Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Savignano, Elisa (2018) Apatite (U-Th)/He and Fission Track thermochronometry in the Northern Patagonian Andes: New insights into the exhumation history of the thrust belt foreland sector. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document - Accepted Version
25Mb

Abstract (english)

The study of the Cretaceous–Cenozoic evolution of the North Patagonian Andes represents a great opportunity to investigate the effects of coupling between deep lithospheric processes and near-surface deformation. Despite the general along-strike continuity, this mountain belt is characterized by a pronounced internal tectonic segmentation (marked by the variable position of the magmatic arc and of the deformation front to the east). Thus, this plate margin results in a more complex configuration with respect to the simplified notion of “Andean-type” subduction system.
Being located in the retro-wedge of the Andes, this sector of the Southern Cordillera experienced a complex evolution characterized by alternating flat- and steep-slab subduction stages, which controlled shortening and extension episodes in the overriding plate. Furthermore, the deformation in this whole retroarc sector varied not only in time (i.e. with major 'cycles' of mountain building and orogenic collapse), but also in space, due to the variable transmission of horizontal compressive stress away from the orogen, that produced an irregular unroofing pattern, recorded by obtained low-temperature (low-T) thermochronometric ages. Indeed, low-T thermochronological systems are ideally suited for detecting events involving rocks in the uppermost part of the crust because they record time and rates of cooling related to exhumation of the top few kilometers of the crust.
In this study, apatite (U-Th)/He (AHe) and apatite fission track (AFT) dating are integrated with structural methods in the region located between 40° and 44°S. Two fieldwork periods were carried out throughout the Neuquén, Rio Negro, and Chubut Provinces in order to sample for thermochronological analyses and conduct structural surveys. These methods allowed us comparing the exhumation patterns both between the frontal part of the orogen and its adjacent foreland, and in the same morpho-structural domain at different latitudes.
A total of 48 samples have been collected, processed and analyzed. AHe dating was performed at the University of Paris Sud, while AFT dating was done at the University of Padua. Detailed structural surveys were mainly conducted in the less studied zones of the foreland, and in the entire studied area to check major structures. Integrating the different methods allowed us to unravel the complex tectonic scenario characterizing the study area. Three balanced and sequentially restored cross-sections have been integrated with thermochronological information in order to produce a thermo-kinematic model along two different transects located at 40° and 42°S. To do this, the analyzed transects were processed with FetKin, a dedicated software for forward modeling of thermochronometric ages and age prediction along the present-day profile. This in turn, was used to validate the proposed tectonic scenario. New AFT and AHe data obtained in this study highlight two major tectonic events that occurred in North Patagonia: a Late Cretaceous to Paleogene inversion and exhumation stage, that involved the entire fold-and-thrust belt–foreland basin system, and a Miocene-Pliocene inversion stage of focused exhumation in the Andean fold-and-thrust belt. The suggested tectonic scenario was successfully tested with FetKin along the two transects, allowing us to unravel the role and extent of each tectonic stage that occurred since the Mesozoic.
The recorded pattern may be interpreted as the result of a variable degree of propagation of the deformation from the Andean chain to the foreland. This appears to be controlled by two main parameters: (i) slab configuration (i.e. steep- vs. flat-subduction, which plays a fundamental role in foreland deformation), and (ii) convergence rate between the Pacific and South-America plates, which rules shortening and exhumation processes in the fold-and-thrust belt.

Abstract (italian)

Lo studio dell’evoluzione Cretacico–Cenozoica delle Ande Nord Patagoniche offre l’opportunità di comprendere le relazioni intercorrenti tra processi profondi riguardanti la dinamica della litosfera e la deformazione più superficiale che coinvolge la crosta. Benché la catena andina sia caratterizzata da un generale andamento lineare nord-sud, nel dettaglio essa è fortemente segmentata da un punto di vista tettonico, come si evince dalla posizione variabile dell’arco magmatico e del fronte di deformazione verso le zone di avampaese. Pertanto, questo margine di placca risulta avere una complessa configurazione, che va oltre la comune nozione di sistema di subduzione di “tipo andino”. Localizzato nella zona di retrocatena, il settore Nord Patagonico della Cordigliera ha subito una complessa evoluzione, caratterizzata dall’alternanza di fasi di subduzione a basso e alto angolo, che ha controllato le fasi rispettivamente di raccorciamento e di estensione in corrispondenza della placca superiore. La variabilità deformativa in questa zona di retroarco è stata sia temporale—dunque legata a fasi di orogenesi e collasso della catena—sia spaziale, data la variabile trasmissione dello stress compressivo verso le zone esterne dell’orogene.
La termocronologia di bassa temperatura è in grado di registrare i pattern irregolari di denudamento risultanti, essendo molto sensibile alle variazioni entro i primi chilometri della crosta. Tali sistemi termocronometrici sono ideali per identificare eventi tettonici a livello crostale, poiché sono in grado di registrare il momento e la velocità del raffreddamento legato all’esumazione. In particolare, i metodi (U-Th)/He (AHe) e tracce di fissione (AFT), entrambi su apatite, sono stati integrati in questa tesi con i metodi strutturali.
L’area investigata è la regione ubicata tra 40° and 44°S, nel nord della Patagonia argentina. Durante le due campagne, condotte nelle Province di Neuquén, di Rio Negro e del Chubut, sono state campionate le rocce sulle quali compiere le analisi termocronologiche di bassa temperatura e sono stati analizzati dal punto di vista strutturale i lineamenti tettonici più importanti. Questi metodi hanno permesso sia di comparare i pattern di esumazione nella parte frontale della catena e nell’adiacente avampaese sia, al contempo, di comparare le differenze, a diverse latitudini, all’interno di uno stesso dominio morfo-strutturale.
Complessivamente, sono stati raccolti, processati e analizzati quarantotto campioni. Le analisi (U-Th)/He sono state eseguite presso l’Università di Parigi Sud mentre quelle di tracce di fissione presso l’Università di Padova.
Dal punto di vista geologico-strutturale, le maggiori strutture dell’area di studio sono state rilevate sul terreno e analizzate nel dettaglio, con particolare attenzione nelle zone meno studiate dell’avampaese. Infine, per un’analisi più approfondita di questo complesso scenario i due metodi sono stati integrati. Infatti, sono state costruite tre sezioni bilanciate e retrodeformate integrate con le informazioni termocronologiche al fine di produrre un modello termo-cinematico lungo due diversi transetti posti a 40° e 44°S, mediante l’utilizzo di un software dedicato in grado di modellare le età termocronometriche e fare previsione di queste lungo il profilo topografico odierno, che, a sua volta, è stato usato per validare lo scenario tettonico proposto. I nuovi dati AFT e AHe ottenuti nell’area di studio evidenziano due eventi tettonici principali interessanti l’area settentrionale della Patagonia: una fase d’inversione ed esumazione tra il tardo Cretacico e il Paleogene, che ha coinvolto l’intero sistema dalla catena all’avampaese, e una successiva, Mio-Pliocenica, in cui l’esumazione si è concentrata nella zona di catena. Questo scenario tettonico proposto è stato con successo testato lungo i due transetti analizzati attraverso FetKin, permettendo di chiarire il ruolo e l’entità di ogni fase tettonica avvenuta dal Mesozoico.
Il pattern di esumazione così ottenuto è stato interpretato come il risultato del variabile grado di propagazione della deformazione dalla catena andina verso l’avampaese. Quest’ultimo sembra essere controllato principalmente da due parametri: (i) la configurazione della placca in subduzione, in altre parole la sua geometria più o meno orizzontale che gioca un ruolo fondamentale nella deformazione dell’avampaese, e (ii) la velocità di convergenza tra le placche pacifica e sud americana, che governa i processi di raccorciamento ed esumazione nella catena a pieghe e sovrascorrimenti.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Zattin, Massimiliano
Supervisor:Mazzoli, Stefano and Franchini, Marta
Ph.D. course:Ciclo 30 > Corsi 30 > SCIENZE DELLA TERRA
Data di deposito della tesi:15 January 2018
Anno di Pubblicazione:15 January 2018
Key Words:North Patagonian Andes; Low-temperature Thermochronology;Apatite Fission-Track dating; Apatite (U-Th)/He dating; Thermo-kinematic modeling; broken foreland.
Settori scientifico-disciplinari MIUR:Area 04 - Scienze della terra > GEO/03 Geologia strutturale
Area 04 - Scienze della terra > GEO/02 Geologia stratigrafica e sedimentologica
Struttura di riferimento:Dipartimenti > Dipartimento di Geoscienze
Codice ID:10896
Depositato il:15 Nov 2018 17:27
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Allard, J.O., Giacosa, R. and Paredes, J.M., 2011. Relaciones estratigráficas entre la Formación los Adobes (Cretácico inferior) y su sustrato Jurásico: implicancias en la evolución tectónica de la cuenca de Cañadón Asfalto, Chubut, Argentina. In XVIII Congreso Geológico Argentino, Neuquén (pp. 988-989). Cerca con Google

