Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Castegnaro, Stefano (2017) An Aerodynamic Method to Design Low-Speed Axial Fans with Imposed Diameter and Rotor speed. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document
2152Kb

Abstract (english)

This dissertation treats the aerodynamic design of low-speed axial fans for industrial applications, considering dimensional and/or rotor-speed constraints as eventual additional design requirements.

In the last years, the complexity of the design task and the number of
related tools have increased exponentially in turbomachinery, with industrial axial-flow fans making no exception. Recent automated design softwares and optimization routines provide highly efficient fan designs. Regardless of the effectiveness of these computer-based methods however, the variables that mostly affect fan performance and efficiency are still related to the basic primary design choices, as the selection of the axial fan configuration, for instance.

In spite of a long history of axial fans, some basic questions on the aerodynamic design of these machines still do not have a clear and definitive answer in the technical literature. In particular, two major design issues have been identified:

a) the lack of quantitative indications that guide the designer into the selection of the axial fan configuration, among rotor-only, rotor-straightener, preswirler-rotor, and multistage machine;

b) the lack of quantitative information that guide the fan designer into the choice of the suitable span-wise aerodynamic loading distribution (i.e., the design vortex criterion) for the required operation in case of rotor-only axial fans.

According to these needs, a research has been conducted into several aspects of the aerodynamic design of low-speed axial fans. A data-base of fan performance and efficiencies has been collected to provide maps that can guide fan designers into the primary design choices reported at items a) and b). The construction of this data-base required the collection of fan data from the available literature and from a dedicated experimental campaign. Most of the fans that have been tested on two ISO 5801 inlet-chamber test rigs are specifically-designed rotor-only prototypes. Therefore, an effective aerodynamic design method has been developed for this widely used type of machine (i.e., for rotor-only axial fans). The method is based on the
information resulting from the fan data-base, as well as on a preliminary mean-line performance and efficiency estimation procedure. The local (i.e., the velocity field) and global (i.e., performance and efficiency) behavior of the resulting geometries have been verified by means of a CFD (Computational Fluid Dynamic) model, before the manufacturing of the prototypes.
CFD simulations are run on a simplified model that is particularly appropriate for the industrial requirements of rapidity and accuracy of results. All the necessary information to perform satisfactorily the aerodynamic design of a rotor-only fan are provided. Most of these indications can be directly extended to design also machines with fixed bladings.

The main results of the investigation are graphs that summarize axial fan performance around the well-known Cordier curve, identifying: i) suitable operating areas for each fan configuration, and ii) suitable vortex-criteria operating areas in case of rotor-only fans. Theoretical explanations are provided at support of the observed trends. Such information represent simple and quantitative aids to guide fan designers into the primary design choices.

In particular, the data show that vane-axial and contra-rotating fans operate at lower specific speeds and diameters with respect to rotor-only ones. Thus, a Cordier-line diagram specific for Rotor-only axial fans relies at higher specific diameters with respect to vane-axial machines. Whether the rotor-only configuration is the only one permitted (for instance due to dimensional constraints), Forced-vortex rotors (i.e., with aerodynamic loading distributions that increase towards the blade tip) represent a suitable solution for operations at low specific speeds, relatively large flow-rates and pressure rises. However, the fan efficiency of forced-vortex rotor-only fans is lower than that of rotor-straightener machines operating at the same pressure-rise, making the forced-vortex design solution appropriate in presence of constraints on both the fan axial length, the fan diameter and the rotor speed (for instance, the fans installed on air-conditioner external units).

The scope of the work is providing an aerodynamic design methodology for industrial axial fans. The information reported in this work can be useful for fan designers and manufacturers, as well as for anyone interested in the field of mechanical ventilation.

Abstract (italian)

Questa tesi tratta la progettazione aerodinamica di ventilatori assiali a bassa velocità per applicazioni industriali, considerando vincoli dimensionali e / o di velocità del rotore come eventuali requisiti di progettazione aggiuntivi.

