Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Avantaggiato, Marta (2018) Mixed-mode ventilation design and thermal comfort in transitional spaces. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document - Accepted Version
12Mb

Abstract (english)

Transitional spaces are pivotal in non-residential architecture. Depending on the building typology, the proportion of such areas may vary between 10% up to 40% of the total volume. Because of their features transitional spaces are independent dynamic spaces with various physical conditions and behaviour which may that have different thermal comfort requirements. Being integral part of the non-residential architecture, their HVAC design and controls follow however guidelines intended for indoor space. No current comfort guidelines that are specific for this peculiar building zones exists. Nevertheless, if designed with appropriate energy saving strategies as mixed-mode ventilation solution and flexible controls of HVAC, these peculiar building spaces can help achieve more energy efficient buildings.
With the aim of a deeper understanding of these peculiar building zones, this PhD dissertation focuses on three aspects related to transitional spaces: mixed-mode ventilation design, thermal comfort and actual thermal performance.
Information about 17 non-residential building, which integrate a transitional space in their architecture and mixed-mode ventilation strategy, were analysed and collected in a small databased. Within the building typologies considered, shopping centres resulted to be a very interesting one for the implementation of mixed-mode ventilation strategies. From the analysis of recent examples of shopping centres conversion from fully mechanical into mixed-mode operation, a design procedure was proposed.
The conversion from fully mechanical into mixed-mode operation is further encouraged by the findings related to thermal comfort in shopping centers common areas. Within the studies about thermal comfort in transitional spaces, an investigation of human response within shopping centres common areas was missing. With the scope of understanding actual comfortable ranges in these spaces, around 700 customers were interviewed about their state of comfort while measuring environmental parameters. For this scope a specific questionnaire and a Mobile Environmental Monitoring cart (MEMO) were developed. The measurements were performed in spring and summer 2016 in three different Italian shopping centres, fully-mechanical operated. The results show a wider range of indoor thermal comfort conditions than in typical indoor spaces. The necessity of a tailor-made model to assess thermal comfort in transitional spaces is also disclosed. The model could correlate indoor comfort temperatures with outdoor temperatures on the basis of the direct observation of users’ thermal sensation. In order to expand the database of evidence and the creation of such model, further field studies are required, gathering together a conspicuous number of data which cover all the seasons.
These findings unlock important energy use implication. If shopping centre HVAC systems are operated in a more flexible way and natural ventilation potentialities are exploited, the final goal of achieving more energy efficient buildings without sacrificing users’ comfort seems closer.
With the objective of verifying the level of comfort provided by a mixed-mode solution in a transitional space, the thermal comfort and airflow performance of an atrium located in a warm temperate climate were investigated. The measurements campaign lasted over four-weeks in summer 2017. The thermal comfort evaluation of the atrium users’ was performed under different operational modes. The results showed that users’ state of comfort was independent from the way the atrium was conditioned. Specific to this case, the result opens possibilities for the use of just natural ventilation to provide comfortable conditions in summer. This would reflect in a consistent reduction of the operation costs for cooling.
In the perspective of the reduction of building energy consumption without compromising thermal comfort, the results of this thesis confirm and booster the interest towards mixed-mode operated building. The potentialities of transitional spaces expressed in the thesis need to be taken into account in non-residential building design.
The nature of the results for shopping centers transitional spaces can be extended to all those non-residential buildings that have transitional spaces with similar features.