Allmendinger, R.W., Cardozo, N. and Fisher, D.M., 2011. Structural geology algorithms: Vectors and tensors. Cambridge University Press. Cerca con Google

Allmendinger, R.W., Jordan, T.E., Kay, S.M. and Isacks, B.L., 1997. The evolution of the Altiplano-Puna plateau of the Central Andes. Annual review of earth and planetary sciences, 25(1), pp.139-174. Cerca con Google

Almendral, A., Robles, W., Parra, M., Mora, A., Ketcham, R.A. and Raghib, M., 2015. FetKin: Coupling kinematic restorations and temperature to predict thrusting, exhumation histories, and thermochronometric ages. AAPG Bulletin, 99(8), pp.1557-1573. Cerca con Google

Angelier, J.T. and Mechler, P., 1977. Sur une methode graphique de recherche des contraintes principales egalement utilisables en tectonique et en seismologie: la methode des diedres droits. Bulletin de la Société géologique de France, 7(6), pp.1309-1318. Cerca con Google

Angermann, D., Klotz, J. and Reigber, C., 1999. Space-geodetic estimation of the Nazca-South America Euler vector. Earth and Planetary Science Letters, 171(3), pp.329-334. Cerca con Google

Aragón, E., D'Eramo, F., Castro, A., Pinotti, L., Brunelli, D., Rabbia, O., Rivalenti, G., Varela, R., Spakman, W., Demartis, M. and Cavarozzi, C.E., 2011. Tectono-magmatic response to major convergence changes in the North Patagonian suprasubduction system; the Paleogene subduction–transcurrent plate margin transition. Tectonophysics, 509(3), pp.218-237. Cerca con Google

Ardolino, A. A., F. M. Salani, and A. Lizuaín (2009), Hoja 4166–III, Gan Gan. Escala 1: 250.000, Provincia del Chubut, modificado 2005: Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino, 1-200. Cerca con Google

Bally, A.W., Gordy, P.L. and Stewart, G.A., 1966. Structure, seismic data, and orogenic evolution of southern Canadian Rocky Mountains. Bulletin of Canadian Petroleum Geology, 14(3), pp.337-381. Cerca con Google

Barazangi, M. and Isacks, B.L., 1976. Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America. Geology, 4(11), pp.686-692. Cerca con Google

Basei, M.A., Brito Neves, B.B., Varela, R., Teixeira, W., Siga Jr, O., Sato, A.M. and Cingolani, C., 1999. Isotopic dating on the crystalline basement rocks of the Bariloche region, Río Negro, Argentina. In South American Symposium on Isotope Geology(No. 2, pp. 15-18). Cerca con Google

Bechis, F. and Cristallini, E.O., 2006. Inflexiones en estructuras del sector norte de la faja plegada y corrida de Ñirihuau, provincia de Río Negro. Rev Asoc Geol Argentina, Publicación Especial, 6, pp.18-25. Cerca con Google

Bechis, F., Encinas, A., Concheyro, A., Litvak, V.D., Aguirre-Urreta, B. and Ramos, V.A., 2014. New age constraints for the Cenozoic marine transgressions of northwestern Patagonia, Argentina (41–43 S): Paleogeographic and tectonic implications. Journal of South American Earth Sciences, 52, pp.72-93. Cerca con Google

Bellahsen, N., Jolivet, L., Lacombe, O., Bellanger, M., Boutoux, A., Garcia, S., Mouthereau, F., Le Pourhiet, L. and Gumiaux, C., 2012. Mechanisms of margin inversion in the external Western Alps: Implications for crustal rheology. Tectonophysics, 560, pp.62-83. Cerca con Google

Bilmes, A., 2012. Caracterización estratigráfica, sedimentológica y estructural del sistema de bajos neógenos de Gastre, provincias de Río Negro y de Chubut (Doctoral dissertation, Facultad de Ciencias Naturales y Museo). Cerca con Google

Bilmes, A., D'Elia, L., Franzese, J.R., Veiga, G.D. and Hernandez, M., 2013. Miocene block uplift and basin formation in the Patagonian foreland: the Gastre Basin, Argentina. Tectonophysics, 601, pp.98-111. Cerca con Google

Bohm, M., Lüth, S., Echtler, H., Asch, G., Bataille, K., Bruhn, C., Rietbrock, A. and Wigger, P., 2002. The Southern Andes between 36 and 40 S latitude: seismicity and average seismic velocities. Tectonophysics, 356(4), pp.275-289. Cerca con Google

Bonorino, F.G., 1973. Geología del área entre San Carlos de Bariloche y Llao llao (No. 16). Fundacion Bariloche, Departamento de Recursos Naturales y Energía. Cerca con Google

Bott, M.H.P., 1959. The mechanics of oblique slip faulting. Geological Magazine, 96(2), pp.109-117. Cerca con Google

Braun, J., 2002. Quantifying the effect of recent relief changes on age–elevation relationships. Earth and Planetary Science Letters, 200(3), pp.331-343. Cerca con Google

Braun, J., Van Der Beek, P. and Batt, G., 2006. Quantitative thermochronology: numerical methods for the interpretation of thermochronological data. Cambridge University Press. Cerca con Google

Buchanan, J.G., 1996. The application of cross-section construction and validation within exploration and production: a discussion. Geological Society, London, Special Publications, 99(1), pp.41-50. Cerca con Google

Bucher, W.H., 1939. Deformation of the earth’s crust. Geological Society of America Bulletin, 50(3), pp.421-432. Cerca con Google

Bulnes, M. and McClay, K., 1999. Benefits and limitations of different 2D algorithms used in cross-section restoration of inverted extensional faults: application to physical experiments. Tectonophysics, 312(2), pp.175-189. Cerca con Google

Butler, R.W. and Mazzoli, S., 2006. Styles of continental contraction: A review and introduction. Geological Society of America Special Papers, 414, pp.1-10. Cerca con Google

Carlson, W.D., Donelick, R.A. and Ketcham, R.A., 1999. Variability of apatite fission-track annealing kinetics: I. Experimental results. American mineralogist, 84(9), pp.1213-1223. Cerca con Google

Carrapa, B. and DeCelles, P.G., 2008. Eocene exhumation and basin development in the Puna of northwestern Argentina. Tectonics, 27(1). Cerca con Google

Carrapa, B., Hauer, J., Schoenbohm, L., Strecker, M.R., Schmitt, A.K., Villanueva, A. and Gomez, J.S., 2008. Dynamics of deformation and sedimentation in the northern Sierras Pampeanas: An integrated study of the Neogene Fiambala basin, NW Argentina. Geological Society of America Bulletin, 120(11-12), pp.1518-1543. Cerca con Google

Carslaw, H. S. and J. C. Jeager (1986), Conduction of heat in solids (2. utg.) London, UK: Oxford University Press. Cerca con Google

Castelluccio, A., Andreucci, B., Zattin, M., Ketcham, R.A., Jankowski, L., Mazzoli, S. and Szaniawski, R., 2015. Coupling sequential restoration of balanced cross sections and low-temperature thermochronometry: The case study of the Western Carpathians. Lithosphere, 7(4), pp.367-378. Cerca con Google

Castro, A., Moreno-Ventas, I., Fernández, C., Vujovich, G., Gallastegui, G., Heredia, N., Martino, R.D., Becchio, R., Corretgé, L.G., Díaz-Alvarado, J. and Such, P., 2011. Petrology and SHRIMP U–Pb zircon geochronology of Cordilleran granitoids of the Bariloche area, Argentina. Journal of South American Earth Sciences, 32(4), pp.508-530. Cerca con Google

Cazau, L., Mancini, D., Cangini, J. and Spalletti, L., 1989. Cuenca de Ñirihuau. Cuencas Sedimentarias Argentinas, 30, p.299e318. Cerca con Google

