Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Anzolini, Chiara (2018) Depth of formation of super-deep diamonds. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document - Published Version
Thesis not accessible until 16 January 2021 for intellectual property related reasons.
Visibile to: nobody

16Mb

Abstract (english)

Diamonds, and the mineral inclusions they trap during growth, are pristine samples from the mantle that reveal processes in the deep Earth, provided the depth of formation of an inclusion-diamond pair being known. The majority of diamonds are lithospheric, while the depth of origin of super-deep diamonds (SDDs), which represent only 6% of the total, is uncertain. SDDs are considered to be sub-lithospheric, with formation from 300 to 800 km depth, on the basis of the inclusions trapped within them, which are believed to be the products of retrograde transformation from lower-mantle or transition-zone precursors.
This Ph.D. project aims to obtain the real depth of formation of SDDs by studying the most common mineral phases enclosed within them by non-destructive methods. We have studied about 40 diamonds with such inclusion phases as CaSiO3-walstromite or ferropericlase using in-house single-crystal X-ray diffraction and micro-Raman spectroscopy as well as field emission gun-scanning electron microscopy, synchrotron X-ray tomographic microscopy and synchrotron Mössbauer source at outside Institutions. In addition, laser-heating diamond-anvil cell experiments were performed on a synthetic Ti-free jeffbenite to determine if the absence of Ti extends the stability field of such mineral compared to previous studies. Finally, elastic geobarometry has been completed both on ferropericlase and CaSiO3- walstromite, in this last case together with thermodynamic and first-principles calculations.
One of our principal results suggests that CaSiO3-walstromite may be considered a sub-lithospheric mineral, but retrograde transformation from a CaSiO3-perovskite precursor is only possible if the diamond around the inclusion expands in volume by ~30%. Moreover, high-pressure and high-temperature experiments indicate that Ti-free jeffbenite could be directly incorporated into diamond in the transition zone or uppermost lower mantle and therefore this mineral may represent a high-pressure marker to detect SDDs. Finally, the observation of magnesioferrite exsolutions within ferropericlase, combined with elastic geobarometry results, strengthen the hypothesis that single ferropericlase inclusions might not be reliable markers for a diamond lower-mantle provenance.

Abstract (italian)

I diamanti e le inclusioni minerali da essi intrappolate durante l’accrescimento sono campioni inalterati provenienti dal mantello terreste che possono fornire importanti informazioni sull’interno della Terra, a patto di conoscerne la reale profondità di formazione. La maggior parte dei diamanti sono litosferici, mentre la profondità di formazione dei diamanti super-profondi (DSS), che rappresentano solo il 6% del totale, è ancora incerta. Le inclusioni in essi contenute sono ritenute essere i prodotti di trasformazione retrograda da precursori stabili nel mantello inferiore o nella zona di transizione e, sulla base di ciò, si pensa che i DSS si formino in condizioni sub-litosferiche, tra 300 e 800 km di profondità.
L’obiettivo di questa tesi è ottenere la reale profondità di formazione dei DSS tramite lo studio non distruttivo delle più comuni inclusioni in essi racchiuse. Abbiamo studiato circa 40 diamanti contenenti CaSiO3-walstromite o ferropericlasio utilizzando la diffrazione a raggi X a cristallo singolo, la spettroscopia micro-Raman, la microscopia elettronica a scansione con sorgente ad emissione di campo, la tomografia a raggi X in luce di sincrotrone e la spettroscopia Mössbauer in luce di sincrotrone. In più, sono stati eseguiti degli esperimenti in cella a incudine di diamante mediante riscaldamento laser sulla jeffbenite sintetica allo scopo di verificare se l’assenza di Ti estende il suo campo di stabilità rispetto a studi precedenti. Infine, la geobarometria elastica è stata applicata sia sul ferropericlasio che sulla CaSiO3-walstromite, in quest’ultimo caso combinata con calcoli termodinamici e ab initio.
Uno dei principali risultati suggerisce che la CaSiO3-walstromite sia sub-litosferica, ma che una trasformazione retrograda dalla CaSiO3-perovskite sia possibile solo se il diamante si espande del ~30%. Inoltre, gli esperimenti in alta pressione e temperatura indicano che la jeffbenite povera di Ti sia stabile nella zona di transizione o all’inizio del mantello inferiore, pertanto può essere considerata una fase indicatrice per i DSS. Infine, la presenza di essoluzioni di magnesioferrite nelle inclusioni di ferropericlasio, insieme coi risultati della geobarometria elastica, suggeriscono che tali inclusioni non possano, da sole, rappresentare un’origine dei diamanti nel mantello inferiore.