Negli ultimi anni, la complessità del compito di progettazione e il numero di strumenti ad esso correlati sono aumentati esponenzialmente nelle turbomacchine. I recenti software di progettazione automatizzata e le routine di ottimizzazione offrono progetti di ventilatori altamente efficienti. Indipendentemente dall'efficacia di questi metodi basati su computer tuttavia, le variabili che influiscono maggiormente sulle prestazioni e sull'efficienza del ventilatore sono ancora legate alle scelte di base del progetto, come ad esempio la selezione della configurazione del ventilatore.

Nonostante una lunga storia, alcune domande di base sulla progettazione aerodinamica dei ventilatori assiali non hanno ancora una risposta chiara e definitiva nella letteratura tecnica. In particolare, sono stati identificati due principali mancanze:

a) la mancanza di indicazioni quantitative che guidino il progettista nella scelta della configurazione del ventilatore assiale, tra macchine a sola girante, rotore-raddrizzatore, preswirler-rotor e macchine a multistadio;

b) la mancanza di informazioni quantitative che guidino il progettista di ventilatori nella scelta della distribuzione aerodinamica di carico (cioè, il criterio di vortice di progettazione) adatta per l'operazione richiesta, in caso di ventilatori assiali a sola girante.

In base a queste esigenze, è stata condotta una ricerca su diversi aspetti della progettazione aerodinamica dei ventilatori assiali industriali. È stata raccolta una base di dati sulle prestazioni e l'efficienza dei ventilatori per fornire mappe che possano guidare i progettisti nelle scelte progettuali primarie riportate ai punti a) e b). La costruzione di questo database ha richiesto la raccolta di dati dalla letteratura disponibile e una campagna sperimentale dedicata. La maggior parte delle macchine che sono stati testate (su due banchi prova ISO-5801) sono ventilatori a sola girante appositamente progettati. Pertanto, un metodo di progettazione aerodinamica efficace è stato sviluppato per questo tipo di macchina ampiamente utilizzate. Il metodo è basato sulle informazioni risultanti dal data-base, nonché su una procedura preliminare di calcolo della prestazione e dell'efficienza. Il comportamento locale (vale a dire il campo di velocità) e globale (cioè, le prestazioni e l'efficienza) delle geometrie risultanti sono stati verificati mediante un modello CFD (Computational Fluid Dynamic), prima della produzione dei prototipi.
Le simulazioni CFD sono eseguite su un modello semplificato che è particolarmente appropriato per esigenze industriali di rapidità e accuratezza dei risultati. Sono fornite tutte le informazioni necessarie per eseguire in modo soddisfacente il design aerodinamico del rotore del ventilatore. La maggior parte di queste indicazioni può essere estesa direttamente per progettare anche macchine con schiere palari fisse.

I principali risultati dell'indagine sono grafici che riassumono le prestazioni del ventilatore assiale attorno alla curva di Cordier, identificando: i) aree operative adatte per ciascuna configurazione di ventilatore, e ii) aree operative idonee per i criteri di vortice in caso di macchine a sola girante. Spiegazioni teoriche sono fornite a supporto delle tendenze osservate. Tali informazioni rappresentano indicazioni semplici e quantitative per guidare i progettisti nelle scelte progettuali basilari.

In particolare, i dati mostrano che i ventilatori con schiere fisse e quelli contro-rotanti operano a velocità e diametri specifici inferiori rispetto a quelli a sola girante. Pertanto, uno schema Cordier-line specifico per ventilatori assiali a sola girante si basa su diametri specifici più elevati rispetto alle macchine a schiere fisse. Quando la configurazione a sola girante è l'unica consentita (ad esempio a causa di vincoli dimensionali), i rotori a vortice forzato (cioè con distribuzioni di carico aerodinamiche che aumentano verso la punta della lama) rappresentano una soluzione adatta per operazioni a basse velocità specifiche, relativamente grandi portate e aumenti di pressione. Tuttavia, l'efficienza dei ventilatori a vortice forzato è inferiore a quella delle macchine rotore-raddrizzatore che operano alla stessa pressione, rendendo la soluzione di progettazione a vortice forzato appropriata in presenza di vincoli sia sulla lunghezza assiale della ventola, sia sulla diametro del ventilatore e velocità del rotore (ad esempio, le ventole installate sulle unità esterne del climatizzatori).