Cembrano, J., Hervé, F. and Lavenu, A., 1996. The Liquine Ofqui fault zone: a long-lived intra-arc fault system in southern Chile. Tectonophysics, 259(1-3), pp.55-66. Cerca con Google

Cembrano, J., Schermer, E., Lavenu, A. and Sanhueza, A., 2000. Contrasting nature of deformation along an intra-arc shear zone, the Liquiñe–Ofqui fault zone, southern Chilean Andes. Tectonophysics, 319(2), pp.129-149.Chamberlin, R.T., 1910. The Appalachian folds of central Pennsylvania. The Journal of Geology, 18(3), pp.228-251. Cerca con Google

Chamberlin, R.T., 1919. The building of the Colorado Rockies. The Journal of Geology, 27(4), pp.225-251. Cerca con Google

Chapman, J.B., Carrapa, B., Ballato, P., DeCelles, P.G., Worthington, J., Oimahmadov, I., Gadoev, M. and Ketcham, R., 2017. Intracontinental subduction beneath the Pamir Mountains: Constraints from thermokinematic modeling of shortening in the Tajik fold-and-thrust belt. GSA Bulletin, 129(11-12), pp.1450-1471. Cerca con Google

Charrier, R., Baeza, O., Elgueta, S., Flynn, J.J., Gans, P., Kay, S.M., Muñoz, N., Wyss, A.R. and Zurita, E., 2002. Evidence for Cenozoic extensional basin development and tectonic inversion south of the flat-slab segment, southern Central Andes, Chile (33–36 SL). Journal of South American Earth Sciences, 15(1), pp.117-139. Cerca con Google

Charrier, R., Pinto, L., and Rodríguez, M.P., 2007. Tectonostratigraphic evolution of the Andean Orogen in Chile. In: Moreno, T., and Gibbons, W. (eds) The Geology of Chile. The Geological Society, London, pp. 21–114. Cerca con Google

Chernicoff, C.J. and Caminos, R., 1996. Estructura y relaciones estratigráficas de la Formación Nahuel Niyeu, Macizo Norpatagónico oriental, Provincia de Río Negro. Revista de la Asociación Geológica Argentina, 51(3), pp.201-212. Cerca con Google

Cloetingh, S., Beekman, F., Ziegler, P.A., van Wees, J.D. and Sokoutis, D., 2008. Post-rift compressional reactivation potential of passive margins and extensional basins. Geological Society, London, Special Publications, 306(1), pp.27-70. Cerca con Google

Cloetingh, S.A.P.L., Ziegler, P.A., Bogaard, P.J.F., Andriessen, P.A.M., Artemieva, I.M., Bada, G., Van Balen, R.T., Beekman, F., Ben-Avraham, Z., Brun, J.P. and Bunge, H.P., 2007. TOPO-EUROPE: The geoscience of coupled deep Earth-surface processes. Global and Planetary Change, 58(1), pp.1-118. Cerca con Google

Cobbold, P.R., Rossello, E.A., Roperch, P., Arriagada, C., Gómez, L.A. and Lima, C., 2007. Distribution, timing, and causes of Andean deformation across South America. Geological Society, London, Special Publications, 272(1), pp.321-343. Cerca con Google

Coira, B., Nullo, F.E., Proserpio, C.A. and Ramos, V.A., 1975. Tectónica de basamento de la región occidental del Macizo Nordpatagónico (provincias de Río Negro y del Chubut). Revista de la Asociación Geológica Argentina, 30(1), pp.361-383. Cerca con Google

Collo, G., Dávila, F.M., Nóbile, J., Astini, R.A. and Gehrels, G., 2011. Clay mineralogy and thermal history of the Neogene Vinchina Basin, central Andes of Argentina: Analysis of factors controlling the heating conditions. Tectonics, 30(4). Cerca con Google

Continanzia, J., Manceda, R., Covellone, G.M. and Gavarrino, A.S., 2011, March. Cuencas de Rawson y Valdés: Síntesis del Conocimiento Exploratorio—Visión actual. In Kozlowski E. VIII Congreso de Exploración y Desarrollo de Hidrocarburos, Simposio Cuencas Argentinas Visión Actual (pp. 47-64). Cerca con Google

Continanzia, J., Manceda, R., Covellone, G.M. and Gavarrino, A.S., 2011, March. Cuencas de Rawson y Valdés: Síntesis del Conocimiento Exploratorio—Visión actual. In Kozlowski E. VIII Congreso de Exploración y Desarrollo de Hidrocarburos, Simposio Cuencas Argentinas Visión Actual (pp. 47-64). Cerca con Google

Coughlin, T.J., O'Sullivan, P.B., Kohn, B.P. and Holcombe, R.J., 1998. Apatite fission-track thermochronology of the Sierras Pampeanas, central western Argentina: Implications for the mechanism of plateau uplift in the Andes. Geology, 26(11), pp.999-1002. Cerca con Google

Coward, M., 1994. Continental collision, in Continental deformation, edited by P. L. Hancock, pp.264-288, Pergamon, New York. Cerca con Google

Cucchi, R., Espejo, P. y González, R. 1998. Hoja Geológica 4169-I Piedra del Águila. Subsecretaría de Minería de la Nación, Boletín 242: 74 p., Buenos Aires Cerca con Google

Cúneo, R., Ramezani, J., Scasso, R., Pol, D., Escapa, I., Zavattieri, A.M. and Bowring, S.A., 2013. High-precision U–Pb geochronology and a new chronostratigraphy for the Cañadón Asfalto Basin, Chubut, central Patagonia: Implications for terrestrial faunal and floral evolution in Jurassic. Gondwana Research, 24(3), pp.1267-1275. Cerca con Google

Dahlstrom, C.D., 1970. Structural geology in the eastern margin of the Canadian Rocky Mountains. Bulletin of Canadian Petroleum Geology, 18(3), pp.332-406. Cerca con Google

Dahlstrom, C.D.A., 1969. Balanced cross sections. Canadian Journal of Earth Sciences, 6(4), pp.743-757. Cerca con Google

Dalla, L. and Franzese, J., 1987. Las megaestructuras del macizo y Cordillera Norpatagonica, Argentina y la genesis de las cuencas volcano-sedimentarias Terciarias. Andean Geology, (31), pp.3-13. Cerca con Google

Dávila, F.M. and Carter, A., 2013. Exhumation history of the Andean broken foreland revisited. Geology, 41(4), pp.443-446. Cerca con Google

DeMets, C., Gordon, R.G., Argus, D.F. and Stein, S., 1990. Current plate motions. Geophysical journal international, 101(2), pp.425-478. Cerca con Google

DeMets, C., Gordon, R.G., Argus, D.F. and Stein, S., 1994. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophysical research letters, 21(20), pp.2191-2194. Cerca con Google

Dewey, J.F. and Bird, J.M., 1970. Mountain belts and the new global tectonics. Journal of Geophysical Research, 75(14), pp.2625-2647. Cerca con Google

Djimbi, D.M., Gautheron, C., Roques, J., Tassan-Got, L., Gerin, C. and Simoni, E., 2015. Impact of apatite chemical composition on (U-Th)/He thermochronometry: An atomistic point of view. Geochimica et Cosmochimica Acta, 167, pp.162-176. Cerca con Google

Dodson, M.H., 1973. Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology, 40(3), pp.259-274. Cerca con Google

Donelick, R.A., Donelick Raymond A, 1993. Method of fission track analysis utilizing bulk chemical etching of apatite. U.S. Patent 5,267,274. Cerca con Google

Donelick, R.A., Ketcham, R.A. and Carlson, W.D., 1999. Variability of apatite fission-track annealing kinetics: II. Crystallographic orientation effects. American Mineralogist, 84(9), pp.1224-1234. Cerca con Google

Donelick, R.A., O’Sullivan, P.B. and Ketcham, R.A., 2005. Apatite fission-track analysis. Reviews in Mineralogy and Geochemistry, 58(1), pp.49-94. Cerca con Google

Duhart, P., Haller, M. and Hervé, F., 2002. Diamictitas como parte del protolito de las metamorfitas de la Formación Cushamen en Río Chico, provincias de Río Negro y Chubut, Argentina. In Congreso Geológico Argentino (No. 15, pp. 97-100). Cerca con Google

