Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Duzzi, Matteo (2018) Spacecraft Rendezvous and Docking Using Electromagnetic Interactions. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document
10Mb

Abstract (english)

On-orbit operations such as refuelling, payload updating, inspection, maintenance, material and crew transfer, modular structures assemblies and in general all those processes requiring the participation of two or more collaborative vehicles are acquiring growing importance in the space-related field, since they allow the development of longer-lifetime missions.
To successfully accomplish all these on-orbit servicing operations, the ability to approach and mate with another vehicle is fundamental. Rendezvous strategies, proximity procedures and docking manoeuvres between spacecraft are of utmost importance and new, effective, standard and reliable solutions are needed to ensure further technological developments.
Presently, the possibility to create low-cost clusters of vehicles able to share their resources may be exploited thanks to the broadening advent of CubeSat-sized spacecraft, which are conditioning the space market nowadays.
In this context, this thesis aims at presenting viable strategies for spacecraft RendezVous and Docking (RVD) manoeuvres exploiting electro-magnetic interactions. Two perspective concepts have been investigated and developed, linked together by the use of CubeSat-size testing platforms.
The idea behind the first one, PACMAN (Position and Attitude Control with MAgnetic Navigation) experiment, is to actively exploit magnetic interactions for relative position and attitude control during rendezvous and proximity operations between small-scale spacecraft. PACMAN experiment has been developed within ESA Education Fly Your Thesis! 2017 programme and has been tested in low-gravity conditions during the 68th ESA Parabolic Flight Campaign (PFC) in December 2017. The experiment validation has been accomplished by launching a miniature spacecraft mock-up (1 U CubeSat, the CUBE) and a Free-Floating Target (1 U CubeSat, the FFT) that generates a static magnetic fields towards each other; a set of actively-controlled magnetic coils on board the CUBE, assisted by dedicated localization sensors, are used to control the CUBE attitude and relative position, assuring in this way the accomplishment of the soft-docking manoeuvre.
The second one, TED (Tethered Electromagnetic Docking), concerns a novel docking strategy in which a tethered electromagnetic probe is expected to be ejected by a chaser toward a receiving electromagnetic interface mounted on a target spacecraft. The generated magnetic field drives the probe to the target and realizes an automatic alignment between the two interfaces, thus reducing control requirements for close approach manoeuvres as well as the fuel consumption necessary for them. After that, hard-docking can be accomplished by retracting the tether and bringing the two spacecraft in contact.

Abstract (italian)