EPrint type:Ph.D. thesis
Tutor:Nestola, Fabrizio
Supervisor:Harris, Jeffrey W.
Ph.D. course:Ciclo 30 > Corsi 30 > SCIENZE DELLA TERRA
Data di deposito della tesi:15 January 2018
Anno di Pubblicazione:15 January 2018
Key Words:Diamond, inclusion, sub-lithospheric mantle, CaSiO3-walstromite, jeffbenite, ferropericlase, elastic geobarometry, Raman spectroscopy, X-ray diffraction, ab initio methods
Settori scientifico-disciplinari MIUR:Area 04 - Scienze della terra > GEO/06 Mineralogia
Struttura di riferimento:Dipartimenti > Dipartimento di Geoscienze
Codice ID:10953
Depositato il:08 Nov 2018 10:42
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Abràmoff, M.D., Magalhães, P.J. and Ram, S.J. (2004) Image processing with ImageJ. Biophotonics International, 7, 36-42 Cerca con Google

Akaogi, M. (2007) Phase transitions of minerals in the transition zone and upper part of the lower mantle. Geological Society of America Special Papers, 1-13 Cerca con Google

Andrault, D. and Fiquet, G. (2001) Synchrotron radiation and laser heating in a diamond anvil cell. Review of Scientific Instruments, 2, 1283-1288 Cerca con Google

Andreazza, P., Kaminsky, F.V., Sablukov, S.M., Belousova, E.A., Tremblay, M. and Griffin, W.L. (2008) Kimberlitic sources of super-deep diamonds in the Juina area, Mato Grosso State, Brazil. In 9th international Kimberlite conference, Frankfurt Cerca con Google

Angel, R.J., Downs, R.T. and Finger, L.W. (2000) High-temperature–high-pressure diffractometry. Reviews in mineralogy and geochemistry, 1, 559-597 Cerca con Google

Angel, R.J., Mazzucchelli, M.L., Alvaro, M. and Nestola, F. (2017) EosFit-Pinc: A simple GUI for host-inclusion elastic thermobarometry. American Mineralogist, 1957–1960 Cerca con Google

Angel, R.J., Alvaro, M., Nestola, F. and Mazzucchelli, M.L. (2015a) Diamond thermoelastic properties and implications for determining the pressure of formation of diamond-inclusion systems. Russian Geology and Geophysics, 1-2, 211-220 Cerca con Google

Angel, R.J., Nimis, P., Mazzucchelli, M.L., Alvaro, M. and Nestola, F. (2015b) How large are departures from lithostatic pressure? Constraints from host–inclusion elasticity. Journal of Metamorphic Geology, 8, 801-813 Cerca con Google

Angel, R.J., Alvaro, M. and Gonzalez-Platas, J. (2014a) EosFit7c and a Fortran module (library) for equation of state calculations. Zeitschrift für Kristallographie-Crystalline Materials, 5, 405-419 Cerca con Google

Angel, R.J., Milani, S., Alvaro, M. and Nestola, F. (2016) High-quality structures at high pressure? Insights from inclusions in diamonds. Zeitschrift fr Kristallographie-Crystalline Materials, 8, 467-473 Cerca con Google

Angel, R.J., Mazzucchelli, M.L., Alvaro, M., Nimis, P. and Nestola, F. (2014b) Geobarometry from host-inclusion systems: The role of elastic relaxation. American Mineralogist, 10, 2146-2149 Cerca con Google

Anzolini, C., Angel, R.J., Merlini, M., Derzsi, M., Tokár, K., Milani, S., Krebs, M.Y., Brenker, F.E., Nestola, F. and Harris, J.W. (2016) Depth of formation of CaSiO 3-walstromite included in super-deep diamonds. Lithos, 138-147 Cerca con Google

Anzolini, C., Nestola, F., Burnham, A.D., Peruzzo, L., Tauro, L., Alvaro, M., Walter, M.J., Gunter, M. and Kohn, S.C. (2015) Diffraction and spectroscopic characterization of jeffbenite: a high-pressure marker in diamonds. Periodico di Mineralogia, ECMS, 21-22 Cerca con Google

Araujo, D.P., Gaspar, J.C., Bulanova, G.P., Smith, C.B., Kohn, S.C., Walter, M.J. and Hauri, E.H. (2013) Juina diamonds from kimberlites and alluvials: a comparison of morphology, spectral characteristics and carbon isotope composition. In 10th International Kimberlite Conference, p. 255-269. Springer, Bangalore Cerca con Google

Armstrong, L.S., Walter, M.J., Tuff, J.R., Lord, O.T., Lennie, A.R., Kleppe, A.K. and Clark, S.M. (2012) Perovskite phase relations in the system CaO–MgO–TiO2–SiO2 and implications for deep mantle lithologies. Journal of Petrology, 3, 611-635 Cerca con Google

Armstrong, L.S. and Walter, M.J. (2012) Tetragonal almandine pyrope phase (TAPP): retrograde Mg-perovskite from subducted oceanic crust?. European Journal of Mineralogy, 4, 587-597 Cerca con Google

Artioli, G., Angelini, I. and Polla, A. (2008) Crystals and phase transitions in protohistoric glass materials. Phase Transitions, 2-3, 233-252 Cerca con Google

Barkley, M.C., Downs, R.T. and Yang, H. (2011) Structure of walstromite, BaCa2Si3O9, and its relationship to CaSiO3-walstromite and wollastonite-II. American Mineralogist, 5-6, 797-801 Cerca con Google