Dunkl, I., 2002. TRACKKEY: a Windows program for calculation and graphical presentation of fission track data. Computers & Geosciences, 28(1), pp.3-12. Cerca con Google

Echaurren, A., Folguera, A., Gianni, G., Orts, D., Tassara, A., Encinas, A., Giménez, M. and Valencia, V., 2016. Tectonic evolution of the North Patagonian Andes (41–44 S) through recognition of syntectonic strata. Tectonophysics, 677, pp.99-114. Cerca con Google

Ehlers, T.A. and Farley, K.A., 2003. Apatite (U–Th)/He thermochronometry: methods and applications to problems in tectonic and surface processes. Earth and Planetary Science Letters, 206(1), pp.1-14. Cerca con Google

Encinas, A., Finger, K.L., Buatois, L.A. and Peterson, D.E., 2012. Major forearc subsidence and deep-marine Miocene sedimentation in the present Coastal Cordillera and Longitudinal Depression of south-central Chile (38 30′ S–41 45′ S). Geological Society of America Bulletin, 124(7-8), pp.1262-1277. Cerca con Google

Endignoux, L. and Mugnier, J.L., 1990. The use of a forward kinematic model in the construction of balanced cross sections. Tectonics, 9(5), pp.1249-1262. Cerca con Google

Farley, K.A., 2000. Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatite. Journal of Geophysical Research: Solid Earth, 105(B2), pp.2903-2914. Cerca con Google

Farley, K.A., 2002. (U-Th)/He dating: Techniques, calibrations, and applications. Reviews in Mineralogy and Geochemistry, 47(1), pp.819-844. Cerca con Google

Farley, K.A., Wolf, R.A. and Silver, L.T., 1996. The effects of long alpha-stopping distances on (U-Th)/He ages. Geochimica et cosmochimica acta, 60(21), pp.4223-4229. Cerca con Google

Fillon, C., Gautheron, C. and van der Beek, P., 2013. Oligocene–Miocene burial and exhumation of the Southern Pyrenean foreland quantified by low-temperature thermochronology. Journal of the Geological Society, 170(1), pp.67-77. Cerca con Google

Fitzgerald, P.G., Baldwin, S.L., Webb, L.E. and O'Sullivan, P.B., 2006. Interpretation of (U–Th)/He single grain ages from slowly cooled crustal terranes: a case study from the Transantarctic Mountains of southern Victoria Land. Chemical Geology, 225(1), pp.91-120. Cerca con Google

Fleischer, R.L., Price, P.B. and Walker, R.M., 1965. Ion explosion spike mechanism for formation of charged‐particle tracks in solids. Journal of applied Physics, 36(11), pp.3645-3652. Cerca con Google

Fleischer, R.L., Price, P.B. and Walker, R.M., 1975. Nuclear tracks in solids: principles and applications. Univ of California Press. Cerca con Google

Flowers, R.M., Ketcham, R.A., Shuster, D.L. and Farley, K.A., 2009. Apatite (U–Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochimica et Cosmochimica Acta, 73(8), pp.2347-2365. Cerca con Google

Folguera, A. and Iannizzotto, N.F., 2004. The lagos La Plata and Fontana fold-and-thrust belt: long-lived orogenesis at the edge of western Patagonia. Journal of South American Earth Sciences, 16(7), pp.541-566. Cerca con Google

Folguera, A. and Ramos, V.A., 2011. Repeated eastward shifts of arc magmatism in the Southern Andes: a revision to the long-term pattern of Andean uplift and magmatism. Journal of South American Earth Sciences, 32(4), pp.531-546. Cerca con Google

Folguera, A., Bottesi, G., Duddy, I., Martín-González, F., Orts, D., Sagripanti, L., Vera, E.R. and Ramos, V.A., 2015. Exhumation of the Neuquén Basin in the southern Central Andes (Malargüe fold and thrust belt) from field data and low-temperature thermochronology. Journal of South American Earth Sciences, 64, pp.381-398. Cerca con Google

Folguera, A., Naipauer, M., Sagripanti, L., Ghiglione, M.C., Orts, D.L. and Giambiagi, L., 2016. An Introduction to the Southern Andes (33–50 S): Book Structure. In Growth of the Southern Andes (pp. 1-7). Springer International Publishing. Cerca con Google

Fosdick, J.C., Carrapa, B. and Ortíz, G., 2015. Faulting and erosion in the Argentine Precordillera during changes in subduction regime: Reconciling bedrock cooling and detrital records. Earth and Planetary Science Letters, 432, pp.73-83. Cerca con Google

Franzese, J., Spalletti, L., Pérez, I.G. and Macdonald, D., 2003. Tectonic and paleoenvironmental evolution of Mesozoic sedimentary basins along the Andean foothills of Argentina (32–54 S). Journal of South American Earth Sciences, 16(1), pp.81-90. Cerca con Google

Galbraith, R.F. and Laslett, G.M., 1993. Statistical models for mixed fission track ages. Nuclear tracks and radiation measurements, 21(4), pp.459-470. Cerca con Google

Galbraith, R.F., 1981. On statistical models for fission track counts. Mathematical Geology, 13(6), pp.471-478. Cerca con Google

Galbraith, R.F., 1988. Graphical display of estimates having differing standard errors. Technometrics, 30(3), pp.271-281. Cerca con Google

Gautheron, C. and Tassan-Got, L., 2010. A Monte Carlo approach to diffusion applied to noble gas/helium thermochronology. Chemical Geology, 273(3), pp.212-224. Cerca con Google

Gautheron, C., Tassan-Got, L., Barbarand, J. and Pagel, M., 2009. Effect of alpha-damage annealing on apatite (U–Th)/He thermochronology. Chemical Geology, 266(3), pp.157-170. Cerca con Google

Gautheron, C., Tassan-Got, L., Ketcham, R.A. and Dobson, K.J., 2012. Accounting for long alpha-particle stopping distances in (U–Th–Sm)/He geochronology: 3D modeling of diffusion, zoning, implantation, and abrasion. Geochimica et Cosmochimica Acta, 96, pp.44-56. Cerca con Google

Geiser, P. and Engelder, T., 1983. The distribution of layer parallel shortening fabrics in the Appalachian foreland of New York and ‘Pennsylvania: Evidence for two non-coaxial phases of the Alleghanian orogeny. Geological Society of America Memoirs, 158, pp.161-176. Cerca con Google

Ghiglione, M.C., Navarrete‐Rodríguez, A.T., González‐Guillot, M. and Bujalesky, G., 2013. The opening of the Magellan Strait and its geodynamic implications. Terra Nova, 25(1), pp.13-20. Cerca con Google

Ghiglione, M.C., Ramos, V.A., Cuitiño, J. and Barberón, V., 2016. Growth of the Southern Patagonian Andes (46–53 S) and Their Relation to Subduction Processes. In Growth of the Southern Andes (pp. 201-240). Springer International Publishing. Cerca con Google

Giacosa, R., Zubia, M., Sánchez, M. and Allard, J., 2010. Meso-Cenozoic tectonics of the southern Patagonian foreland: Structural evolution and implications for Au–Ag veins in the eastern Deseado Region (Santa Cruz, Argentina). Journal of South American Earth Sciences, 30(3), pp.134-150. Cerca con Google

Giacosa, R.E. and Heredia, N., 2004. Estructura de los Andes Nordpatagónicos en los cordones Piltriquitrón y Serrucho y en el valle de El Bolsón (41º 30-42 º 00 S), Río Negro. Revista de la Asociación Geológica Argentina, 59(1), pp.91-102. Cerca con Google

Giacosa, R.E. and Heredia, N., 2004. Structure of the North Patagonian thick-skinned fold-and-thrust belt, southern central Andes, Argentina (41–42 S). Journal of South American Earth Sciences, 18(1), pp.61-72. Cerca con Google

Giacosa, R.E., Afonso, J.C., Heredia, N. and Paredes, J., 2005. Tertiary tectonics of the sub-Andean region of the North Patagonian Andes, southern central Andes of Argentina (41–42 30′ S). Journal of South American Earth Sciences, 20(3), pp.157-170. Cerca con Google

Gianni, G., Folguera, A., Navarrete, C., Encinas, A. and Echaurren, A., 2016. The North Patagonian Orogen: Meso-Cenozoic Evolution from the Andes to the Foreland Area. In Growth of the Southern Andes (pp. 173-200). Springer International Publishing. Cerca con Google