La capacità di eseguire operazioni di servizio su veicoli in orbita ha riscontrato, negli ultimi anni, un’enorme interesse da parte delle maggiori compagnie e agenzie spaziali internazionali. La necessità di ridurre i costi di produzione, assieme alla possibilità di ottenere sistemi complessi più affidabili e duraturi, ha indirizzato marcatamente il mercato dell’ingegneria aerospaziale verso lo studio di soluzioni innovative per eseguire in orbita operazioni quali rifornimento, aggiornamento e manutenzione di sottositemi, riparazioni di componenti non funzionanti e ispezioni. Le nuove idee e tecnologie in via di sviluppo per eseguire queste operazioni sono percepite come estremamente funzionali e efficienti in termini di costo, in grado di estendere la vita operativa di un satellite e diminuire i costi connessi alla sua completa sostituzione.
Attualmente, il tassello mancante per poter procedere efficacemente con questo tipo di procedure, è un sistema automatico di docking che possa costituire un nuovo standard semplice ed affidabile. Gli odierni sistemi di docking, infatti, sono caratterizzati da elevati requisiti di puntamento e necessitano dell’attuazione di precise azioni sul controllo d’assetto in modo da garantire un aggancio sicuro tra i due veicoli coinvolti nella manovra. Questo è dovuto al fatto che tali sistemi di aggancio sono stati progettati quasi unicamente per il trasferimento di equipaggio o di materiali mentre nessuna progettazione, finora, è mai stata prevista per i satelliti commerciali e scientifici. Recentemente, l’avvento dei CubeSat ha fortemente incoraggiato aziende e agenzie del settore aerospaziale ad investire nello sviluppo di dimostratori tecnologici e payload scientifici, grazie alla notevole riduzione nel costo necessario per lanciare in orbita tali veicoli. Lo svantaggio nell’utilizzare questo tipo di piattaforme è principalmente legato ai limiti tecnici intrinseci degli stessi, rappresentati dalle ridotte risorse a disposizione. Ciononostante, gran parte di queste limitazioni sono state superate grazie alla possibilità di scalare i risultati ottenuti ed applicarli a sistemi più grandi. Numerose tecnologie sono già state testate e caratterizzate nello spazio usando moduli CubeSat, ma solo esperimenti marginali sono stati condotti sino ad oggi su sistemi di docking, anche se si sta percependo un cambio di tendenza. Tali sistemi, infatti, permetterebbero l’esecuzione di operazioni di aggancio e sgancio, ampliando enormemente i possibili scenari di missione: sistemi modulari formati da molteplici unità CubeSat potrebbero interagire tra loro creando agglomerati più grandi in grado di condividere le risorse più efficacemente, riorganizzarsi e aggiornarsi autonomamente.
Lo scopo di questa ricerca è quello di proporre un nuovo sistema di soft-docking caratterizzato da requisiti meno stringenti per quanto concerne l’accuratezza nel puntamento e nel controllo d’assetto rispetto ai sistemi esistenti. L’idea innovativa alla base dello studio è quella di sfruttare la capacità di auto-allineamento e reciproca attrazione garantita dall’interazione magnetica che si instaura tra due interfacce elettromagnetiche, in modo da facilitare le manovre di prossimità ed aggancio.
La trattazione è suddivisa in due parti principali. Nella prima parte viene presentato l’esperimento PACMAN (Position and Attitude Control with MAgnetic Navigation) il quale rappresenta un dimostratore tecnologico di un sistema di docking per piccoli satelliti basato su attuatori magnetici. Tale sistema, sviluppato all'interno del programma ESA Education Fly Your Thesis! 2017, è stato testato in gravità ridotta durante la 68th campagna di voli parabolici ESA a dicembre. La seconda parte si focalizza invece su un nuovo concept, TED (Tethered Electromagnetic Docking), secondo il quale le manovre di close-range rendezvous e docking possono essere realizzate lanciando una sonda elettromagnetica collegata ad un filo da un satellite chaser verso un’interfaccia elettromagnetica montata su di un satellite target. Stabilito il collegamento, tramite il recupero del filo, i due veicoli sono connessi rigidamente concludendo la manovra.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Francesconi, Alessandro
Ph.D. course:Ciclo 30 > Corsi 30 > SCIENZE TECNOLOGIE E MISURE SPAZIALI
Data di deposito della tesi:15 January 2018
Anno di Pubblicazione:15 January 2018
Key Words:Rendezvous and docking, automatic soft-docking, electromagnetic relative position and control, navigation, CubeSat, tethered-electromagnetic docking, tether, on-orbit servicing
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/04 Costruzioni e strutture aerospaziali
Area 09 - Ingegneria industriale e dell'informazione > ING-IND/05 Impianti e sistemi aerospaziali
Struttura di riferimento:Centri > Centro Interdipartimentale di ricerca di Studi e attività  spaziali "G. Colombo" (CISAS)
Codice ID:10927
Depositato il:25 Oct 2018 16:08
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] Alex Ellery, Joerg Kreisel, and Bernd Sommer. The case for robotic on-orbit servicing of spacecraft: Spacecraft reliability is a myth. Acta Astronautica, 63(5): 632–648, 2008. Cerca con Google

[2] Angel Flores-Abad, Ou Ma, Khanh Pham, and Steve Ulrich. A review of space robotics technologies for on-orbit servicing. Progress in Aerospace Sciences, 68: 1–26, 2014. Cerca con Google

