Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Golin, Serena (2018) The Mitochondrial Protein Whirly2 Regulates Seed Germination and Early Stages of Growth in Arabidopsis Thaliana. [Ph.D. thesis]

Full text disponibile come:

PDF Document

Abstract (italian or english)

Variations in amount and structural integrity of organellar DNA are tightly regulated by nuclear-organelle cross-talk. Whirly proteins are DNA binding proteins that were shown to play a role in organellar DNA maintenance and organization [Marechal et al. 2008; Cappadocia et al 2010]. Arabidopsis thaliana has three Whirly proteins with different subcellular localization: Whirly1 and Whirly3 are targeted to chloroplasts, while Whirly2 is targeted to mitochondria [Krause et al. 2005]. WHIRLY2 gene expression is related to early plant development, being expressed in imbibed seeds, shoot apex and roots of young seedlings. A T-DNA insertional mutant for the WHIRLY2 gene shows an obvious phenotype on seeds, germination and early stages of plant growth. At subcellular level Whirly2 regulates mitochondria morphology, dynamics and functionality of the electron transport chain. Transmitted electron microscopy (TEM) revealed that Whirly2 is a major mitochondrial nucleoids organizer, and it influences both mtDNA and ptDNA copy number. Moreover, our results suggest a coordination of WHIRLY genes that controls expression of target genes of organellar signals upon development and stress conditions.

Abstract (a different language)

Le variazioni della quantità e dell'integrità strutturale del DNA degli organelli sono strettamente regolate dal cross-talk tra i vari compartimenti subcellulari. Le proteine Whirly sono in grado di legare il DNA ed è stato dimostrato come esse abbiano un ruolo chiave nel mantenimento e nell’organizzazione strutturale del DNA degli organelli [Marechal et al. 2008; Cappadocia et al 2010]. Arabidopsis thaliana possiede tre proteine Whirly con diversa localizzazione subcellulare: Whirly1 e Whirly3 localizzano nei cloroplasti, mentre Whirly2 localizza a livello mitocondriale [Krause et al. 2005]. È stato osservato come l’espressione del gene WHIRLY2 sia modulata durante la crescita della pianta. In particolare, WHIRLY2 è maggiormente espresso nei semi imbibiti e nei meristemi apicali e radicali. Il mutante inserzionale per il gene WHIRLY2 presenta infatti, un chiaro fenotipo nello sviluppo del seme e nella germinazione. A livello subcellulare, Whirly2 regola la morfologia, la dinamica e la funzionalità mitocondriale. Inoltre, è stato rilevato come Whirly2 sia indispensabile nel mantenimento strutturale dei nucleoidi mitocondriali e del contenuto DNA negli organelli. In aggiunta, i nostri risultati suggeriscono un coordinamento nell’espressione dei geni WHIRLY con lo scopo di mantenere un’adeguata omeostasi cellulare sia durante lo sviluppo che in condizioni di stress.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Zottini, Michela
Ph.D. course:Ciclo 30 > Corsi 30 > BIOSCIENZE
Data di deposito della tesi:15 January 2018
Anno di Pubblicazione:15 January 2018
Key Words:segnale retrogrado dei mitocondri/mitochondria retrograde signalling piante/plants Arabidopsis thaliana Whirly2 sviluppo e germinazione del seme/seed development and germinazion mitocondri piante/ plant mitochondria nucleoidi/nucleoids
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/04 Fisiologia vegetale
Struttura di riferimento:Dipartimenti > Dipartimento di Biologia
Codice ID:10935
Depositato il:26 Oct 2018 08:45
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Borisjuk L, Walenta S, Rolletschek H, Mueller-Klieser W, Wobus U, Weber H. (2002) Spatial analysis of plant metabolism: sucrose imaging within Vicia faba cotyledons reveals specific developmental patterns. Plant J. 29(4):521-30. Cerca con Google

Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, Görlach J. (2001) Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell. 13(7):1499-510. Cerca con Google