Gianni, G., Navarrete, C., Orts, D., Tobal, J., Folguera, A. and Giménez, M., 2015a. Patagonian broken foreland and related synorogenic rifting: The origin of the Chubut Group Basin. Tectonophysics, 649, pp.81-99. Cerca con Google

Gianni, G.M., Navarrete, C.G. and Folguera, A., 2015b. Synorogenic foreland rifts and transtensional basins: A review of Andean imprints on the evolution of the San Jorge Gulf, Salta Group and Taubaté Basins. Journal of South American Earth Sciences, 64, pp.288-306. Cerca con Google

Gibbs, A.D., 1983. Balanced cross-section construction from seismic sections in areas of extensional tectonics. Journal of structural geology, 5(2), pp.153-160. Cerca con Google

Gleadow, A.J.W., 1981. Fission-track dating methods: what are the real alternatives?. Nuclear Tracks, 5(1-2), pp.3-14. Cerca con Google

Gleadow, A.J.W., Duddy, I.R., Green, P.F. and Lovering, J.F., 1986. Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis. Contributions to Mineralogy and Petrology, 94(4), pp.405-415. Cerca con Google

Glodny, J., Echtler, H., Figueroa, O., Franz, G., Gräfe, K., Kemnitz, H., Kramer, W., Krawczyk, C., Lohrmann, J., Lucassen, F. and Melnick, D., 2006. Long-term geological evolution and mass-flow balance of the South-Central Andes. In The Andes (pp. 401-428). Springer Berlin Heidelberg. Cerca con Google

Godoy, E., Yáñez, G. and Vera, E., 1999. Inversion of an Oligocene volcano-tectonic basin and uplifting of its superimposed Miocene magmatic arc in the Chilean Central Andes: first seismic and gravity evidences. Tectonophysics, 306(2), pp.217-236. Cerca con Google

Gonzales, P., Mapa Geológico de la provincia de Rio Negro, Republica Argentina, escala1∶750,000,Serv. Geol.,Buenos Aires,1994. Cerca con Google

González Díaz, E.F., 1979. La edad de la Formación Ventana, en el área al norte y al este del Lago Nahuel Huapi. Revista de la Asociación Geológica Argentina, 34(2), pp.113-124. Cerca con Google

Gordon, A. and Ort, M.H., 1993. Edad y correlación del plutonismo subcordillerano en las provincias de Río Negro y Chubut (41-42 30'LS). In Congreso Geológico Argentino (Vol. 12, pp. 120-127). Cerca con Google

Green, A.G., Weber, W. and Hajnal, Z., 1985. Evolution of Proterozoic terrains beneath the Williston Basin. Geology, 13(9), pp.624-628. Cerca con Google

Green, P.F., Duddy, I.R., Laslett, G.M., Hegarty, K.A., Gleadow, A.W. and Lovering, J.F., 1989. Thermal annealing of fission tracks in apatite 4. Quantitative modelling techniques and extension to geological timescales. Chemical Geology: Isotope Geoscience Section, 79(2), pp.155-182. Cerca con Google

Gripp, A.E. and Gordon, R.G., 1990. Current plate velocities relative to the hotspots incorporating the NUVEL‐1 global plate motion model. Geophysical Research Letters, 17(8), pp.1109-1112. Cerca con Google

Groshong Jr, R.H., 2006. 3-D structural geology. Springer-Verlag Berlin Heidelberg. Cerca con Google

Guillaume, B., Gautheron, C., Simon-Labric, T., Martinod, J., Roddaz, M. and Douville, E., 2013. Dynamic topography control on Patagonian relief evolution as inferred from low temperature thermochronology. Earth and Planetary Science Letters, 364, pp.157-167. Cerca con Google

Guillaume, B., Martinod, J. and Espurt, N., 2009. Variations of slab dip and overriding plate tectonics during subduction: insights from analogue modelling. Tectonophysics, 463(1), pp.167-174. Cerca con Google

Gutscher, M.A., 2002. Andean subduction styles and their effect on thermal structure and interplate coupling. Journal of South American Earth Sciences, 15(1), pp.3-10. Cerca con Google

Gutscher, M.A., Spakman, W., Bijwaard, H. and Engdahl, E.R., 2000. Geodynamics of flat subduction: seismicity and tomographic constraints from the Andean margin. Tectonics, 19(5), pp.814-833. Cerca con Google

Haschke, M.R., Scheuber, E., Günther, A. and Reutter, K.J., 2002. Evolutionary cycles during the Andean orogeny: repeated slab breakoff and flat subduction?. Terra nova, 14(1), pp.49-55. Cerca con Google

Hervé, F., 1994. The southern Andes between 39 and 44 S latitude: the geological signature of a transpressive tectonic regime related to a magmatic arc. In Tectonics of the Southern Central Andes (pp. 243-248). Springer Berlin Heidelberg. Cerca con Google

Holdsworth, R.E., Handa, M., Miller, J.A. and Buick, I.S., 2001. Continental reactivation and reworking: an introduction. Geological Society, London, Special Publications, 184(1), pp.1-12. Cerca con Google

Homovc, J., Navarrete, C., Marshall, P., Masquere, S. and Cerdan, J., 2011. Inversión tectónica intra-cretácica de la Subcuenca de Río Mayo, Chubut, Argentina. In 18th Congreso Geológico Argentino, Neuquén. Abstract Book (pp. 1418-1419). Cerca con Google

Humphreys, E., 2009. Relation of flat subduction to magmatism and deformation in the western United States. Geological Society of America Memoirs, 204, pp.85-98. Cerca con Google

Hurford, A.J. and Green, P.F., 1982. A users' guide to fission track dating calibration. Earth and Planetary Science Letters, 59(2), pp.343-354. Cerca con Google

Hurford, A.J. and Green, P.F., 1983. The zeta age calibration of fission-track dating. Chemical Geology, 41, pp.285-317. Cerca con Google

Hurford, A.J., 1990. Standardization of fission track dating calibration: Recommendation by the Fission Track Working Group of the IUGS Subcommission on Geochronology. Chemical Geology: Isotope Geoscience Section, 80(2), pp.171-178. Cerca con Google

James, D.E., 1971. Plate tectonic model for the evolution of the Central Andes. Geological Society of America Bulletin, 82(12), pp.3325-3346. Cerca con Google

Jordan, T.E., Burns, W.M., Veiga, R., Pángaro, F., Copeland, P., Kelley, S. and Mpodozis, C., 2001. Extension and basin formation in the southern Andes caused by increased convergence rate: A mid‐Cenozoic trigger for the Andes. Tectonics, 20(3), pp.308-324. Cerca con Google

Jordan, T.E., Isacks, B., Ramos, V.A. and Allmendinger, R.W., 1983. Mountain building in the Central Andes. Episodes, 3, pp.20-26. Cerca con Google

Jordan, T.E., Zeitler, P., Ramos, V. and Gleadow, A.J.W., 1989. Thermochronometric data on the development of the basement peneplain in the Sierras Pampeanas, Argentina. Journal of South American Earth Sciences, 2(3), pp.207-222. Cerca con Google

Kay, S.M. and Coira, B.L., 2009. Shallowing and steepening subduction zones, continental lithospheric loss, magmatism, and crustal flow under the Central Andean Altiplano-Puna Plateau. Geological Society of America Memoirs, 204, pp.229-259. Cerca con Google

Keetley, J.T. and Hill, K.C., 2000. 3D structural modeling of the Kutubu oilfields, Papua New Guinea. In American Association of Petroleum Geologists International Conference and Exhibition; Abstracts (Vol. 84, p. 1446). Cerca con Google

Kendrick, E.C., Bevis, M., Smalley, R.F., Cifuentes, O. and Galban, F., 1999. Current rates of convergence across the central Andes: Estimates from continuous GPS observations. Geophysical Research Letters, 26(5), pp.541-544. Cerca con Google

Ketcham, R.A., 2005. Forward and inverse modeling of low-temperature thermochronometry data. Reviews in mineralogy and geochemistry, 58(1), pp.275-314. Cerca con Google

Ketcham, R.A., Carter, A., Donelick, R.A., Barbarand, J. and Hurford, A.J., 2007. Improved measurement of fission-track annealing in apatite using c-axis projection. American Mineralogist, 92(5-6), pp.789-798. Cerca con Google