Abstract (italian)

L’architettura degli edifici non residenziali comprende per la maggiore degli spazi di transizione la cui destinazione d’uso non è quella prevalente cui l’edificio è destinato. La porzione di tali spazi varia dal 10% al 40% del volume totale dell’edificio a seconda della tipologia di edificio non residenziale. Molte volte l’utilizzo delle aree comuni (spazi di transizione) è indipendente rispetto al resto dell’edificio. Le condizioni di dinamicità che li caratterizzano potrebbero comportare diversi standard di comfort rispetto al resto dell’edificio ma essendone parte integrante, il modo e il grado di comfort garantito è lo stesso che per le zone prettamente indoor. Al momento infatti non esistono delle linee guida per il condizionamento specifico di queste zone. Tuttavia, se fossero progettate con adeguate strategie per il risparmio energetico, come ad esempio la ventilazione ibrida, o ad esempio ci fosse un controllo più flessibile dell’impianto di ventilazione e condizionamento, queste zone offrirebbero un grosso potenziale per l’ottenimento di edifici più efficienti.
L’obiettivo di questo lavoro di dottorato è quello di approfondire la conoscenza di questi spazi in relazione a tre aree che sono: il design di soluzioni di ventilazione ibrida, il comfort termico e le reali prestazioni di soluzioni di ventilazione ibrida.
Al fine di studiare diverse soluzioni di ventilazione ibrida per edifici non residenziali che integrano uno spazio di transizione nella loro architettura, le informazioni tecniche relative a 17 edifici non-residenziali sono state raccolte in un piccolo database. Tra le tipologie di edifici non-residenziali considerate, i centri commerciali sono risultati esserne di grande interesse per l’implementazione. Analizzando recenti esempi di conversione di centri commerciali da funzionamento totalmente attivo a soluzioni ibride, è stato possibile ricavare una procedura di design per il retrofit in tale direzione.
L’utilizzo di soluzioni ibride di ventilazione negli spazi di transizione dei centri commerciali è ulteriormente incoraggiato dai risultati relativi al comfort termico in tali spazi. Da un’analisi della letteratura relativa agli studi di comfort negli spazi di transizione ne è risultata la mancanza di uno studio relativo ai centri commerciali. Con lo scopo quindi di colmare questa mancanza è stato condotto uno studio in tali zone intervistando più di 700 clienti in relazione al loro stato di comfort e misurandone al contempo i parametri ambientali sperimentati. Ai fini dello studio è stato infatti sviluppato uno specifico questionario e un carrellino per il monitoraggio ambientale (MEMO). Le misure sono state condotte nella primavera e nell’estate del 2016 in tre differenti centri commerciali locati in Italia. I risultati dimostrano come per questi spazi, i range di comfort siano più ampi rispetto ai tipici spazi indoor. E’ inoltre emersa la necessità di un modello specifico per la caratterizzazione del comfort termico in questi spazi. Il modello, attraverso l’osservazione diretta della sensazione termica degli utenti, potrebbe correlare le temperature comfort interne con le temperature esterne. Tuttavia al fine della creazione di tale modello sono necessari altri studi in modo da collezionare un cospicuo numero di dati che ricoprano tutte le stagioni.
Questi risultati aprono a importanti implicazioni dal punto di vista energetico. Se gli impianti di ventilazione e condizionamento dei centri commerciali fossero gestiti in maniera più flessibile e le potenzialità della ventilazione naturale fossero sfruttate, l’obiettivo finale di avere edifici energeticamente efficienti senza inficiare sul comfort termico degli utenti sembrerebbe più vicino.
Con l’obiettivo di verificare il livello di comfort che una soluzione di ventilazione ibrida può garantire sono state studiate le prestazioni termiche di un atrio locato in un clima caldo-temperato. Le misure sono state effettuate per un periodo di quattro settimane in estate e il comfort termico degli utenti è stato valutato sotto differenti strategie di condizionamento estivo. Lo stato di comfort degli utenti si è dimostrato indipendente dal modo in cui l’atrio veniva condizionato. In relazione a questo caso, tale risultato apre possibilità al solo utilizzo della ventilazione naturale per garantire condizioni di comfort in estate. Questa soluzione permetterebbe un consistente taglio dei costi di raffrescamento.
Nella prospettiva di riduzione dei consumi energetici degli edifici senza comprometterne il comfort interno, i risultati di questo lavoro di tesi confermano e sostengono l’interesse verso edifici con sistemi di ventilazione ibrida. In tal senso, le potenzialità degli spazi di transizione espresse in questo lavoro, devono essere prese in considerazione nella progettazione degli edifici non-residenziali.
I risultati relativi ai centri commerciali possono essere estesi a tutti gli edifici residenziali che hanno degli spazi di transizione con caratteristiche simili.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:De Carli, Michele
Supervisor:Belleri , Annamaria and Pasut, Wilmer
Ph.D. course:Ciclo 30 > Corsi 30 > INGEGNERIA INDUSTRIALE
Data di deposito della tesi:16 January 2018
Anno di Pubblicazione:January 2018
Key Words:transitional spaces , thermal comfort, mixed-mode ventilation
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/11 Fisica tecnica ambientale
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Industriale
Codice ID:10894
Depositato il:08 Nov 2018 10:52
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1.1] Chun C., Kwok A., Tamura A. Thermal comfort in transitional spaces - basic concepts: literature review and trial measurement. Building and Environment,(2004) 1187-1192. Cerca con Google