Barron, L.M., Mernagh, T.P. and Barron, B.J. (2008) Using strain birefringence in diamond to estimate the remnant pressure on an inclusion. Australian Journal of Earth Sciences, 2, 159-165 Cerca con Google

Birch, F. (1947) Finite elastic strain of cubic crystals. Physical Review, 11, 809 Cerca con Google

Blöchl, P.E. (1994) Projector augmented-wave method. Physical Review B, 24, 17953 Cerca con Google

Brenker, F.E., Stachel, T. and Harris, J.W. (2002) Exhumation of lower mantle inclusions in diamond: ATEM investigation of retrograde phase transitions, reactions and exsolution. Earth and Planetary Science Letters, 1, 1-9 Cerca con Google

Brenker, F.E., Vollmer, C., Vincze, L., Vekemans, B., Szymanski, A., Janssens, K., Szaloki, I., Nasdala, L., Joswig, W. and Kaminsky, F. (2007) Carbonates from the lower part of transition zone or even the lower mantle. Earth and Planetary Science Letters, 1, 1-9 Cerca con Google

Brenker, F.E., Vincze, L., Vekemans, B., Nasdala, L., Stachel, T., Vollmer, C., Kersten, M., Somogyi, A., Adams, F. and Joswig, W. (2005) Detection of a Ca-rich lithology in the Earth's deep (> 300 km) convecting mantle. Earth and Planetary Science Letters, 3, 579-587 Cerca con Google

Brey, G.P., Bulatov, V., Girnis, A., Harris, J.W. and Stachel, T. (2004) Ferropericlase—a lower mantle phase in the upper mantle. Lithos, 1, 655-663 Cerca con Google

Bulanova, G.P., Walter, M.J., Smith, C.B., Kohn, S.C., Armstrong, L.S., Blundy, J. and Gobbo, L. (2010) Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: subducted protoliths, carbonated melts and primary kimberlite magmatism. Contributions to Mineralogy and Petrology, 4, 489-510 Cerca con Google

Burnham, A.D., Bulanova, G.P., Smith, C.B., Whitehead, S.C., Kohn, S.C., Gobbo, L. and Walter, M.J. (2016) Diamonds from the Machado River alluvial deposit, Rondônia, Brazil, derived from both lithospheric and sublithospheric mantle. Lithos, 199-213 Cerca con Google

Cayzer, N.J., Odake, S., Harte, B. and Kagi, H. (2008) Plastic deformation of lower mantle diamonds by inclusion phase transformations. European Journal of Mineralogy, 3, 333-339 Cerca con Google

Chinn, J.L., Milledge, H.J. and Gurney, J.J. (1998) Diamonds and inclusions from the Jagersfontein kimberlite. In 7th International Kimberlite Conference, p. 156-157, Cape Town Cerca con Google

Civalleri, B., D'Arco, P., Orlando, R., Saunders, V.R. and Dovesi, R. (2001) Hartree–Fock geometry optimisation of periodic systems with the CRYSTAL code. Chemical Physics Letters, 1, 131-138 Cerca con Google

Day, H.W. (2012) A revised diamond-graphite transition curve. American Mineralogist, 1, 52-62 Cerca con Google

Dovesi, R., Saunders, V.R., Roetti, C., Orlando, R., Zicovich-Wilson, C.M., Pascale, F., Civalleri, B., Doll, K., Harrison, N.M. and Bush, I.J. CRYSTAL14 User’s Manual; University of Torino: Torino, 2014. There is no corresponding record for this reference Cerca con Google

Eshelby, J.D. (1959) The elastic field outside an ellipsoidal inclusion. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, p. 561-569. The Royal Society Cerca con Google

Eshelby, J.D. (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, p. 376-396. The Royal Society Cerca con Google

Essene, E. (1974) High-pressure transformations in CaSiO 3. Contributions to Mineralogy and Petrology, 3, 247-250 Cerca con Google

Fedortchouk, Y., Manghnani, M.H., Hushur, A., Shiryaev, A. and Nestola, F. (2011) An atomic force microscopy study of diamond dissolution features: The effect of H2O and CO2 in the fluid on diamond morphology. American Mineralogist, 11-12, 1768-1775 Cerca con Google

Fei, Y. and Bertka, C.M. (1999) Phase transitions in the Earth’s mantle and mantle mineralogy. Mantle petrology: field observations and high pressure experimentation, 189-207 Cerca con Google

Fei, Y., Wang, Y. and Finger, L.W. (1996) Maximum solubility of FeO in (Mg, Fe) SiO3‐perovskite as a function of temperature at 26 GPa: Implication for FeO content in the lower mantle. Journal of Geophysical Research: Solid Earth, B5, 11525-11530 Cerca con Google

Finger, L.W. and Conrad, P.G. (2000) The crystal structure of “tetragonal almandine-pyrope phase”(TAPP): A reexamination. American Mineralogist, 11-12, 1804-1807 Cerca con Google

Frost, D.J. (2008) The upper mantle and transition zone. Elements, 3, 171-176 Cerca con Google