Lo scopo del lavoro è fornire una metodologia di progettazione aerodinamica per i ventilatori assiali industriali. Le informazioni riportate in questo lavoro possono essere utili per progettisti e produttori di ventole, nonché per chiunque sia interessato al campo della ventilazione meccanica.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Masi, Massimo
Supervisor:Lazzaretto, Andrea
Ph.D. course:Ciclo 30 > Corsi 30 > INGEGNERIA INDUSTRIALE
Data di deposito della tesi:15 January 2018
Anno di Pubblicazione:31 October 2017
Key Words:Axial Fan, Axial Fan Design, Fan Configuration, Vortex Criteria, Low-Speed Axial Fans, Aerodynamic Design, Design and Testing, Arbitrary Vortex, Forced Vortex
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/08 Macchine a fluido
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Industriale
Codice ID:10891
Depositato il:09 Nov 2018 16:51
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Bruno Eck. “Fans”. In: 1st English ed., Pergamon Press, Oxford (1973), pp. 139–153. Cerca con Google

Eleftherios Andreadis. Design of a low speed vaneaxial fan. MS Thesis,Cranfield, UK University of Higher Education. 2011. Cerca con Google

EC. “COMMISSION REGULATION (EU) No 327/2011 of 30 March Cerca con Google

2011 implementing Directive 2009/125/EC of the European Parliament and of the Council with regard to ecodesign requirements for fans driven by motors with an electric input power between 125 W Cerca con Google

and 500 kW”. In: Official Journal of the European Union (2011). Cerca con Google

Eurostat Webpage. http : / / ec . europa . eu / eurostat / statistics explained/index.php/Consumption _ of _ energy. Accessed: 2017-07- Cerca con Google

08. Cerca con Google

PEng John Cermak PhD. “Select fans using fan total pressure to save Cerca con Google

energy”. In: ASHRAE Journal 53.7 (2011), p. 44. Cerca con Google

ASHRAE. “Energy standard for buildings except low-rise residential Cerca con Google

buildings”. In: ASHRAE/IESNA Standard 90.1 (1999). Cerca con Google

Marcos González Álvarez. ECODESIGN REQUIREMENTS FOR FANS Cerca con Google

Current Situation and Future Developments. Keynote at FAN 2015 Conference. Apr. 2015. Cerca con Google

Enrico Pistolesi. Il problema dell’elica intubata e le sue applicazioni. 11. Tipografia editrice cav. F. Mariotti, 1924. Cerca con Google

Hermann Glauert. The elements of aerofoil and airscrew theory. Cambridge University Press, 1926. Cerca con Google

Stefano Castegnaro. “A Critical Analysis of the Differences Among Design Methods for Low-Speed Axial Fans”. In: ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers. 2017, V001T09A008–V001T09A008. Cerca con Google

William Cory. Fans and ventilation: a practical guide. Elsevier, 2010. Cerca con Google

Theodore Von Kármán. Aerodynamics: selected topics in the light of their historical development. Courier Corporation, 2004. Cerca con Google

Curt Keller. “Axialgebläse vom Standpunkt der Tragflügeltheorie”. PhD Cerca con Google

thesis. 1934. Cerca con Google

P Ruden. “Investigation of single stage axial fans”. In: NACA TM 1062 Cerca con Google

(1944). Cerca con Google

E Barton Bell. “Test of Single-Stage Axial-Flow Fan”. In: NACA Rep. Cerca con Google

729 (1942). Cerca con Google

E Barton Bell and Lucas J Dekoster. “The Effect of Solidity, Blade Section, and Contravane Angle on the Characteristics of an Axial-Flow Cerca con Google

Fan”. In: NACA Wartime Report L-304 (1942). Cerca con Google

A Kahane. “Charts of pressure rise obtainable with airfoil-type axialflow cooling fans”. In: NACA TN 1199 (1947). Cerca con Google

A Kahane. “Investigation of axial-flow fan and compressor rotors designed for three-dimensional flow”. In: NACA TN 1652 (1947). Cerca con Google

John T Sinnette, Oscar W Schey, and J Austin King. “Performance of Cerca con Google

NACA Eight-Stage Axial-Flow Compressor Designed on the Basis of Cerca con Google

Airfoil Theory”. In: (1943). Cerca con Google

Otto Cordier. “Ähnlichkeitsbedingungen für Strömungsmaschinen”. Cerca con Google

In: BWK Bd 6 (1953). Cerca con Google

RI Lewis. Turbomachinery performance analysis. Butterworth-Heinemann, 1996. Cerca con Google