[1.2] Kwong, Q. J., Tang, S.H., Adam, N. M. Thermal comfort evaluation of the enclosed transitional space in tropical buildings: subjective response and computational fluid dynamic simulation, Applied Sciences, 9(19), 3480-3490.2009 Cerca con Google

[1.3] Kuppaswany I. Sustinable Architecture desing : An overview. Tayor & Francis, 2015. Cerca con Google

[1.4] Spindler H.C., Norford L.K.. Naturally ventilated and mixed-mode buildings - Part II: Optimal control. Building and Environment 44: 750-761,2009 Cerca con Google

[1.5] Hui, S. C. M. and Jiang, J., 2014. Assessment of thermal comfort in transitional spaces, In Proceedings of the Joint Symposium 2014: Change in Building Services for Future, 25 Nov 2014, Kowloon Shangri-la Hotel, Tsim Sha Tsui East, Kowloon, Hong Kong, 13 pp. Cerca con Google

[1.6] P.F. Linden, The fluid mechanics of natural ventilation, Annu. Rev. Fluid Mech. 31 (January 1999) 201e238, http://dx.doi.org/10.1146/annurevfluid.31.1.201. ISSN 0066-4189. Vai! Cerca con Google

[1.7] G.C. da Graça, P. Linden. Ten questions about natural ventilation of non-domestic buildings. Building and Environment 107 (2016) 263-273. Cerca con Google

[1.8] European FP7 project CommONEnergy Cerca con Google

[1.9] Poggi C. Potenzialità di uno spazio di transizione microclimatica: il portico nel clima mediterraneo- temperato. Tesi finale di Dottorato di Ricerca in Tecnologia e Progetto per l’ambiente costruito. Politecnico di Milano.2015 Cerca con Google

[1.10] doi:10.5281/zenodo.1011230 Cerca con Google

[1.11] IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp. Cerca con Google

[1.12] INIVE-EEIG, 2013-last update, Venticool platform Cerca con Google

[1.13] IEA EBC Annex 62. Ventilative cooling. s.l., 2014-2017. Cerca con Google

[1.14] AM13- Mixed-mode ventilation systems. Chartered Institution of Building Services Engineers (CIBSE), 2000 Cerca con Google

[1.15] IEA EBC Annex 62. Ventilative Cooling Application Database. Cerca con Google

[1.16] Centre for the Built Environment (CBE).Mixed mode: case studied and project database. Cerca con Google

[1.17] Ray, Stephen D., Masashi Fukuda, Maria-Alejandra Menchaca- Brandan, Iwao Hasegawa, Leon R. Glicksman, and Natsuko Ochiai. "Overview of Hybrid Ventilation Control System and Full Scale Monitoring." ASHRAE Transactions. 2013, Vol. 119 Issue 2, 1-8 Cerca con Google