[3] URL http://mdacorporation.com/isg/robotics-automation/space-based-robotics-solutions/robotics-and-on-orbit-servicingl. Vai! Cerca con Google

[4] URL http://www.vivisat.com/l. Vai! Cerca con Google

[5] URL https://www.nasa.gov/mission_pages/station/research/experiments/778.html. Vai! Cerca con Google

[6] URL https://www.darpa.mil/program/phoenixl. Vai! Cerca con Google

[7] URL http://space.skyrocket.de/doc_sdat/deos.htm. Vai! Cerca con Google

[8] URL http://spacenews.com/airbus-to-challenge-ssl-orbital-atk-with-new-space-tughtm. Vai! Cerca con Google

[9] URL https://www.orbitalatk.com/news-room/feature-stories/MEV/default.aspx. Vai! Cerca con Google

[10] URL https://www.effective-space.com/. Vai! Cerca con Google

[11] Cryan Scott P. Kelly, Sean M. International Docking Standard (IDSS) Interface Definition Document (IDD), volume NASA report HQ-E-DAA-TN39050. 2016. Cerca con Google

[12] V. S. Syromyatnikov. Docking system of androgynous and peripheral type. The 7th Aerospace Mechanism Symposium, page 27, 1972. Cerca con Google

[13] D. Schwaab. NASA Docking System (NDS) Users Guide. Cerca con Google

[14] W. H. Warr. R. J. McLaughlin. The common berthing mechanism (cbm) for international space station. 31st International Conference On Environmental Sys- tems, page 27, 2001. URLh ttp://spacecraft.ssl.umd.edu/design_lib/ICES01-2435.ISS_CBM.pdf. Cerca con Google

[15] David Miller, A Saenz-Otero, J Wertz, A Chen, G Berkowski, C Brodel, S Carlson, D Carpenter, S Chen, S Cheng, et al. Spheres: a testbed for long duration satellite formation flying in micro-gravity conditions. In Proceedings of the AAS/AIAA Space Flight Mechanics Meeting, Clearwater, FL, Paper No. AAS 00-110, 2000. Cerca con Google

[16] P Tchoryk Jr, Anthony B Hays, and Jane C Pavlich. A docking solution for on-orbit satellite servicing: part of the responsive space equation. AIAA-LA Section/SSTC, 2001:1–3, 2003. Cerca con Google

[17] Underwood C. et al. Using cubesat/micro-satellite technology to demonstrate the autonomous assembly of a reconfigurable space telescope (aarest). Acta Astronautica, 114:112–122, 2015. Cerca con Google

[18] Wenwen Chen, Zhongcheng Mu, Wei Wang, Guowen Sun, and Hongyu Chen. The multiple coils to perform autonomous rendezvous & docking of cubesat/microsatellite. In Control And Decision Conference (CCDC), 2017 29th Chinese, pages 3178–3183. IEEE, 2017. Cerca con Google

[19] C. P. Bridges, B. Taylor, N. Horri, C. I. Underwood, S. Kenyon, J. Barrera-Ars, L. Pryce, and R. Bird. Strand-2: Visual inspection, proximity operations amp; nanosatellite docking. In 2013 IEEE Aerospace Conference, pages 1–8, March 2013. doi: 10.1109/AERO.2013.6497348. Cerca con Google

[20] Petrillo D et al. Flexible electromagnetic leash docking system (felds) experiment from design to microgravity testing. Acta Astronautica, October 66th IAC, Jerusalem, 2015. Cerca con Google

[21] John Bowen, Marco Villa, and Austin Williams. Cubesat based rendezvous, proximity operations, and docking in the cpod mission. 2015. Cerca con Google

[22] . URL http://www.nasa.gov/sites/default/files/atoms/files/oaan_fact_sheet-26oct2015. Vai! Cerca con Google

[23] URL http://www.esa.int/Our_Activities/Space_Engineering_Technology/Clean_Space/CleanSat_new_satellite_technologies_for_cleaner_low_orbits. Vai! Cerca con Google