Heinz Marcinowski. “" Optimalprobleme bei Axialventilatoren”. PhD Cerca con Google

thesis. Technischen Hochsehule, 1956. Cerca con Google

Konrad Bamberger. “Aerodyamic Optimization of Low-Pressure Axial Cerca con Google

Fans”. PhD Thesis. Siegen, Ger: University of Siegen, 2015. Cerca con Google

R Allan Wallis. Axial Flow Fans: design and practice. Academic P Cerca con Google

ress, 1961. Cerca con Google

Frank Bleier. Fan Handbook: selection, application, and design. McGrawHill Professional, 1998. Cerca con Google

L Joseph Herrig et al. “Systematic two-dimensional cascade tests of Cerca con Google

NACA 65-series compressor blades at low speeds”. In: NACA Rep 1368 (1958). Cerca con Google

Henry V Borst. “A new blade element method for calculating the performance of high and intermediate solidity axial flow fans”. In: (1978). Cerca con Google

DJ Myles, RW Bain, and GHL Buxton. The Design of Axial Flow Fans by Cerca con Google

Computer. Part 2. 1965. Cerca con Google

T Katsanis. “Computer Program for Calculating Velocities and Streamlines on a Blade-to-Blade Stream Surface of Revolution”. In: NACA TN 4529 (1968). Cerca con Google

JH Horlock and JD Denton. “A review of some early design practice Cerca con Google

using computational fluid dynamics and a current perspective”. In: Cerca con Google

Transactions of the ASME-T-Journal of Turbomachinery 127.1 (2005), pp. 5–13. Cerca con Google

RJ Downie, MC Thompson, and RA Wallis. “An engineering approach Cerca con Google

to blade designs for low to medium pressure rise rotor-only axial fans”. In: Experimental thermal and fluid science 6.4 (1993), pp. 376–401. Cerca con Google

Institution of Mechanical Engineers (Great Britain). Fluid Machinery Cerca con Google

Committee. Industrial Fans - Aerodynamic Design: Papers Presented at a Seminar Organized by the Fluid Machinery Committee of the Power Industries Division of the Institution of Mechanical Engineers and Held ...on 9 April 1987. IMechE seminar. Mechanical Engineering Publications for the Institution of Mechanical Engineers, 1987. isbn: 9780852986387. url: https://books.google.it/books?id=8RXFQgAACAAJ. Vai! Cerca con Google

MG Beiler and TH Carolus. “Computation and measurement of the Cerca con Google

flow in axial flow fans with skewed blades”. In: Transactions-american Cerca con Google

society of mechanical engineers journal of turbomachinery 121 (1999), pp. 59– 66. Cerca con Google

Szu Hsien Liu, Rong Fung Huang, and Li Ju Chen. “Performance and Cerca con Google

inter-blade flow of axial flow fans with different blade angles of attack”. In: Journal of the Chinese Institute of Engineers 34.1 (2011), pp. 141–153. Cerca con Google

CFturboR . https : / / en . cfturbo . com / fileadmin / content / down / Cerca con Google

CFturbo_Flyer_A4_160112.pdf. Accessed: 2017-10-27. Cerca con Google

Thomas H Carolus and Ralf Starzmann. “An aerodynamic design methodology for low pressure axial fans with integrated airfoil polar prediction”. In: ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers. 2011, pp. 335–342. Cerca con Google

Francois G Louw et al. “The design of an axial flow fan for application Cerca con Google

in large air-cooled heat exchangers”. In: ASME Paper No. GT2012-69733 (2012). Cerca con Google

Tommaso Bonanni et al. “Derivative Design of Axial Fan Range: From Cerca con Google

Academia to Industry”. In: ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers. 2016, V006T07A006–V006T07A006. Cerca con Google

R. A. Wallis. “Definition and determination of fan duties”. In: Journal Cerca con Google

of the Institution of Heating & Ventilating Engineers (May 1964), pp. 49–59. Cerca con Google