[1.18] Kottek M., Grieser J., Beck C., Rudolf B., Rubel F. World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, Vol. 15, No. 3, 259-263, June 2006 Cerca con Google

[1.19] Ernst-August-Galerie http://www.windowmaster.com/building-types/shopping-centres Vai! Cerca con Google

[1.20] Belleri A., Haase M., Papantoniu S., Lollini R. Delivery and performance of a ventilative cooling strategy: the demonstration case of a shopping centre in Trondheim, Norway. 38th AIVC Conference, Nottingham, 13-14 September 2017 Cerca con Google

[1.21] Belleri A, Avantaggiato M., Lollini R. Deliverable 3.3: Ventilative cooling, CommONEnergy project (FP7-2013 grant agreement no 608678), 2017 Cerca con Google

[1.22] Haase M., Stenerud Skeie K., Belleri A., Dipasquale, C. Modelling of a complex shopping mall in Norway, Proceedings of BS2015: 14th Conference of International Building Performance Simulation Association, pp. 2264, 2015 Cerca con Google

[1.23] Attia S.G., Favoino F., Loonen R.C.G.M., Petrovski, A., Monge-Barrio A., Adaptive façades system assessment: An initial review. 10th Conference on Advanced Building Skins 2015, pp. 1275-1276-1283. Cerca con Google

[1.24] Rozanska M., Mata G., F.J., in progress. Deliverable 3.4: Concept of modular multifunctional façade. CommONEnergy project (FP7-2013 grant agreement no 608678) , 2017 Cerca con Google

[1.25] Holst S., Hille M., Weber A., Koschenz M. “TRNFLOW: Integration of COMIS into TRNSYS TYPE 56”. In: 23rd AIVC and EPIC 2002 Conference "Energy efficient and healthy buildings in sustainable cities (2002) (cit. on p. 74). Cerca con Google

[1.26] Elmualim A.A. , Awbi H.B. Evaluating a control strategy for a hybrid air-conditioning and windcatchers ventilation system. CIB 2004, World Building Congress, Toronto, Canada. Cerca con Google

[2.1] BPIE. Europe´s buildings under the microscope, A country-by-country review of the energy perfomance of buildings .2011 Cerca con Google

[2.2] Schönberger, H. (2013). Best Environmental Management Practice in the Retail Trade Sector, European Commmission, Joint Research Centre-Institute for Prospective Technological Studies, Pubblications Office of the European Union, Scientific and Technical Research Series- ISSN 1831. Luxemburg Cerca con Google

[2.3] A. Belleri. Integrated desing methods for natural ventilation.PhD final dissertation.Università degli Studi di Bergamo.2014 http://hdl.handle.net/10446/30436 Vai! Cerca con Google

[2.4] Cambronero Vàzquez M.V., A. Belleri, M.Avantaggiato, C. Dipasquale, J.A. Gutierrez, M. Haase, K.S. Skeie. D5.1-Systemic solution-sets; CommONEnergy project (FP7-2013 grant agreement no 608678). 2017 Cerca con Google

[2.5] Avantaggiato M., Belleri A., De Carli M., Lollini R. Ventilative cooling strategies to reduce cooling and ventilation needs in shopping centres. Madrid 2015. 36th AIVC Conference, 5th TightVent Conference, 3rd Venticool Conference. pp. 633-644. Madrid 2015 Cerca con Google

[2.6] Belleri A., Psomas T., Heiselberg P. Evaluation tool of climate potential for ventilative cooling. 36th AIVC- 5th TightVent- 3rd venticool. Madrid, 2015 Cerca con Google

[2.7] Bointner R., Toleikyte A.. Deliverable 2.1 Shopping mall features in EU-28 + Norway.; Environment; CommONEnergy project (FP7-2013 grant agreement no 608678). 2014 Cerca con Google