Cai Q, Guo L, Shen ZR, Wang DY, Zhang Q, Sodmergen. (2015) Elevation of Pollen Mitochondrial DNA Copy Number by WHIRLY2: Altered Respiration and Pollen Tube Growth in Arabidopsis. Plant Physiol. 169(1):660-73. Cerca con Google

Cappadocia L, Maréchal A, Parent JS, Lepage E, Sygusch J, Brisson N. (2010) Crystal structures of DNA-Whirly complexes and their role in Arabidopsis organelle genome repair. Plant Cell. 22(6):1849-67. Cerca con Google

Carrie C, Whelan J. (2013) Widespread dual targeting of proteins in land plants: when, where, how and why. Plant Signal Behav. 8(8). Cerca con Google

Cupp JD, Nielsen BL. (2013) Arabidopsis thaliana organellar DNA polymerase IB mutants exhibit reduced mtDNA levels with a decrease in mitochondrial area density. Physiol Plant. 149(1):91-103. Cerca con Google

De Clercq I, Vermeirssen V, Van Aken O, Vandepoele K, Murcha MW, Law SR, Inzé A, Ng S, Ivanova A, Rombaut D, van de Cotte B, Jaspers P, Van de Peer Y, Kangasjärvi J, Whelan J, Van Breusegem F. (2013) The membrane-bound NAC transcription factor ANAC013 functions in mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis. Plant Cell. 25(9):3472-90. Cerca con Google

de Souza A, Wang JZ, Dehesh K. (2017) Retrograde Signals: Integrators of Interorganellar Communication and Orchestrators of Plant Development. Annu Rev Plant Biol. 28;68:85-108. Cerca con Google

Desveaux D, Subramaniam R, Després C, Mess JN, Lévesque C, Fobert PR, Dangl JL, Brisson N. (2004) A "Whirly" transcription factor is required for salicylic acid-dependent disease resistance in Arabidopsis. Dev Cell. 6(2):229-40. Cerca con Google

Desveaux D, Allard J, Brisson N, Sygusch J. (2002) A new family of plant transcription factors displays a novel ssDNA-binding surface. Nat Struct Biol. 9(7):512-7. Cerca con Google

Doughty J, Aljabri M, Scott RJ. (2014) Flavonoids and the regulation of seed size in Arabidopsis. Biochem Soc Trans. 42(2):364-9. Cerca con Google

Kalve S, De Vos D, Beemster GTS. (2014) Leaf development: a cellular perspective. Frontiers in Plant Science 5, 362. Cerca con Google

Krause K, Kilbienski I, Mulisch M, Rödiger A, Schäfer A, Krupinska K. (2005) DNA-binding proteins of the Whirly family in Arabidopsis thaliana are targeted to the organelles. FEBS Lett. 579(17):3707-12. Cerca con Google

Kumar RA, Bendich AJ. (2011) Distinguishing authentic mitochondrial and plastid DNAs from similar DNA sequences in the nucleus using the polymerase chain reaction. Curr Genet. 57(4):287-95. Cerca con Google

Krupinska K, Oetke S, Desel C, Mulisch M, Schäfer A, Hollmann J, Kumlehn J, Hensel G. (2014) WHIRLY1 is a major organizer of chloroplast nucleoids. Front Plant Sci. 4;5:432. Cerca con Google

Estavillo GM, Chan KX, Phua SY, Pogson BJ. (2013) Reconsidering the nature and mode of action of metabolite retrograde signals from the chloroplast. Front Plant Sci. 4;3:300. Cerca con Google

Foyer CH, Karpinska B, Krupinska K. (2014) The functions of WHIRLY1 and REDOX-RESPONSIVE TRANSCRIPTION FACTOR 1 in cross tolerance responses in plants: a hypothesis. Philos Trans R Soc Lond B Biol Sci. 369(1640):20130226. Cerca con Google

Frey TG, Mannella CA (2000) The internal structure of mitochondria. Trends Biochem Sci. 25(7):319-24. Cerca con Google

Gaff D.F. and Okong'O-Ogola O (1971) The Use of Non-permeating Pigments for Testing the Survival of Cells. Journal of Experimental Botany 22, 756–758. Cerca con Google