R Allan Wallis. Axial flow fans and ducts. Krieger, 1993. Cerca con Google

Michael B Wilkinson and J Sybrand. “The effect of fan tip configuration Cerca con Google

on air-cooled condenser axial flow fan performance”. In: Proceedings of FAN 2015 Conference. France (2015). Cerca con Google

Alessandro Corsini, Franco Rispoli, and A Geoff Sheard. “Development of improved blade tip endplate concepts for low-noise operation Cerca con Google

in industrial fans”. In: Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 221.5 (2007), pp. 669–681. Cerca con Google

ADS Carter. “Blade Profiles for Axial-Flow Fans, Pumps, Compressors, Cerca con Google

Etc.” In: Proceedings of the Institution of Mechanical Engineers 175.1 (1961), pp. 775–806. Cerca con Google

Francois G Louw et al. “The design of an axial flow fan for application Cerca con Google

in large air-cooled heat exchangers”. In: ASME Paper No. GT2012-69733 (2012). Cerca con Google

Konrad Bamberger, Thomas Carolus, and Markus Haas. “Optimization of Low Pressure Axial Fans and Effect of Subsequent Geometrical Cerca con Google

Modifications”. In: Proc. Fan 2015 (2015). Cerca con Google

Thomas Carolus, Tao Zhu, and Michael Sturm. “A low pressure axial fan for benchmarking prediction methods for aerodynamic performance and sound”. In: FAN2015-International Conference on Fan Noise, Technology and Numerical Methods, Lyon, France. 2015. Cerca con Google

William C Osborne. Fans. Vol. 1. Pergamon Press Oxford, 1966. Cerca con Google

Eleftherios Andreadis. Design of a low speed vaneaxial fan. MS Thesis,Cranfield, UK University of Higher Education. 2011. Cerca con Google

Alexey Joakim Stepanoff. Turboblowers: theory, design, and application of centrifugal and axial flow compressors and fans. Wiley, 1955. Cerca con Google

Enrico Pistolesi. Il problema dell’elica intubata e le sue applicazioni. 11. Tipografia editrice cav. F. Mariotti, 1924. Cerca con Google

Ten. Castellazzi Ing. Giacomo Arturo. “Impianto Aerodinamico a Circuito Continuo tipo Crocco”. In: Rendiconti Istituto Centrale Aeronautico n.16 (1917). Cerca con Google

Konrad Bamberger. “Aerodyamic Optimization of Low-Pressure Axial Cerca con Google

Fans”. PhD Thesis. Siegen, Ger: University of Siegen, 2015. Cerca con Google

Massimo Masi, Manuel Piva, and Andrea Lazzaretto. “Design guidelines to increase the performance of a rotor-only axial fan with constantswirl blading”. In: ASME paper GT2014-27176 (2014). Cerca con Google

Frank Bleier. Fan Handbook: selection, application, and design. McGrawHill Professional, 1998. Cerca con Google

János Vad and Ferenc Bencze. “Three-dimensional flow in axial flow Cerca con Google

fans of non-free vortex design”. In: International journal of heat and fluid flow 19.6 (1998), pp. 601–607. Cerca con Google

Daniel Giesecke et al. “Aerodynamic and Acoustic Performance of a Cerca con Google

Single Stage Axial Fan With Extensive Blade Sweep Designed to Limit Cerca con Google

Noise Emissions”. In: ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers. 2016, V001T09A004–V001T09A004. Cerca con Google

Yu Yongsheng QuXiaoli et al. “DESIGN AND TEST OF THE HIGH Cerca con Google

AERODYNAMIC PERFORMANCE LOW-NOISE FAN FOR 5.5-BY 4- Cerca con Google

M ACOUSTIC WIND TUNNEL”. In: (). Cerca con Google

R Allan Wallis. Axial flow fans and ducts. Krieger, 1993. Cerca con Google

David B Signor. “An experimental investigation of two 15 percent-scale wind tunnel fan-blade designs”. In: (1988). Cerca con Google

David B Signor and Henry V Borstt. “Aerodynamic performance of Cerca con Google

two fifteen-percent-scale wind-tunnel drive fan designs”. In: NASA Cerca con Google