Ketcham, R.A., Donelick, R.A. and Carlson, W.D., 1999. Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological time scales. American Mineralogist, 84(9), pp.1235-1255. Cerca con Google

Ketcham, R.A., Gautheron, C. and Tassan-Got, L., 2011. Accounting for long alpha-particle stopping distances in (U–Th–Sm)/He geochronology: Refinement of the baseline case. Geochimica et Cosmochimica Acta, 75(24), pp.7779-7791. Cerca con Google

Ketcham, R.A., Mora, A., Almendral, A., Parra, M., Casallas, W., and Robles, W., 2013. Integrative interpretation of thermochronometric data: Application to inversion tectonic settings. AAPG Search and Discovery Article 41233. Cerca con Google

Kley, J., Monaldi, C.R. and Salfity, J.A., 1999. Along-strike segmentation of the Andean foreland: causes and consequences. Tectonophysics, 301(1), pp.75-94. Cerca con Google

Kraml, M., Pik, R., Rahn, M., Selbekk, R., Carignan, J. and Keller, J., 2006. A New Multi‐Mineral Age Reference Material for 40Ar/39Ar,(U‐Th)/He and Fission Track Dating Methods: The Limberg t3 Tuff. Geostandards and Geoanalytical Research, 30(2), pp.73-86. Cerca con Google

Lacombe, O. and Mouthereau, F., 2002. Basement‐involved shortening and deep detachment tectonics in forelands of orogens: Insights from recent collision belts (Taiwan, Western Alps, Pyrenees). Tectonics, 21(4). Cerca con Google

Lagabrielle, Y., Suárez, M., Rossello, E.A., Hérail, G., Martinod, J., Régnier, M. and de la Cruz, R., 2004. Neogene to Quaternary tectonic evolution of the Patagonian Andes at the latitude of the Chile Triple Junction. Tectonophysics, 385(1), pp.211-241. Cerca con Google

Lavenu, A. and Cembrano, J., 1999. Compressional-and transpressional-stress pattern for Pliocene and Quaternary brittle deformation in fore arc and intra-arc zones (Andes of Central and Southern Chile). Journal of Structural Geology, 21(12), pp.1669-1691. Cerca con Google

Lesta, P. and Ferello, R., 1972. Región extraandina de Chubut y norte de Santa Cruz. Geología Regional Argentina, 2, pp.602-687. Cerca con Google

Lizuain, A., 1995. Mapa Geológico de la Provincia del Chubut, República Argentina. Secretarı́a de Minerı́a, Dirección Nacional del Servicio Geológico, Buenos Aires, Scale 1:750 000. Cerca con Google

Lizuaín, A., 2009, Hoja 4372–II, Esquel. Escala 1: 250.000, Provincia del Chubut: Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino. Cerca con Google

Lizuaín, A., 2009. Hoja 4372–II, Esquel. Escala 1: 250.000, Provincia del Chubut: Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino. Cerca con Google

Lizuaín, A., and D. Silva Nieto (2011), Hoja 4369-I, Gastre. Escala 1: 250.000, Provincia del Chubut: Instituto de Geología y Recursos Minerales,Servicio Geológico Minero Argentino. Cerca con Google

Maloney, K.T., Clarke, G.L., Klepeis, K.A. and Quevedo, L., 2013. The Late Jurassic to present evolution of the Andean margin: Drivers and the geological record. Tectonics, 32(5), pp.1049-1065. Cerca con Google

Mancini, D., and M. Serna (1989), Evaluación petrolera de la Cuenca de Ñirihuau. Sudoeste de Argentina, in 1th Congreso Nacional de Exploración de Hidrocarburos (Argentina), pp. 739–762, Buenos Aires. Cerca con Google

Mancktelow, N.S. and Grasemann, B., 1997. Time-dependent effects of heat advection and topography on cooling histories during erosion. Tectonophysics, 270(3), pp.167-195. Cerca con Google

Marrett, R. and Allmendinger, R.W., 1990. Kinematic analysis of fault-slip data. Journal of structural geology, 12(8), pp.973-986. Cerca con Google

Marshak, S., Karlstrom, K. and Timmons, J.M., 2000. Inversion of Proterozoic extensional faults: An explanation for the pattern of Laramide and Ancestral Rockies intracratonic deformation, United States. Geology, 28(8), pp.735-738. Cerca con Google

Martinod, J., Funiciello, F., Faccenna, C., Labanieh, S. and Regard, V., 2005. Dynamical effects of subducting ridges: insights from 3-D laboratory models. Geophysical Journal International, 163(3), pp.1137-1150. Cerca con Google

Martinod, J., Husson, L., Roperch, P., Guillaume, B. and Espurt, N., 2010. Horizontal subduction zones, convergence velocity and the building of the Andes. Earth and Planetary Science Letters, 299(3), pp.299-309. Cerca con Google

Massaferro, G.I., Haller, M.J., D'Orazio, M. and Alric, V.I., 2006. Sub-recent volcanism in Northern Patagonia: A tectonomagmatic approach. Journal of Volcanology and Geothermal Research, 155(3), pp.227-243. Cerca con Google

Mazzoli, S., Vitale, S., Delmonaco, G., Guerriero, V., Margottini, C. and Spizzichino, D., 2009. ‘Diffuse faulting’in the Machu Picchu granitoid pluton, Eastern Cordillera, Peru. Journal of Structural Geology, 31(11), pp.1395-1408. Cerca con Google

Mazzoni, M.M., Kawashita, K., Harrison, S. and Aragón, E., 1991. Edades radimétricas eocenas en el borde occidental del Macizo Norpatagónico. Revista de la Asociación Geológica Argentina, 46(1-2), pp.150-158. Cerca con Google

McDowell, F.W., McIntosh, W.C. and Farley, K.A., 2005. A precise 40 Ar–39 Ar reference age for the Durango apatite (U–Th)/He and fission-track dating standard. Chemical Geology, 214(3), pp.249-263. Cerca con Google

Meesters, A.G.C.A. and Dunai, T.J., 2002. Solving the production–diffusion equation for finite diffusion domains of various shapes: Part II. Application to cases with α-ejection and nonhomogeneous distribution of the source. Chemical Geology, 186(3), pp.347-363. Cerca con Google

Mescua, J. F., Giambiagi L., and Bechis F., 2012, Reply to L.V. Dimieri and M.M. Turienzo, 2012 comment on: “Fault inversion vs. new thrust generation: A case study in the Malargüe fold-and thrust belt, Andes of Argentina” by J. F. Mescua and, L. B. Giambiagi, Journal of Structural Geology, 35 (2012) 51–63, Journal of Structural Geology, 42, 283–287. Cerca con Google

Mitra, S. and Namson, J.S., 1989. Equal-area balancing. American Journal of Science, 289(5), pp.563-599. Cerca con Google

Mora, A., 2015. Petroleum systems of the Eastern Cordillera, foothill basins, and associated Llanos basin: Impacts on the prediction of large scale foreland and foothill petroleum accumulations. AAPG Bulletin, 99(8), pp.1401-1406. Cerca con Google

Morabito, E.G. and Ramos, V.A., 2012. Andean evolution of the Aluminé fold and thrust belt, Northern Patagonian Andes (38 30′–40 30′ S). Journal of South American Earth Sciences, 38, pp.13-30. Cerca con Google

Mpodozis, C. and Ramos, V., 1990. The Andes of Chile and Argentina. In Geology of the Andes and its Relation to Hydrocarbon and Energy Resources 11,Ericksen, G.E., Cañas Pinochet, M.T. and Reinemund, J.A. (Eds.) 1990. Cerca con Google

Nelson, E.P., 1982. Post-tectonic uplift of the Cordillera Darwin orogenic core complex: evidence from fission track geochronology and closing temperature–time relationships. Journal of the Geological Society, 139(6), pp.755-761. Cerca con Google

Orts, D.L., Folguera, A., Encinas, A., Ramos, M., Tobal, J. and Ramos, V.A., 2012. Tectonic development of the North Patagonian Andes and their related Miocene foreland basin (41° 30′‐43° S). Tectonics, 31(3). Cerca con Google

Orts, D.L., Folguera, A., Giménez, M., Ruiz, F., Vera, E.A.R. and Klinger, F.L., 2015. Cenozoic building and deformational processes in the North Patagonian Andes. Journal of Geodynamics, 86, pp.26-41. Cerca con Google