[2.8] A. Belleri, M. Avantaggiato, T. Psomas, P. Heiselberg, Evaluation tool of climate potential for ventilative cooling, International Journal of Ventilation, Pages 1-13, 25 October 2017 https://doi.org/10.1080/14733315.2017.1388627 Vai! Cerca con Google

[2.9] Dipasquale C., Belleri A., Lollini R. D4.1-Integrative Modeling Environment; CommONEnergy project (FP7-2013 grant agreement no 608678). 2016. Cerca con Google

[2.10] M. Avantaggiato, A. Belleri, M.De Carli, R. Lollini. Mixed-mode ventilative cooling opportunity for an existing shopping mall retrofit. 38th AIVC Conference-7th TightVent- 5rd venticool, 2017,pp 816-826, 13-14th September Nottingham, United Kingdom Cerca con Google

[2.11] Belleri, M. Avantaggiato, R. Lollini, Ventilative cooling in shopping centers' retrofit: the Mercado del Val case study, Energy Procedia, Volume 111, March 2017, Pages 669-677 https://doi.org/10.1016/j.egypro.2017.03.229 Vai! Cerca con Google

[2.12] LOMAS, K.J., COOK, M.J. and SHORT, C.A., 2008. Commissioning hybrid advanced naturally ventilated buildings: a US case study. 5th Windsor Conference of the Network-for-Comfort-and-Energy-Use-in-Buildings on Air Conditioning and the Low Carbon Cooling Challenge, Cumberland Lodge, Windsor, UK, 27-29 July 2008 Cerca con Google

[2.13] Ray, Stephen D., Masashi Fukuda, Maria-Alejandra Menchaca- Brandan, Iwao Hasegawa, Leon R. Glicksman, and Natsuko Ochiai. "Overview of Hybrid Ventilation Control System and Full Scale Monitoring." ASHRAE Transactions. 2013, Vol. 119 Issue 2, 1-8. Cerca con Google

[3.1] P.O. Fanger. Thermal Comfort : An Analysis and Application in Environmental Engineering, Danish Technical Press, Copenhagen, 1970 Cerca con Google

[3.2] ASHRAE Standard 55. Thermal Environment Condition for Human Occupancy. American society of Heating, Refrigeration and Air-Conditioning Engineers. Atlanta, 2010 Cerca con Google

[3.3] D.P. Wyon, P.Wargocki. How indoor environment affects performance Ashrae J., 55 (2013), pp. 46-52 Cerca con Google

[3.4] EN ISO 7730. Ergonomics of the thermal environment – Analytical determination and interpretation of thermal comfort using calculation of the PMV and the PPD indices and local thermal comfort criteris, International Standards Organization, Geneva, 2005 Cerca con Google

[3.5] Djongyang N.,Tchinda R.NjomoD. Thermal comfort: A review paper. Renewable and Sustainable Energy Reviews 14 (2010), 2626-2640, Cerca con Google

[3.6] D.A. McIntyre. Indoor Climate. Applied Science Publishers, London. 1980 Cerca con Google

[3.7] M.A. Humphreys, M. Hancock. Do people like to feel ‘neutral’?: exploring the variation of desired thermal sensation on the ASHRAE scale. Energy Build 39 (7), pp. 867-7. 2007 Cerca con Google

[3.8] H. Liu, J. Liao, D. Yang, X. Du, P. Hu, Y. Yang, B. Li. The response of human thermal perception and skin temperature to step-change transient thermal environments. Building and Environment 73 (2014) 232-238. Cerca con Google

[3.9] Nagano K, Takaki A, Hirakawa M, Tochihara Y. Effects of ambient temperature steps on thermal comfort requirements. International Journal of Biometeorology 2005;50:33-9. Cerca con Google

[3.10] C-P Chen, R-L Hwang, S-Y Chang, Y-T Lu. Effects of temperature steps on human skin physiology and thermal sensation response. Building and Environment 46 (2011) 2387-2397 Cerca con Google