Funamori, N., Jeanloz, R., Miyajima, N. and Fujino, K. (2000) Mineral assemblages of basalt in the lower mantle. Journal of Geophysical Research: Solid Earth, B11, 26037-26043 Cerca con Google

Gasparik, T., Wolf, K. and Smith, C.M. (1994) Experimental determination of phase relations in the CaSiO 3 system from 8 to 15 GPa. American Mineralogist, 11-12, 1219-1222 Cerca con Google

Gibson, S.A., Thompson, R.N., Leonardos, O.H., Dickin, A.P. and Mitchell, J.G. (1995) The Late Cretaceous impact of the Trindade mantle plume: evidence from large-volume, mafic, potassic magmatism in SE Brazil. Journal of Petrology, 1, 189-229 Cerca con Google

Guarino, V., Wu, F., Lustrino, M., Melluso, L., Brotzu, P., de Barros Gomes, C., Ruberti, E., Tassinari, C.C.G. and Svisero, D.P. (2013) U–Pb ages, Sr–Nd-isotope geochemistry, and petrogenesis of kimberlites, kamafugites and phlogopite-picrites of the Alto Paranaíba Igneous Province, Brazil. Chemical Geology, 65-82 Cerca con Google

Gurney, J.J., Helmstaedt, H.H., Richardson, S.H. and Shirey, S.B. (2010) Diamonds through time. Economic Geology, 3, 689-712 Cerca con Google

Hanfland, M., Syassen, K., Fahy, S., Louie, S.G. and Cohen, M.L. (1986) The first-order Raman mode of diamond under pressure. Physica B C, 516-519 Cerca con Google

Harlow, G.E. and Davies, R.M. (2005) Diamonds. Elements, 2, 67-70 Cerca con Google

Harris, J.W., Milledge, H.J., Barron, T.H.K. and Munn, R.W. (1970) Thermal expansion of garnets included in diamond. Journal of Geophysical Research, 5775-5792 Cerca con Google

Harris, J., Hutchison, M., Hursthouse, M., Light, M. and Harte, B. (1997) A new tetragonal silicate mineral occurring as inclusions in lower-mantle diamonds. Nature, 6632, 486-488 Cerca con Google

Harte, B. (2010) Diamond formation in the deep mantle: the record of mineral inclusions and their distribution in relation to mantle dehydration zones. Mineralogical Magazine, 2, 189-215 Cerca con Google

Harte, B. and Harris, J.W. (1994) Lower mantle mineral associations preserved in diamonds. Mineralogical Magazine, AK, 384-385 Cerca con Google

Harte, B., Harris, J.W., Hutchison, M.T., Watt, G.R. and Wilding, M.C. (1999) Lower mantle mineral associations in diamonds from Sao Luiz, Brazil. Mantle petrology: Field observations and high-pressure experimentation: A tribute to Francis R.(Joe) Boyd, 125-153 Cerca con Google

Harte, B. and Hudson, N.F. (2013) Mineral associations in diamonds from the lowermost upper mantle and uppermost lower mantle. In 10th International Kimberlite Conference, p. 235-253. Springer, Bangalore Cerca con Google

Hayman, P.C., Kopylova, M.G. and Kaminsky, F.V. (2005) Lower mantle diamonds from Rio Soriso (Juina area, Mato Grosso, Brazil). Contributions to Mineralogy and Petrology, 4, 430-445 Cerca con Google

Heaman, L., Teixeira, N.A., Gobbo, L. and Gaspar, J.C. (1998) U-Pb mantle zircon ages for kimberlites from the Juina and Paranatinga provinces, Brazil. In 7th International Kimberlite Conference, p. 322-324, Cape Town Cerca con Google

Heinz, D.L. (1990) Thermal pressure in the laser‐heated diamond anvil cell. Geophysical Research Letters, 8, 1161-1164 Cerca con Google

Hirose, K., Fei, Y., Ma, Y. and Mao, H. (1999) The fate of subducted basaltic crust in the Earth's lower mantle. Nature, 6714, 53-56 Cerca con Google

Holland, T. and Powell, R. (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology, 3, 333-383 Cerca con Google

Howell, D., Wood, I.G., Dobson, D.P., Jones, A.P., Nasdala, L. and Harris, J.W. (2010) Quantifying strain birefringence halos around inclusions in diamond. Contributions to mineralogy and petrology, 5, 705-717 Cerca con Google

Howell, D., Wood, I.G., Nestola, F., Nimis, P. and Nasdala, L. (2012) Inclusions under remnant pressure in diamond: a multi-technique approach. European Journal of Mineralogy, 4, 563-573 Cerca con Google

Hutchison, M.T., Hursthouse, M.B. and Light, M.E. (2001) Mineral inclusions in diamonds: associations and chemical distinctions around the 670-km discontinuity. Contributions to Mineralogy and Petrology, 1, 119-126 Cerca con Google

Irifune, T. and Ringwood, A.E. (1993) Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle. Earth and Planetary Science Letters, 1-2, 101-110 Cerca con Google