[24] URL http://www.esa.int/Our_Activities/Space_Engineering_Technology/Clean_Space/e.Deorbit. Vai! Cerca con Google

[25] Wigbert Fehse. Automated rendezvous and docking of spacecraft, volume 16. Cambridge university press, 2003. Cerca con Google

[26] Duzzi M, Olivieri L, and Francesconi A. Tether-aided spacecraft docking procedure. Cerca con Google

[27] J. M. Grimwood B. C. Hacker. On the Shoulders of Titans: A History of Project Gemini, volume NASA report SP-4203. 1977. Cerca con Google

[28] Laura L Jones, William R Wilson, and Mason A Peck. Design parameters and validation for a non-contacting flux-pinned docking interface. In AIAA SPACE 2010 Conference & Exhibition, Anaheim, CA, Paper No. AIAA, volume 8918, 2010. Cerca con Google

[29] Yuan-wen Zhang, Le-ping Yang, Yan-wei Zhu, Huan Huang, and Wei-wei Cai. Nonlinear 6-dof control of spacecraft docking with inter-satellite electromagnetic force. Acta Astronautica, 77:97–108, 2012. Cerca con Google

[30] Raymond J Sedwick and Samuel A Schweighart. Electromagnetic formation flight. Advances in the Astronautical Sciences, 113:71–83, 2003. Cerca con Google

[31] Umair Ahsun and David W Miller. Dynamics and control of electromagnetic satellite formations. In American Control Conference, 2006, pages 6–pp. IEEE, 2006. Cerca con Google

[32] Robert C Youngquist, Mark A Nurge, and Stanley O Starr. Alternating magnetic field forces for satellite formation flying. Acta astronautica, 84:197–205, 2013. Cerca con Google

[33] URL http://www.nasa.gov/spheres/satellites.html. Vai! Cerca con Google

[34] Porter AK et al. Demonstration of electromagnetic formation flight and wireless power transfer. Journal of Spacecraft and Rockets, 2014. Cerca con Google

[35] Woffinden D. and Geller D. Navigating the road to autonomous orbital rendezvous. Journal of Spacecraft and Rockets, 4(44):898–909, July 2007. Cerca con Google

[36] Rainey K. Final flight of european space vehicle to space station goes out with a big bang. 2014. Cerca con Google

[37] . URL http://ssl.mit.edu/spheres/spheresLibrary/projectDocumentation.html. Vai! Cerca con Google

[38] Sansone F., Branz F., Francesconi A., Barbetta M., and Pelizzo M.G. 2d close range navigation sensor for miniature cooperative spacecraft. IEEE Transactions on Aerospace& Electronic Systems, 50:160–169, 2014. Cerca con Google

[39] Sansone F., Branz F., Olivieri L., and Francesconi A. Proximity relative navigation sensors for small-scale spacecraft and drones. pages 160–169, 66th IAC, Jerusalem, 12-16 October 2015. Cerca con Google

[40] Sonja Brungs, Marcel Egli, Simon L Wuest, Peter CM Christianen, Jack JWA van Loon, Thu Jennifer Ngo Anh, and Ruth Hemmersbach. Facilities for simulation of microgravity in the esa ground-based facility programme. Microgravity science and technology, 28(3):191–203, 2016. Cerca con Google

[41] Raul Herranz, Ralf Anken, Johannes Boonstra, Markus Braun, Peter CM Christianen, Maarten de Geest, Jens Hauslage, Reinhard Hilbig, Richard JA Hill, Michael Lebert, et al. Ground-based facilities for simulation of microgravity: organism specific recommendations for their use, and recommended terminology. Astrobiology, 13(1):1–17, 2013. Cerca con Google

[42] URL http://www.esa.int/Our_Activities/Human_Spaceflight/Research/European_user_guide_to_low_gravity_platformsl. Vai! Cerca con Google

[43] URL http://www.esa.int/Education/Fly_Your_Thesis/Fly_Your_Thesis!_programme. Vai! Cerca con Google