Grabowski E, Miao Y, Mulisch M, Krupinska K. (2008) Single-stranded DNA-binding protein Whirly1 in barley leaves is located in plastids and the nucleus of the same cell. Plant Physiol. 147(4):1800-4. Cerca con Google

Giraud E, Van Aken O, Ho LH, Whelan J. (2009) The transcription factor ABI4 is a regulator of mitochondrial retrograde expression of ALTERNATIVE OXIDASE1a. Plant Physiol. 150(3):1286-96. Cerca con Google

Gray JC, Hansen MR, Shaw DJ, Graham K, Dale R, Smallman P, Natesan SK, Newell CA. (2012) Plastid stromules are induced by stress treatments acting through abscisic acid. Plant J. 69(3):387-98. Cerca con Google

Han C and Yang P. (2015) Studies on the molecular mechanisms of seed germination. Proteomics. 15(10):1671-9. Cerca con Google

Horbay R, Bilyy R. (2016) Mitochondrial dynamics during cell cycling. Apoptosis. 21(12):1327-1335. Cerca con Google

Howell KA, Millar AH, Whelan J. (2006) Ordered assembly of mitochondria during rice germination begins with pro-mitochondrial structures rich in components of the protein import apparatus. Plant Mol Biol. 60(2):201-23. Cerca con Google

Isemer R, Mulisch M, Schäfer A, Kirchner S, Koop HU, Krupinska K. (2012) Recombinant Whirly1 translocates from transplastomic chloroplasts to the nucleus. FEBS Lett. 586(1):85-8. Cerca con Google

Juszczuk IM, Szal B, Rychter AM. (2012) Oxidation-reduction and reactive oxygen species homeostasis in mutant plants with respiratory chain complex I dysfunction. Plant Cell Environ. 35(2):296-307. Cerca con Google

Lastdrager J, Hanson J, Smeekens S. (2014) Sugar signals and the control of plant growth and development. J Exp Bot. 65(3):799-807. Cerca con Google

Lee SR, Han J (2017). Mitochondrial Nucleoid: Shield and Switch of the Mitochondrial Genome. Oxid Med Cell Longev. 2017:8060949 Cerca con Google

Leister D. (2012) Retrograde signaling in plants: from simple to complex scenarios. Front Plant Sci. 19;3:135. Cerca con Google

Logan DC. (2006) The mitochondrial compartment. J Exp Bot. 57(6):1225-43. Cerca con Google

Maréchal A, Parent JS, Véronneau-Lafortune F, Joyeux A, Lang BF, Brisson N. (2009) Whirly proteins maintain plastid genome stability in Arabidopsis. Proc Natl Acad Sci U S A. 106(34):14693-8. Cerca con Google

Maréchal A, Parent JS, Sabar M, Véronneau-Lafortune F, Abou-Rached C, Brisson N (2008) Overexpression of mtDNA-associated AtWhy2 compromises mitochondrial function. BMC Plant Biol. 18, 8-42 Cerca con Google

Melonek J, Mulisch M, Schmitz-Linneweber C, Grabowski E, Hensel G, Krupinska K. (2010) Whirly1 in chloroplasts associates with intron containing RNAs and rarely co-localizes with nucleoids. Planta. 232(2):471-81. Cerca con Google

Meng LS, Xu MK, Li D, Zhou MM, Jiang JH. (2017) Soluble Sugar Accumulation Can Influence Seed Size via AN3-YDA Gene Cascade. J Agric Food Chem. 24;65(20):4121-4132. Cerca con Google

Murashige T, Skoog F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plantarum 15: 473–497. Cerca con Google

Murcha MW, Wang Y, Narsai R, Whelan J. (2014) The plant mitochondrial protein import apparatus - the differences make it interesting. Biochim Biophys Acta. 1840(4):1233-45. Cerca con Google

Li N, Li Y. (2016) Signaling pathways of seed size control in plants. Curr Opin Plant Biol. 33:23-32. Cerca con Google

Livak K.J. and Schmittgen T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Methods 25, 402-408. Cerca con Google