Pankhurst, R.J., Rapela, C.W., Fanning, C.M. and Márquez, M., 2006. Gondwanide continental collision and the origin of Patagonia. Earth-Science Reviews, 76(3), pp.235-257. Cerca con Google

Pankhurst, R.J., Weaver, S.D., Hervé, F. and Larrondo, P., 1999. Mesozoic-Cenozoic evolution of the North Patagonian batholith in Aysén, southern Chile. Journal of the Geological Society, 156(4), pp.673-694. Cerca con Google

Pardo‐Casas, F. and Molnar, P., 1987. Relative motion of the Nazca (Farallon) and South American plates since Late Cretaceous time. Tectonics, 6(3), pp.233-248. Cerca con Google

Peyton, S.L. and Carrapa, B., 2013. An overview of low-temperature thermochronology in the Rocky Mountains and its application to petroleum system analysis. Cerca con Google

Peyton, S.L. and Carrapa, B., 2013. An overview of low-temperature thermochronology in the Rocky Mountains and its application to petroleum system analysis. Cerca con Google

Pfiffner, O.A. and Burkhard M., 1987. Determination of paleo-stress axes orientations from fault, twin and earthquake data. In Annales Tectonicae (Vol. 1, pp. 48-57). Cerca con Google

Proserpio, C.A., 1978. Descripción geológica de la Hoja 42d, Gastre, Provincia del Chubut: carta geológica-económica de la República Argentina, escala 1: 200.000. Servicio Geológico Nacional. Cerca con Google

Radic, J.P., Alvarez, P., Rojas, L., Czollak, C., Parada, R. and Ortiz, V., 2009, November. La cuenca de Valdivia como parte del sistema de antearco de la plataforma continental de Chile Central entre los 36 y los 40 S. In XII Congreso Geológico Chileno (Santiago) (pp. S10-032). Cerca con Google

Radic, J.P., Rojas, L., Carpinelli, A. and Zurita, E., 2002. Evolución tectónica de la cuenca terciaria de Cura-Mallín, región cordillerana chileno argentina (36 30'-39 00'S). In Congreso Geológico Argentino (Vol. 15, pp. 233-241). Cerca con Google

Ramos, M.E., Folguera, A., Fennell, L., Giménez, M., Litvak, V.D., Dzierma, Y. and Ramos, V.A., 2014. Tectonic evolution of the North Patagonian Andes from field and gravity data (39–40 S). Journal of South American Earth Sciences, 51, pp.59-75. Cerca con Google

Ramos, M.E., Orts, D., Calatayud, F., Pazos, P.J., Folguera, A. and Ramos, V.A., 2011. Estructura, Estratigrafía y evolución tectónica de la cuenca de Ñirihuau en las nacientes del río Cushamen, Chubut. Revista de la Asociación Geológica Argentina, 68(2), pp.210-224. Cerca con Google

Ramos, V., 1982. Las ingresiones pacíficas del Terciario en el norte de la Patagonia (Argentina). In III Congreso Geológico Chileno (Actas): Concepción, Chile, Departamento de Geociencias, Universidad de Concepción (pp. A262-A268). Cerca con Google

Ramos, V., 1999. Plate tectonic setting of the Andean Cordillera. Episodes, 22, pp.183-190. Cerca con Google

Ramos, V.A. and Cortés, J.M., 1984. Estructura e interpretación tectónica. Geología y Recursos Naturales de la provincia de Río Negro, 1, p.12. Cerca con Google

Ramos, V.A. and Folguera, A., 2009. Andean flat-slab subduction through time. Geological Society, London, Special Publications, 327(1), pp.31-54. Cerca con Google

Ramos, V.A. and Ghiglione, M.C., 2008. Tectonic evolution of the Patagonian Andes. Developments in Quaternary Sciences, 11, pp.57-71. Cerca con Google

Ramos, V.A., 1981. Descripción Geológica de la Hoja 47 ab, Lago Fontana, Provincia Del Chubut: Carta Geológico-económica de la República Argentina, Escala 1: 200.000 (No. 183). Servicio Geológico Nacional. Cerca con Google

Ramos, V.A., 2005. Seismic ridge subduction and topography: Foreland deformation in the Patagonian Andes. Tectonophysics, 399(1), pp.73-86. Cerca con Google

Ramos, V.A., 2009. Anatomy and global context of the Andes: Main geologic features and the Andean orogenic cycle. Geological Society of America Memoirs, 204, pp.31-65. Cerca con Google

Ramos, V.A., 2010. The tectonic regime along the Andes: Present‐day and Mesozoic regimes. Geological Journal, 45(1), pp.2-25. Cerca con Google

Ramos, V.A., Zapata, T., Cristallini, E., and Introcaso, A., 2004, The Andean Thrust System—Latitudinal Variations in McClay, K.R., ed., Thrust tectonics and hydrocarbon systems: AAPG Memoir vo. 82, p. 30-50. Cerca con Google

Ramsay, J.G. and Huber, M.I., 1987. The techniques of modern structural geology: Folds and fractures (Vol. 2). Academic press, London. Cerca con Google

Rapela, C.W. and Pankhurst, R.J., 1992. The granites of northern Patagonia and the Gastre Fault System in relation to the break-up of Gondwana. Geological Society, London, Special Publications, 68(1), pp.209-220. Cerca con Google

Rapela, C.W., Spalletti, L.A., Merodio, J.C. and Aragón, E., 1988. Temporal evolution and spatial variation of early Tertiary volcanism in the Patagonian Andes (40 S–42 30′ S). Journal of South American Earth Sciences, 1(1), pp.75-88. Cerca con Google

Ravazzoli, I.A. and Sesana, F.L., 1977. Descripción geológica de la Hoja 41c, Río Chico. Servicio Geológico Nacional Boletín, 148, p.77. Cerca con Google

Reiners, P.W. and Brandon, M.T., 2006. Using thermochronology to understand orogenic erosion. Annual Review of Earth and Planetary Sciences, 34, pp.419-466. Cerca con Google

Reiners, P.W. and Farley, K.A., 2001. Influence of crystal size on apatite (U–Th)/He thermochronology: an example from the Bighorn Mountains, Wyoming. Earth and Planetary Science Letters, 188(3), pp.413-420. Cerca con Google

Reiners, P.W., Farley, K.A. and Hickes, H.J., 2002. He diffusion and (U–Th)/He thermochronometry of zircon: initial results from Fish Canyon Tuff and Gold Butte. Tectonophysics, 349(1), pp.297-308. Cerca con Google

Rosenau, M., Melnick, D. and Echtler, H., 2006. Kinematic constraints on intra‐arc shear and strain partitioning in the southern Andes between 38 S and 42 S latitude. Tectonics, 25(4). Cerca con Google

Sanderson, D.J., 1982. Models of strain variation in nappes and thrust sheets: a review. Tectonophysics, 88(3), pp.201-233. Cerca con Google

Savignano, E., Mazzoli, S., Arce, M., Franchini, M., Gautheron, C., Paolini, M. and Zattin, M., 2016. (Un) Coupled thrust belt‐foreland deformation in the northern Patagonian Andes: new insights from the Esquel‐Gastre sector (41° 30’–43° S). Tectonics. Cerca con Google

Scalabrino, B., Lagabrielle, Y., Malavieille, J., Dominguez, S., Melnick, D., Espinoza, F., Suarez, M. and Rossello, E., 2010. A morphotectonic analysis of central Patagonian Cordillera: Negative inversion of the Andean belt over a buried spreading center?. Tectonics, 29(2). Cerca con Google

Scalabrino, B., Ritz, J.F. and Lagabrielle, Y., 2011. Relief inversion triggered by subduction of an active spreading ridge: evidence from glacial morphology in Central Patagonia. Terra Nova, 23(2), pp.63-69. Cerca con Google

Shuster, D.L. and Farley, K.A., 2009. The influence of artificial radiation damage and thermal annealing on helium diffusion kinetics in apatite. Geochimica et cosmochimica acta, 73(1), pp.183-196. Cerca con Google

Shuster, D.L., Flowers, R.M. and Farley, K.A., 2006. The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth and Planetary Science Letters, 249(3), pp.148-161. Cerca con Google