[44] URL http://www.novespace.fr/en,home.html. Vai! Cerca con Google

[45] B. Verthier. NOVESPACE A310 ZERO-G Interface Document. 2016. Cerca con Google

[46] B. Verthier. NOVESPACE STANDARD PRIMARY STRUCTURE CATALOG.2015. Cerca con Google

[47] 1st Symposium on Space Educational Activities, editor. Modeling a new concept of tether deployer with retrievable capability for space applications. Cerca con Google

[48] . URL http://everyspec.com/ESA/download.php?spec=ECSS-E-ST-10-06C.048163.pdf. Vai! Cerca con Google

[49] . URL http://everyspec.com/ESA/download.php?spec=ECSS-E-10-02C.047796.pdf. Vai! Cerca con Google

[50] Samuel Adam Schweighart. Electromagnetic formation flight dipole solution planning. PhD thesis, Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2005. Cerca con Google

[51] S. Babic and et al. Magnetic force between inclined circular loops (lorentz approach). Progress In Electromagnetics Research B, 38:333–349, 2012. Cerca con Google

[52] Milton Abramowitz, Irene A Stegun, et al. Handbook of mathematical functions. Applied mathematics series, 55(62):39, 1966. Cerca con Google

[53] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on pattern analysis and machine intelligence, 22(11):1330–1334, 2000. Cerca con Google

[54] Kneip L., Scaramuzza D., Siegwart R. A Novel Parametrization of the Perspective Three-Point Problem for a Direct Computation of Absolute Camera Position and Orientation. IEEE, 2011. Cerca con Google

[55] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM, 24(6):381–395, 1981. Cerca con Google

[56] F. Gai. NOVESPACE Experiment Design Requirements for Parabolic Flights. 2016. Cerca con Google

[57] Lorenzo Olivieri and Alessandro Francesconi. Design and test of a semiandrogynous docking mechanism for small satellites. Acta Astronautica, 122:219–230, 2016. Cerca con Google

[58] Duncan Lee Miller. Development of resource-constrained sensors and actuators for in-space satellite docking and servicing. PhD thesis, Massachusetts Institute of Technology, 2015. Cerca con Google

[59] Steve Ulrich, Dustin Hayhurst, Alvar Saenz-Otero, David Miller, and Itzhak Barkana. Simple adaptive control for spacecraft proximity operations. In AIAA Guidance, Navigation, and Control Conference, page 1288, 2014. Cerca con Google

[60] Muriel Richard, L Kronig, Federico Belloni, S Rossi, V Gass, C Paccolat, JP Thiran, S Araomi, I Gavrilovich, and H Shea. Uncooperative rendezvous and docking for microsats. In 6th International Conference on Recent Advances in Space Technologies, 2013. Cerca con Google

[61] H Clohessy and S Wiltshire. A terminal guidance system for satellite rendezvous. Astro Science, 27:563, 1960. Cerca con Google

[62] Hari B Hablani, Myron Tapper, and David Dana-Bashian. Guidance algorithms for autonomous rendezvous of spacecraft with a target vehicle in circular orbit. In AIAA Guidance, Navigation, and control conference and Exhibit, pages 6–9, 2001. Cerca con Google

[63] Don J Pearson. The glideslope approach. In Orbital mechanics and mission design, volume 1, pages 109–123, 1989. Cerca con Google

[64] Feng Wang, Xibin Cao, and Xueqin Chen. Guidance algorithms for the neardistance rendezvous of on-orbit-servicing spacecraft. Transactions of the Japan Society for Aeronautical and Space Sciences, 50(167):9–17, 2007. Cerca con Google

[65] Wim De Groot. Propulsion options for primary thrust and attitude control of microspacecraft. In COSPAR Colloquia Series, volume 10, pages 200–209. Elsevier, 1999. Cerca con Google

[66] Juergen Mueller, Richard Hofer, and John Ziemer. Survey of propulsion technologies applicable to cubesats. 2010. Cerca con Google