Irifune, T. and Ringwood, A.E. (1987) Phase transformations in a harzburgite composition to 26 GPa: implications for dynamical behaviour of the subducting slab. Earth and Planetary Science Letters, 2-4, 365-376 Cerca con Google

Irifune, T. (1994) Absence of an aluminous phase in the upper part of the Earth's lower mantle. Nature, 6485, 131-133 Cerca con Google

Irifune, T., Shinmei, T., McCammon, C.A., Miyajima, N., Rubie, D.C. and Frost, D.J. (2010) Iron partitioning and density changes of pyrolite in Earth’s lower mantle. Science, 5962, 193-195 Cerca con Google

Izraeli, E.S., Harris, J.W. and Navon, O. (1999) Raman barometry of diamond formation. Earth and Planetary Science Letters, 3, 351-360 Cerca con Google

Joswig, W., Paulus, E.F., Winkler, B. and Milman, V. (2003) The crystal structure of CaSiO3-walstromite, a special isomorph of wollastonite-II. Zeitschrift für Kristallographie/International journal for structural, physical, and chemical aspects of crystalline materials, 12/2003, 811-818 Cerca con Google

Joswig, W., Stachel, T., Harris, J.W., Baur, W.H. and Brey, G.P. (1999) New Ca-silicate inclusions in diamonds—tracers from the lower mantle. Earth and Planetary Science Letters, 1, 1-6 Cerca con Google

Kaminsky, F., Zakharchenko, O., Davies, R., Griffin, W., Khachatryan-Blinova, G. and Shiryaev, A. (2001) Superdeep diamonds from the Juina area, Mato Grosso State, Brazil. Contributions to Mineralogy and Petrology, 6, 734-753 Cerca con Google

Kaminsky, F. (2012) Mineralogy of the lower mantle: A review of ‘super-deep’ mineral inclusions in diamond. Earth-Science Reviews, 1, 127-147 Cerca con Google

Kaminsky, F.V., Ryabchikov, I.D., McCammon, C.A., Longo, M., Abakumov, A.M., Turner, S. and Heidari, H. (2015) Oxidation potential in the Earth's lower mantle as recorded by ferropericlase inclusions in diamond. Earth and Planetary Science Letters, 49-56 Cerca con Google

Kanzaki, M., Stebbins, J.F. and Xue, X. (1991) Characterization of quenched high pressure phases in CaSiO3 system by XRD and 29Si NMR. Geophysical Research Letters, 3, 463-466 Cerca con Google

Katsura, T. and Ito, E. (1989) The system Mg2SiO4‐Fe2SiO4 at high pressures and temperatures: Precise determination of stabilities of olivine, modified spinel, and spinel. Journal of Geophysical Research: Solid Earth, B11, 15663-15670 Cerca con Google

Katsura, T., Yamada, H., Nishikawa, O., Song, M., Kubo, A., Shinmei, T., Yokoshi, S., Aizawa, Y., Yoshino, T. and Walter, M.J. (2004) Olivine‐wadsleyite transition in the system (Mg, Fe) 2SiO4. Journal of Geophysical Research: Solid Earth, B2 Cerca con Google

Katsura, T., Yamada, H., Shinmei, T., Kubo, A., Ono, S., Kanzaki, M., Yoneda, A., Walter, M.J., Ito, E. and Urakawa, S. (2003) Post-spinel transition in Mg 2 SiO 4 determined by high P–T in situ X-ray diffractometry. Physics of the Earth and Planetary Interiors, 1, 11-24 Cerca con Google

Kojitani, H., Navrotsky, A. and Akaogi, M. (2001) Calorimetric study of perovskite solid solutions in the CaSiO3–CaGeO3 system. Physics and Chemistry of Minerals, 6, 413-420 Cerca con Google

Kresse, G. and Joubert, D. (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 3, 1758 Cerca con Google

Kresse, G. and Furthmüller, J. (1996a) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1, 15-50 Cerca con Google

Kresse, G. and Furthmüller, J. (1996b) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 16, 11169 Cerca con Google

Larson, A.C. and Von Dreele, R.B. (1994) Gsas. General Structure Analysis System.LANSCE, MS-H805, Los Alamos, New Mexico Cerca con Google

Lee, C., Yang, W. and Parr, R.G. (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical review B, 2, 785 Cerca con Google

Liu, L. (2002) An alternative interpretation of lower mantle mineral associations in diamonds. Contributions to Mineralogy and Petrology, 1, 16-21 Cerca con Google

Lord, O.T., Wann, E.T., Hunt, S.A., Walker, A.M., Santangeli, J., Walter, M.J., Dobson, D.P., Wood, I.G., Vočadlo, L. and Morard, G. (2014) The NiSi melting curve to 70GPa. Physics of the Earth and Planetary Interiors, 13-23 Cerca con Google

Mao, H.K., Xu, J. and Bell, P.M. (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi‐hydrostatic conditions. Journal of Geophysical Research: Solid Earth, B5, 4673-4676 Cerca con Google

Marone, F. and Stampanoni, M. (2012) Regridding reconstruction algorithm for real-time tomographic imaging. Journal of synchrotron radiation, 6, 1029-1037 Cerca con Google