[3.11] H. Zhang, Human thermal sensation and comfort in transient and non-uniform thermal environments, PhD thesis, University of California, Berkeley, 2003. Cerca con Google

[3.12] D’Ambrosio Alfano F.R., Olesen B.W., Palella B.I. Povl Ole Fanger’s impact ten years later. Energy and Buildings 152 (2017) 243-249 Cerca con Google

[3.13] Nicol F., Humphreys M., Roaf S., Adaptive Thermal Comfort: Principles and Practice, Routledge, Abingdon, 2012. Cerca con Google

[3.14] De Dear, R.,Brager, G . Developing an adaptive model of thermal comfort and preference. ASHRAE Transactions. 104 (1): 145–67, 1998 Cerca con Google

[3.15] R. de Dear, G. Brager, D. Cooper, Developing an adaptive model of thermal comfort and preference, in: Final Report ASHRAE RP-884, 1997 Cerca con Google

[3.16] ISO EN 15251. Indoor Environmental input paramenters for design and assessment of energy perfomance of building addressing indoor air quality, thermal environment,lighting and acustics.2008 Cerca con Google

[3.17] K.J. McCartney, J. Fergus Nicol, Developing an adaptive control algorithm for Europe, Energy Build. 34 (2002) 623–635 Cerca con Google

[3.18] Kwong, Q. J., Tang, S.H., Adam, N. M. Thermal comfort evaluation of the enclosed transitional space in tropical buildings: subjective response and computational fluid dynamic simulation, Applied Sciences, 9(19), 3480-3490.2009 Cerca con Google

[3.19] Pitts A. , Bin Saleh J., Sharples S. Building Transition Spaces, Comfort and Energy Use. PLEA 2008- 25th Conference on Passive and Low Energy Architecture, Dublin, 22nd to 24th October 2008, Paper No 591 Cerca con Google

[3.20] Chun C., Kwok A., Tamura A. Thermal comfort in transitional spaces - basic concepts: literature review and trial measurement. Building and Environment,(2004) 1187-1192. Cerca con Google

[3.21] Hui, S. C. M. and Jiang, J., 2014. Assessment of thermal comfort in transitional spaces, In Proceedings of the Joint Symposium 2014: Change in Building Services for Future, 25 Nov 2014, Kowloon Shangri-la Hotel, Tsim Sha Tsui East, Kowloon, Hong Kong, 13 pp. Cerca con Google

[3.22] Jitkhajornwanich K, Pitts A. Interpretation of thermal responses of four subject groups in transitional spaces of buildings in Bangkok.Building and Environment 2002;37:1193–204. Cerca con Google

[3.23] Hwang R.L., Yang K-H.,Chen C-P.,Wang S-T. Subjective responses an comfort reception in transitional spaces for guests versus staff. Building and Environment, 2008. 43(12): p. 2013-2021. Cerca con Google

[3.24] Kotopouleas A., Nikolopoulou M.. Thermal comfort conditions in airport terminals: Indoor or transition spaces? Building and Environment 99 (2016), 184-199 Cerca con Google

[3.25] Mishra A. K., Kramer R.P., Loomans M.G.L.C., Schellen H.L. Development of thermal discernment among visitors: Results from a field study in the Hermitage Amsterdam. Building and Environment 105 (2016), 40-49 Cerca con Google

[3.26] G.A .Vargas Palma. Short-term thermal history in transitional lobby spaces. The University of Sheffield. Faculty of Social Sciences. School of Architecture. November 2015 Cerca con Google

[3.27] G. Hou. An investivation of thermal comfort and the use of indoor transitional spaces. Thesis for the degree of Doctor of Philosophy. Cardiff University.2016 Cerca con Google

Cerca con Google

[4.1] P. Coleman. Shopping Environments: Evolution, Planning and Design. Oxford,UK: Elsevier. 2006 Cerca con Google

[4.2] GreenSense. Survey on Air Conditioning in Shopping malls 2016 Cerca con Google