Ng S, Ivanova A, Duncan O, Law SR, Van Aken O, De Clercq I, Wang Y, Carrie C, Xu L, Kmiec B, Walker H, Van Breusegem F, Whelan J, Giraud E. (2013) A membrane-bound NAC transcription factor, ANAC017, mediates mitochondrial retrograde signaling in Arabidopsis. Plant Cell. 25(9):3450-71. Cerca con Google

Osuna D, Prieto P, Aguilar M. (2015) Control of Seed Germination and Plant Development by Carbon and Nitrogen Availability. Front Plant Sci. 18;6:1023. Cerca con Google

Parent JS, Lepage E, Brisson N. (2011) Divergent roles for the two PolI-like organelle DNA polymerases of Arabidopsis. Plant Physiol. 156(1):254-62. Cerca con Google

Pfannschmidt T. (2010) Plastidial retrograde signalling--a true "plastid factor" or just metabolite signatures? Trends Plant Sci. 15(8):427-35. Cerca con Google

Preuten T, Cincu E, Fuchs J, Zoschke R, Liere K, Börner T. (2010) Fewer genes than organelles: extremely low and variable gene copy numbers in mitochondria of somatic plant cells. Plant J. 64(6):948-59. Cerca con Google

Raghavendra AS, Padmasree K. (2003) Beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. Trends Plant Sci. 8(11):546-53. Cerca con Google

Saha B, Borovskii G, Panda SK. (2016) Alternative oxidase and plant stress tolerance. Plant Signal Behav. 11(12). Cerca con Google

Sano N, Rajjou L, North HM, Debeaujon I, Marion-Poll A, Seo M. (2016) Staying Alive: Molecular Aspects of Seed Longevity. Plant Cell Physiol. 57(4):660-74. Cerca con Google

Sato T, Maekawa S, Yasuda S, Sonoda Y, Katoh E, Ichikawa T, Nakazawa M, Seki M, Shinozaki K, Matsui M, Goto DB, Ikeda A, Yamaguchi J. (2009) CNI1/ATL31, a RING-type ubiquitin ligase that functions in the carbon/nitrogen response for growth phase transition in Arabidopsis seedlings. Plant J. 60(5):852-64. Cerca con Google

Scialdone A, Howard M. (2015) How plants manage food reserves at night: quantitative models and open questions. Front Plant Sci. 31;6:204. Cerca con Google

Sun X, Feng P, Xu X, Guo H, Ma J, Chi W, Lin R, Lu C, Zhang L. (2011) A chloroplast envelope-bound PHD transcription factor mediates chloroplast signals to the nucleus. Nat Commun. 20;2:477. Cerca con Google

Susek RE, Ausubel FM, Chory J. (1993) Signal transduction mutants of Arabidopsis uncouple nuclear CAB and RBCS gene expression from chloroplast development. Cell. 10;74(5):787-99. Cerca con Google

Weitbrecht K, Müller K, Leubner-Metzger G. (2011) First off the mark: early seed germination. J Exp Bot. 62(10):3289-309. Cerca con Google

Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ. (2007) An "Electronic Fluorescent Pictograph" browser for exploring and analyzing large-scale biological data sets. PLoS One. 8;2(8) Cerca con Google

Woodson JD, Chory J. (2008) Coordination of gene expression between organellar and nuclear genomes. Nat Rev Genet. 9(5):383-95. Cerca con Google

Van Dingenen J, Blomme J, Gonzalez N, Inzé D (2016) Plants grow with a little help from their organelle friends. J Exp Bot. 67(22):6267-6281. Cerca con Google

Vanlerberghe GC. (2013) Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int J Mol Sci. 14(4):6805-47. Cerca con Google

Verma, P., Kaur, H., Petla, B. P., Rao, V., Saxena, S. C. and Majee, M. (2013). PROTEIN L-ISOASPARTYL METHYLTRANSFERASE2 is differentially expressed in chickpea and enhances seed vigor and longevity by reducing abnormal isoaspartyl accumulation predominantly in seed nuclear proteins. Plant Physiol 161(3): 1141-1157. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record