Maschio, L., Kirtman, B., Orlando, R. and Rèrat, M. (2012) Ab initio analytical infrared intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method. The Journal of chemical physics, 20, 204113 Cerca con Google

Maschio, L., Kirtman, B., Rérat, M., Orlando, R. and Dovesi, R. (2013) Ab initio analytical Raman intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method in an atomic orbital basis. I. Theory. The Journal of chemical physics, 16, 164101 Cerca con Google

Mazzucchelli, M.L., Burnley, P., Angel, R.J., Chiara Domeneghetti, M., Nestola, F. and Alvaro, M. (2017) Elastic geobarometry: uncertainties arising from the geometry of the host-inclusion system. In EGU General Assembly Conference Abstracts, p. 2060 Cerca con Google

Mazzucchelli, M.L., Angel, R.J., Rustioni, G., Milani, S., Nimis, P., Domeneghetti, M.C., Marone, F., Harris, J.W., Nestola, F. and Alvaro, M. (2016) Elastic geobarometry and the role of brittle failure on pressure release. In EGU General Assembly Conference Abstracts, p. 13569 Cerca con Google

McCammon, C. (2001) Geophysics. Deep diamond mysteries. Science (New York, N.Y.), 5531, 813-814 Cerca con Google

McCammon, C., Hutchison, M. and Harris, J. (1997) Ferric iron content of mineral inclusions in diamonds from Sao Luiz: a view into the lower mantle. Science, 5337, 434-436 Cerca con Google

Merlini, M. and Hanfland, M. (2013) Single-crystal diffraction at megabar conditions by synchrotron radiation. High Pressure Research, 3, 511-522 Cerca con Google

Milani, S., Nestola, F., Angel, R.J., Nimis, P. and Harris, J.W. (2016) Crystallographic orientations of olivine inclusions in diamonds. Lithos, 312-316 Cerca con Google

Monkhorst, H.J. and Pack, J.D. (1976) Special points for Brillouin-zone integrations. Physical review B, 12, 5188 Cerca con Google

Moore, R.O. and Gurney, J.J. (1985) Pyroxene solid solution in garnets included in diamond. Nature, 6046, 553-555 Cerca con Google

Nasdala, L., Brenker, F.E., Glinnemann, J., Hofmeister, W., Gasparik, T., Harris, J.W., Stachel, T. and Reese, I. (2003) Spectroscopic 2D-tomography Residual pressure and strain around mineral inclusions in diamonds. European journal of mineralogy, 6, 931-935 Cerca con Google

Nestola, F., Nimis, P., Angel, R.J., Milani, S., Bruno, M., Prencipe, M. and Harris, J.W. (2014) Olivine with diamond-imposed morphology included in diamonds. Syngenesis or protogenesis?. International Geology Review, 13, 1658-1667 Cerca con Google

Nestola, F. (2017) Inclusions in super-deep diamonds: windows on the very deep Earth. Rendiconti Lincei, 1-10 Cerca con Google

Nestola, F., Jung, H. and Taylor, L.A. (2017) Mineral inclusions in diamonds may be synchronous but not syngenetic. Nature communications, 14168 Cerca con Google

Nestola, F., Nimis, P., Ziberna, L., Longo, M., Marzoli, A., Harris, J.W., Manghnani, M.H. and Fedortchouk, Y. (2011) First crystal-structure determination of olivine in diamond: Composition and implications for provenance in the Earth's mantle. Earth and Planetary Science Letters, 1, 249-255 Cerca con Google

Nestola, F., Burnham, A.D., Peruzzo, L., Tauro, L., Alvaro, M., Walter, M.J., Gunter, M., Anzolini, C. and Kohn, S.C. (2016) Tetragonal Almandine-Pyrope Phase, TAPP: finally a name for it, the new mineral jeffbenite. Mineralogical Magazine, 7, 1219-1232 Cerca con Google

Nestola, F., Merli, M., Nimis, P., Parisatto, M., Kopylova, M., De Stefano, A., Longo, M., Ziberna, L. and Manghnani, M. (2012) In situ analysis of garnet inclusion in diamond using single-crystal X-ray diffraction and X-ray micro-tomography. European Journal of Mineralogy, 4, 599-606 Cerca con Google

Nimis, P., Alvaro, M., Nestola, F., Angel, R.J., Marquardt, K., Rustioni, G., Harris, J.W. and Marone, F. (2016) First evidence of hydrous silicic fluid films around solid inclusions in gem-quality diamonds. Lithos, 384-389 Cerca con Google

Novella, D., Bolfan-Casanova, N., Nestola, F. and Harris, J.W. (2015) H 2 O in olivine and garnet inclusions still trapped in diamonds from the Siberian craton: Implications for the water content of cratonic lithosphere peridotites. Lithos, 180-183 Cerca con Google

Nye, J.F. (1985) Physical properties of crystals: their representation by tensors and matrices Oxford university press Cerca con Google

Ono, S. (1999) High temperature stability limit of phase egg, AlSiO 3 (OH). Contributions to Mineralogy and Petrology, 1, 83-89 Cerca con Google