[4.3] C.Y.Chun, A. Tamura. Thermal Environment and Human Responses in Underground Shopping Malls vs Department Stores in Japan. Building and Environment ,Vol 33, Nos 2-3, pp. 151-158, 1998 Cerca con Google

[4.4] EN ISO 7726. Ergonomics of the thermal environment.Instruments for measuring physical quantities.1998 Cerca con Google

[4.5] M.A. Humphreys. The optimum diameter for a globe thermometer for use indoors. Annals of Occupational Hygiene 1977; 20:135–40 Cerca con Google

[4.6] A. Simone,J. Babiak., M. Bullo , G. Landkilde., B.W: Olesen ., “Operative temperature control of radiant surface heating and cooling systems”, In proceedings of: Clima 2007 Wellbeing Indoors. Finland, Helsinki, June 10-14 2007. Cerca con Google

[4.7] M. Schweiker. comf. An R Package for Thermal Comfort Studies. The R Journal Vol.8/2, December 2016 Cerca con Google

[4.8] Microsoft Office Excel Cerca con Google

[4.9] The R Project for Statistical Compunting Cerca con Google

[4.10] ISO EN 15251. Indoor Environmental input paramenters for design and assessment of energy perfomance of building addressing indoor air quality, thermal environment,lighting and acustics.2008 Cerca con Google

[4.11] F.Nicol, M.Humpreys.Derivation of the adaptive equations for thermal comfort in free-running buildings in European standards EN15251.Building and Enviroment 45 ( 2010) 11-17. Cerca con Google

[4.12] M.A. Humphreys. Outdoor temperatures and comfort indoors. Building Research and Practice (J CIB) 1978; 6(2):92–105. Cerca con Google

[4.13] Weather Underground web site Cerca con Google

[4.14] Field A., M. J. (2012). Discovering statistic using R. London: SAGE Publications Ltd Cerca con Google

[4.15] R. de Dear, J. Ring, P. Fanger, Thermal sensations resulting from sudden ambient temperature changes, Indoor Air 3 (1993) 181-192. Cerca con Google

[4.16] M. Cabanac, Physiological role of pleasure, Science 173 (1971) 1103-1107. Cerca con Google

[4.17] T. Parkinson, R. de Dear, Thermal pleasure in built environments: physiology of alliesthesia, Building Research and Information Vol.43 (2015) 288-301 Taylor &Francis Cerca con Google

[4.18] Z. Yu,B,Yang, N. Zhu, T. Olofsson, G. Zhang. Utility of cooling overshoot for energy efficient thermal comfort in temporarily occupierd space.Building and Environment 109 (2016) 199-207 Cerca con Google

[4.19] C. Morgan, De Dear R. Weather Morgan C, De Dear R. Weather, clothing and thermal adaptation to indoor climate. Climate Research 2003;24:267-84. Cerca con Google

[4.20] Z.Yu J. Li, B. Yang,T. Olofsson, G. Zhang. Temporarily occupied space with metabolic-rate-initiated thermal overshoot-A case study in railway station in transition season. Building and Environment 122 (2017) 184-193 Cerca con Google

[5.1] B.M. Jones, M.J.Cook, S.D.Fitzgerald. A review of ventilation opening area methodology. Energy and Buildings 118(2016) 249-258 Cerca con Google

[5.2] Mateus, N. M., Nunes Simões, G., Lúcio, C., & Carrilho da Graça, G. (2016). Comparison of measured and simulated performance of natural displacement ventilation systems for classroms. Energy and Buildings, 133, 185-196. Cerca con Google

[5.3] Cui S., Cohen M., Stabat P., & Marchio D. (2015). CO2 tracer gas concentration decay method for measuring air change rate. Building and Environment, 84, 162-169 Cerca con Google

[5.4] Ansys, F. (2017). Release 18.0.Theory Guide. Ansys Inc Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record