scanner. Measurement: Journal of the International Measurement Confederation, 57, pp.108–121. Available at: http://dx.doi.org/10.1016/j.measurement.2014.08.010. Vai! Cerca con Google

Weckenmann, A. et al., 2004. Probing Systems in Dimensional Metrology. CIRP Annals - Manufacturing Technology, 53(2), pp.657–684. Available at: http://www.sciencedirect.com/science/article/pii/S0007850607600341%5Cnhttp://linkinghub.elsevier.com/retrieve/pii/S0007850607600341. Vai! Cerca con Google

Xiaomei, Z., 1989. Applikationsuntersuchung zu einem neuen optischen Gewindemessverfahren auf Ko-ordinatenmessgeraeten. TU Dresden. Cerca con Google

Yoshizawa, T., 2015. Handbook of optical metrology, CRC Taylor & Francis Group. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record