Palot, M., Jacobsen, S.D., Townsend, J.P., Nestola, F., Marquardt, K., Miyajima, N., Harris, J.W., Stachel, T., McCammon, C.A. and Pearson, D.G. (2016) Evidence for H₂O-bearing fluids in the lower mantle from diamond inclusion, 237-243 Cerca con Google

Pascale, F., Zicovich‐Wilson, C.M., Lopez Gejo, F., Civalleri, B., Orlando, R. and Dovesi, R. (2004) The calculation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code. Journal of computational chemistry, 6, 888-897 Cerca con Google

Pearson, D.G., Brenker, F.E., Nestola, F., McNeill, J., Nasdala, L., Hutchison, M.T., Matveev, S., Mather, K., Silversmit, G. and Schmitz, S. (2014) Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature, 7491, 221-224 Cerca con Google

Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized gradient approximation made simple. Physical Review Letters, 18, 3865 Cerca con Google

Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X. and Burke, K. (2008) Restoring the density-gradient expansion for exchange in solids and surfaces. Physical Review Letters, 13, 136406 Cerca con Google

Perrillat, J., Ricolleau, A., Daniel, I., Fiquet, G., Mezouar, M., Guignot, N. and Cardon, H. (2006) Phase transformations of subducted basaltic crust in the upmost lower mantle. Physics of the Earth and Planetary Interiors, 1, 139-149 Cerca con Google

Petříček, V., Dušek, M. and Palatinus, L. (2014) Crystallographic computing system JANA2006: general features. Zeitschrift für Kristallographie-Crystalline Materials, 5, 345-352 Cerca con Google

Prescher, C. and Prakapenka, V.B. (2015) DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Pressure Research, 3, 223-230 Cerca con Google

Rebuffi, L., Plaisier, J.R., Abdellatief, M., Lausi, A. and Scardi, P. (2014) MCX: a Synchrotron Radiation Beamline for X‐ray Diffraction Line Profile Analysis. Zeitschrift für anorganische und allgemeine Chemie, 15, 3100-3106 Cerca con Google

Reuss, A. (1929) Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 1, 49-58 Cerca con Google

Riccomini, C., Velzquez, V.F. and Gomes, C.B. (2005) Tectonic controls of the Mesozoic and Cenozoic alkaline magmatism in central-southeastern Brazilian Platform. Mesozoic to Cenozoic alkaline magmatism in the Brazilian Platform, 31-56 Cerca con Google

Ringwood, A.E. (1991) Phase transformations and their bearing on the constitution and dynamics of the mantle. Geochimica et Cosmochimica Acta, 8, 2083-2110 Cerca con Google

Sano, A., Ohtani, E., Kubo, T. and Funakoshi, K. (2004) In situ X-ray observation of decomposition of hydrous aluminum silicate AlSiO 3 OH and aluminum oxide hydroxide d-AlOOH at high pressure and temperature. Journal of Physics and Chemistry of Solids, 8, 1547-1554 Cerca con Google

Shirey, S.B., Cartigny, P., Frost, D.J., Keshav, S., Nestola, F., Nimis, P., Pearson, D.G., Sobolev, N.V. and Walter, M.J. (2013) Diamonds and the geology of mantle carbon. Rev Mineral Geochem, 1, 355-421 Cerca con Google

Sinmyo, R. and Hirose, K. (2010) The Soret diffusion in laser-heated diamond-anvil cell. Physics of the Earth and Planetary Interiors, 3, 172-178 Cerca con Google

Smith, E.M., Shirey, S.B., Nestola, F., Bullock, E.S., Wang, J., Richardson, S.H. and Wang, W. (2016) Large gem diamonds from metallic liquid in Earth's deep mantle. Science (New York, N.Y.), 6318, 1403-1405 Cerca con Google

Sobolev, N.V., Fursenko, B.A., Goryainov, S.V., Shu, J., Hemley, R.J., Mao, A. and Boyd, F.R. (2000) Fossilized high pressure from the Earth's deep interior: the coesite-in-diamond barometer. Proceedings of the National Academy of Sciences of the United States of America, 22, 11875-11879 Cerca con Google

Stachel, T. and Harris, J.W. (2008) The origin of cratonic diamonds—constraints from mineral inclusions. Ore Geology Reviews, 1, 5-32 Cerca con Google

Stachel, T., Brey, G.P. and Harris, J.W. (2005) Inclusions in sublithospheric diamonds: glimpses of deep Earth. Elements, 2, 73-78 Cerca con Google

Stachel, T., Harris, J.W., Brey, G.P. and Joswig, W. (2000) Kankan diamonds (Guinea) II: lower mantle inclusion parageneses. Contributions to Mineralogy and Petrology, 1, 16-27 Cerca con Google

Stixrude, L. and Lithgow‐Bertelloni, C. (2005) Thermodynamics of mantle minerals–I. Physical properties. Geophysical Journal International, 2, 610-632 Cerca con Google