Skármeta, J. and Charrier, R., 1976. Geología del sector fronterizo de Aysén entre los 45 y 46 de latitud sur, Chile. In VI Congreso Geológico Argentino, Actas (Vol. 1, pp. 267-286). Cerca con Google

Somoza, R. and Zaffarana, C.B., 2008. Mid-Cretaceous polar standstill of South America, motion of the Atlantic hotspots and the birth of the Andean cordillera. Earth and Planetary Science Letters, 271(1), pp.267-277. Cerca con Google

Spalletti, L., Franzese, J., Morel, E., Zúñiga, A. and Fanning, C.M., 2010. Consideraciones acerca de la sedimentología, paleobotánica y geocronología de la formación piedra del águila (jurásico inferior, Neuquén). Revista de la Asociación Geológica Argentina, 66(3), pp.305-313. Cerca con Google

Spalletti, L.A. and Dalla Salda, L.H., 1996. A pull apart volcanic related Tertiary basin, an example from the Patagonian Andes. Journal of South American Earth Sciences, 9(3-4), pp.197-206. Cerca con Google

Stern, C.R., 2004. Active Andean volcanism: its geologic and tectonic setting. Revista geológica de Chile, 31(2), pp.161-206. Cerca con Google

Stipanicic, P.N., Rodrigo, F., Baulies, O.L. and Martínez, C.G., 1968. Las formaciones presenonianas en el denominado Macizo Nordpatagónico y regiones adyacentes. Revista de la Asociación Geológica Argentina, 23(2), pp.67-98. Cerca con Google

Stockli, D.F., 2005. Application of low-temperature thermochronometry to extensional tectonic settings. Reviews in Mineralogy and Geochemistry, 58(1), pp.411-448. Cerca con Google

Stüwe, K., White, L. and Brown, R., 1994. The influence of eroding topography on steady-state isotherms. Application to fission track analysis. Earth and Planetary Science Letters, 124(1-4), pp.63-74. Cerca con Google

Suárez M, De La Cruz R, Bell M, Demant A., 2009. Cretaceous slab segmentation in southwestern Gondwana. Geological Magagazine, 147, pp. 193–205. Cerca con Google

Suárez, M. and De la Cruz, R., 2001. Jurassic to Miocene K–Ar dates from eastern central Patagonian Cordillera plutons, Chile (45–48 S). Geological Magazine, 138(1), pp.53-66. Cerca con Google

Suárez, M., De la Cruz, R. and Bell, M., 1996. Estratigrafía de la región de Coyhaique (latitud 45-46 S), Cordillera Patagónica, Chile. In Congreso Geológico Argentino (No. 13, pp. 575-590). Cerca con Google

Suppe, J., 1983. Geometry and kinematics of fault-bend folding. American Journal of science, 283(7), pp.684-721. Cerca con Google

Tagami, T. and O’Sullivan, P.B., 2005. Fundamentals of fission-track thermochronology. Reviews in Mineralogy and Geochemistry, 58(1), pp.19-47. Cerca con Google

Tavani, S. and Muñoz, J.A., 2012. Mesozoic rifting in the Basque–Cantabrian Basin (Spain): Inherited faults, transversal structures and stress perturbation. Terra Nova, 24(1), pp.70-76. Cerca con Google

Tavani, S., Storti, F., Lacombe, O., Corradetti, A., Muñoz, J.A. and Mazzoli, S., 2015. A review of deformation pattern templates in foreland basin systems and fold-and-thrust belts: Implications for the state of stress in the frontal regions of thrust wedges. Earth-Science Reviews, 141, pp.82-104. Cerca con Google

Thomson, S.N. and Hervé, F., 2002. New time constraints for the age of metamorphism at the ancestral Pacific Gondwana margin of southern Chile (42-52 S). Revista geológica de Chile, 29(2), pp.255-271. Cerca con Google

Thomson, S.N., 2002. Late Cenozoic geomorphic and tectonic evolution of the Patagonian Andes between latitudes 42 S and 46 S: An appraisal based on fission-track results from the transpressional intra-arc Liquiñe-Ofqui fault zone. Geological Society of America Bulletin, 114(9), pp.1159-1173. Cerca con Google

Thomson, S.N., Brandon, M.T., Tomkin, J.H., Reiners, P.W., Vásquez, C. and Wilson, N.J., 2010. Glaciation as a destructive and constructive control on mountain building. Nature, 467(7313), pp.313-317. Cerca con Google

Thomson, S.N., Hervé, F. and Stöckhert, B., 2001. Mesozoic‐Cenozoic denudation history of the Patagonian Andes (southern Chile) and its correlation to different subduction processes. Tectonics, 20(5), pp.693-711. Cerca con Google

Vargas Easton, G., Klinger, Y., Rockwell, T.K., Forman, S.L., Rebolledo, S., Lacassin, R. and Armijo, R., 2013, December. Potential for a large earthquake rupture of the San Ramón fault in Santiago, Chile. In AGU Fall Meeting Abstracts. Cerca con Google

Vargas, G., Rebolledo, S., Sepúlveda, S.A., Lahsen, A., Thiele, R., Townley, B., Padilla, C., Rauld, R., Herrera, M.J. and Lara, M., 2013. Submarine earthquake rupture, active faulting and volcanism along the major Liquiñe-Ofqui Fault Zone and implications for seismic hazard assessment in the Patagonian Andes. Andean Geology, 40(1). Cerca con Google

Volkheimer, W., 1964. Estratigrafía de la zona extraandina del Departamento de Cushamen (Chubut). Revista de la Asociación Geológica Argentina, 19(2), pp.85-107. Cerca con Google

Von Gosen, W. and Loske, W., 2004. Tectonic history of the Calcatapul Formation, Chubut province, Argentina, and the “Gastre fault system”. Journal of South American Earth Sciences, 18(1), pp.73-88. Cerca con Google

Von Gosen, W., 2009. Stages of Late Palaeozoic deformation and intrusive activity in the western part of the North Patagonian Massif (southern Argentina) and their geotectonic implications. Geological Magazine, 146(1), pp.48-71. Cerca con Google

Wagner, G.A., 1988. Apatite fission-track geochrono-thermometer to 60 C: projected length studies. Chemical Geology: Isotope Geoscience section, 72(2), pp.145-153. Cerca con Google

Wagner, G.A., Michalski, I. and Zaun, P., 1989. Apatite fission track dating of the Central European basement. Postvariscan thermo-tectonic evolution. In The German Continental Deep Drilling Program (KTB) (pp. 481-500). Springer, Berlin, Heidelberg. Cerca con Google

Wallace, R.E., 1951. Geometry of shearing stress and relation to faulting. The journal of Geology, 59(2), pp.118-130. Cerca con Google

Williams, D., K.(2010), Geology and Mineralization of the Navidad Ag-Pb-Cu-Zn District, Chubut Province, Argentina. Econ. Geol. Bull. Soc. Inc. Spec. Pub, 15, pp.203-227. Cerca con Google

Willner, A.P., Glodny, J., Gerya, T.V., Godoy, E. and Massonne, H.J., 2004. A counterclockwise PTt path of high-pressure/low-temperature rocks from the Coastal Cordillera accretionary complex of south-central Chile: constraints for the earliest stage of subduction mass flow. Lithos, 75(3), pp.283-310. Cerca con Google

Windhausen, A., 1931. Geología Argentina. Casa Jacabo Peuser. Cerca con Google

Withjack, M.O. and Peterson, E.T., 1993. Prediction of normal-fault geometries--a sensitivity analysis. AAPG Bulletin, 77(11), pp.1860-1873. Cerca con Google

Wolf, R.A., Farley, K.A. and Kass, D.M., 1998. Modeling of the temperature sensitivity of the apatite (U–Th)/He thermochronometer. Chemical Geology, 148(1), pp.105-114. Cerca con Google

Woodward, N.B., Gray, D.R. and Spears, D.B., 1986. Including strain data in balanced cross-sections. Journal of Structural Geology, 8(3-4), pp.313-324. Cerca con Google

Ziegler, P.A., 1987. Late Cretaceous and Cenozoic intra-plate compressional deformations in the Alpine foreland—a geodynamic model. Tectonophysics, 137(1-4), pp.389-420. Cerca con Google

Ziegler, P.A., Cloetingh, S. and van Wees, J.D., 1995. Dynamics of intra-plate compressional deformation: the Alpine foreland and other examples. Tectonophysics, 252(1), pp.7-59. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record