[67] M. Dobrowolny and N. H. Stone. A technical overview of tss-1: The first tetheredsatellite system mission. Il Nuovo Cimento C, 17(1):1–12, Jan 1994. ISSN 0390-5551. doi: 10.1007/BF02506678. URL https://doi.org/10.1007/BF02506678. Vai! Cerca con Google

[68] Joseph A Carroll. Seds deployer design and flight performance. AIAA paper, pages 93–4764, 1993. Cerca con Google

[69] EC Lorenzini, SB Bortolami, CC Rupp, and F Angrilli. Control and flight performance of tethered satellite small expendable deployment system-ii. Journal of guidance, control, and dynamics, 19(5):1148–1156, 1996. Cerca con Google

[70] & Lorenzini E. C. Cosmo, M. L. Tethers in space handbook. 1997. Cerca con Google

[71] D Petrillo, M Gaino, M Duzzi, G Grassi, and A Francesconi. Tethered docking systems: advances from felds experiment. in: Acta Astronautica, 2017, forthcoming. Cerca con Google

[72] G. et al Grassi. Space tether automatic retrieval. Drop Your Thesis! 2016, Final Report, European Space Agency Education Office, 2017. Cerca con Google

[73] Kalyan K Mankala and Sunil K Agrawal. Dynamic modeling and simulation of satellite tethered systems. Journal of vibration and acoustics, 127(2):144–156, 2005. Cerca con Google

[74] Denis Zanutto, Enrico C Lorenzini, Riccardo Mantellato, Giacomo Colombatti, and Antonio S´anchez Torres. Orbital debris mitigation through deorbiting with passive electrodynamic drag. 2012. Cerca con Google

[75] Soon-Jo Chung, Edmund M Kong, and David W Miller. Spheres tethered formation flight testbed: Application to nasas specs mission. Society of Photo-Optical Instrumentation Engineers (SPIE), 2005. Cerca con Google

[76] SD Drell, HM Foley, and MA Ruderman. Drag and propulsion of large satellites in the ionosphere: An alfv´en propulsion engine in space. Journal of Geophysical Research, 70(13):3131–3145, 1965. Cerca con Google

[77] JT Carter and M Greene. Deployment and retrieval simulation of a single tether satellite system. In System Theory, 1988. Proceedings of the Twentieth Southeastern Symposium on, pages 657–660. IEEE, 1988. Cerca con Google

[78] M Pascal, A Djebli, and L El Bakkali. A new deployment/retrieval scheme for a tethered satellite system, intermediate between the conventional scheme and the crawler scheme. Journal of Applied Mathematics and Mechanics, 65(4):689–696, 2001. Cerca con Google

[79] A Djebli, M Pascal, and L El Bakkali. Laws of deployment/retrieval in tether connected satellites systems. Acta astronautica, 45(2):61–73, 1999. Cerca con Google

[80] A Djebli, L El Bakkali, and M Pascal. On fast retrieval laws for tethered satellite systems. Acta Astronautica, 50(8):461–470, 2002. Cerca con Google

[81] L et al. Olivieri. Technologies to join spacecraft using a tethered electromagnetic probe. in: XXIV Italian Association of Aeronautics and Astronautics International Conference, Palermo-Enna, Italy,18-22 September, 2017, forthcoming. Cerca con Google

[82] R Mantellato, A Valmorbida, and EC Lorenzini. Thrust-aided librating deployment of tape tethers. Journal of Spacecraft and Rockets, 52(5):1395–1406, 2015. Cerca con Google

[83] Joseph A Carroll. Tether applications in space transportation. Acta Astronautica, 13(4):165–174, 1986. Cerca con Google

[84] FL Chernous’ ko. Dynamics of retrieval of a space tethered system. Journal of Applied Mathematics and Mechanics, 59(2):165–173, 1995. Cerca con Google

[85] Paul Williams. Optimal deployment/retrieval of tethered satellites. Journal of Spacecraft and Rockets, 45(2):324–343, 2008. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record