Tappert, R., Stachel, T., Harris, J.W., Muehlenbachs, K., Ludwig, T. and Brey, G.P. (2005) Diamonds from Jagersfontein (South Africa): messengers from the sublithospheric mantle. Contributions to Mineralogy and Petrology, 5, 505-522 Cerca con Google

Tassinari, C.C. and Macambira, M.J. (1999) Geochronological provinces of the Amazonian Craton. Episodes-Newsmagazine of the International Union of Geological Sciences, 3, 174-182 Cerca con Google

Thomson, A.R., Kohn, S.C., Bulanova, G.P., Smith, C.B., Araujo, D. and Walter, M.J. (2016a) Trace element composition of silicate inclusions in sub-lithospheric diamonds from the Juina-5 kimberlite: Evidence for diamond growth from slab melts. Lithos, 108-124 Cerca con Google

Thomson, A.R., Kohn, S.C., Bulanova, G.P., Smith, C.B., Araujo, D. and Walter, M.J. (2014) Origin of sub-lithospheric diamonds from the Juina-5 kimberlite (Brazil): constraints from carbon isotopes and inclusion compositions. Contributions to Mineralogy and Petrology, 6, 1-29 Cerca con Google

Thomson, A.R., Walter, M.J., Kohn, S.C. and Brooker, R.A. (2016b) Slab melting as a barrier to deep carbon subduction. Nature, 7584, 76-79 Cerca con Google

Toby, B.H. (2001) EXPGUI, a graphical user interface for GSAS. Journal of applied crystallography, 2, 210-213 Cerca con Google

Tschauner, O., Ma, C., Beckett, J.R., Prescher, C., Prakapenka, V.B. and Rossman, G.R. (2014) Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite. Science, 6213, 1100-1102 Cerca con Google

Turcotte, D. and Schubert, G. (2014) Geodynamics, ed. 3rd Cambridge University Press Cerca con Google

Uenver-Thiele, L., Woodland, A.B., Boffa Ballaran, T., Miyajima, N. and Frost, D.J. (2017a) Phase relations of MgFe2O4 at conditions of the deep upper mantle and transition zone. American Mineralogist, 3, 632-642 Cerca con Google

Uenver-Thiele, L., Woodland, A.B., Boffa Ballaran, T., Miyajima, N. and Frost, D.J. (2017b) Phase relations of Fe-Mg spinels including new high-pressure post-spinel phases and implications for natural samples. American Mineralogist, 10, 2054-2064 Cerca con Google

Van der Molen, I. and Van Roermund, H. (1986) The pressure path of solid inclusions in minerals: the retention of coesite inclusions during uplift. Lithos, 3-4, 317-324 Cerca con Google

Voigt, W. (1928) Lehrbuch der Kristallphysik (mit Ausschluss der Kristalloptik), edited by BG Teubner and JW Edwards, Leipzig Berlin. Ann Arbor, Mich Cerca con Google

Walter, M.J., Bulanova, G.P., Armstrong, L.S., Keshav, S., Blundy, J.D., Gudfinnsson, G., Lord, O.T., Lennie, A.R., Clark, S.M. and Smith, C.B. (2008) Primary carbonatite melt from deeply subducted oceanic crust. Nature, 7204, 622-625 Cerca con Google

Walter, M.J. and Koga, K.T. (2004) The effects of chromatic dispersion on temperature measurement in the laser-heated diamond anvil cell. Physics of the Earth and Planetary Interiors, 541-558 Cerca con Google

Whitney, D.L. and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 1, 185-187 Cerca con Google

Wilding, M.C., Harte, B. and Harris, J.W. (1991) Evidence for a deep origin for Sao Luiz diamonds. In 5th International Kimberlite Conference, p. 456-458, Araxa Cerca con Google

Wirth, R., Dobrzhinetskaya, L., Harte, B., Schreiber, A. and Green, H.W. (2014) High-Fe (Mg, Fe) O inclusion in diamond apparently from the lowermost mantle. Earth and Planetary Science Letters, 365-375 Cerca con Google

Wood, B.J. (2000) Phase transformations and partitioning relations in peridotite under lower mantle conditions. Earth and Planetary Science Letters, 3, 341-354 Cerca con Google

Wu, Z. and Cohen, R.E. (2006) More accurate generalized gradient approximation for solids. Physical Review B, 23, 235116 Cerca con Google

Zedgenizov, D.A., Ragozin, A.L., Kalinina, V.V. and Kagi, H. (2016) The mineralogy of Ca-rich inclusions in sublithospheric diamonds. Geochemistry International, 10, 890-900 Cerca con Google

Zedgenizov, D.A., Kagi, H., Shatsky, V.S. and Ragozin, A.L. (2014) Local variations of carbon isotope composition in diamonds from São-Luis (Brazil): evidence for heterogenous carbon reservoir in sublithospheric mantle. Chemical Geology, 114-124 Cerca con Google

Zhang, J., Li, B., Utsumi, W. and Liebermann, R.C. (1996) In situ X-ray observations of the coesite-stishovite transition: reversed phase boundary and kinetics. Physics and Chemistry of Minerals, 1, 1-10 Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record