Contr. Report 3063 (1986). Cerca con Google

Jesús Manuel Fernández Oro et al. “On the structure of turbulence in Cerca con Google

a low-speed axial fan with inlet guide vanes”. In: Experimental Thermal and Fluid Science 32.1 (2007), pp. 316–331. Cerca con Google

E Barton Bell. “Test of Single-Stage Axial-Flow Fan”. In: NACA Rep. Cerca con Google

729 (1942). Cerca con Google

Masi Massimo, Castegnaro Stefano, and Lazzaretto Andrea. “Experimental Investigation on the effect of Reynolds Number on the efficiency of Single-stage Axial-flow Fans”. In: Under Evaluation for ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers. Cerca con Google

Racheet Matai and Savas Yavuzkurt. “Evaluation of Effects of Different Cerca con Google

Design Parameters on Axial Fan Performance Using CFD”. In: ASME Cerca con Google

Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers. 2015, V001T09A012–V001T09A012. Cerca con Google

Alain Godichon. FAN DESIGN: Past, Present and Future. Keynote at Cerca con Google

FAN 2015 Conference. 2015. Cerca con Google

Hussain Nouri et al. “Experimental investigation on ducted counterrotating axial flow fans”. In: Proceedings of Fan Conference, Lyon France (2015). Cerca con Google

M Heinrich, C Friebe, and R Schwarze. “Experimental and numerical investigation of a gearless one-motor contra-rotating fan”. In: FAN 2015 - International Conference. Cerca con Google

E Barton Bell and Lucas J DeKoster. Test of a Dual-Rotation Axial Flow Cerca con Google

Fan. Tech. rep. NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS LANGLEY FIELD VA LANGLEY AERONAUTICAL LABORATORY, 1942. Cerca con Google

Stefano Castegnaro, Massimo Masi, and Andrea Lazzaretto. “Preliminary experimental assessment of the performance of rotor-only axial fans designed with different vortex criteria”. In: Proceedings of the XII European Turbomachinery Conference ETC12, Stockholm, Sweden. 2017. Cerca con Google

Sarel Jacobus Venter and DG Kroger. “The effectiveness of axial flow Cerca con Google

fans in A-frame plenums”. PhD thesis. Stellenbosch: University of Stellenbosch, 1990. Cerca con Google

Konrad Bamberger and Thomas Carolus. “Optimization of axial fans Cerca con Google

with highly swept blades with respect to losses and noise reduction”. Cerca con Google

In: Noise Control Engineering Journal 60.6 (2012), pp. 716–725. Cerca con Google

MG Beiler and TH Carolus. “Computation and measurement of the Cerca con Google

flow in axial flow fans with skewed blades”. In: Transactions-american Cerca con Google

society of mechanical engineers journal of turbomachinery 121 (1999), pp. 59–66. Cerca con Google

RJ Downie, MC Thompson, and RA Wallis. “An engineering approach Cerca con Google

to blade designs for low to medium pressure rise rotor-only axial fans”. In: Experimental thermal and fluid science 6.4 (1993), pp. 376–401. Cerca con Google

Alessandro Corsini et al. “Experimental investigation on double antistall ring effects on reversible ventilation fan performance”. In: ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers. 2016, V001T09A012–V001T09A012. Cerca con Google

A Kahane. “Investigation of axial-flow fan and compressor rotors designed for three-dimensional flow”. In: NACA TN 1652 (1947). Cerca con Google

A Guedel, M Robitu, and V Chaulet. “CFD Simulations to Predict the Cerca con Google

Energy Efficiency of Fan Axial Fan for Various Casing Configurations”. Cerca con Google

In: Proceedings of FAN (2012), pp. 18–20. Cerca con Google

Matjaž Eberlinc et al. “Modification of axial fan flow by trailing edge Cerca con Google

self-induced blowing”. In: Journal of Fluids Engineering 131.11 (2009), p. 111104. Cerca con Google

Thore Bastian Lindemann, Jens Friedrichs, and Udo Stark. “Development of a new design method for high efficiency swept low pressure axial fans with small hub/tip ratio”. In: ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers. 2014, V01AT10A017–V01AT10A017. Cerca con Google

Maria Teodora Pascu. “Modern Layout and Design Strategy for Axial Fans”. PhD thesis. Ph. D. Thesis at Erlangen University, 2009. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record