Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Pianezzola, Luisa (2018) RUNOFF GENERATION IN A FORESTED PRE-ALPINE CATCHMENT: HYPOTHESIS TESTING BY MEANS OF ISOTOPIC AND GEOCHEMICAL TRACERS. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF - Versione sottomessa
9Mb

Abstract (inglese)

Understanding of the complex runoff generation mechanisms is important for water management and to predict the effects of land use and climate change on streamflow. In particular, the mechanisms through which precipitation becomes streamflow and the spatio-temporal variability of the runoff components is still unclear. The integrated use of isotopic and geochemical tracers, combined with hydrometric data, has proven to be a useful method to investigate hydrological processes in small catchments. In this study, we used stable isotopes of water, major ions and electrical conductivity as tracers together with hydrometric data to i) compare the response of the water table and soil moisture to the streamflow response during rainfall-runoff events, ii) analyze the spatial and temporal variability in tracer signature (stable isotopes of water, EC and major ions) of different end members contributing to stream runoff, iii) assess how the main event characteristics (total rainfall amount, intensity and antecedent wetness conditions) affect the event water contribution to stream runoff, and iv) investigate how the use of different tracers affects the results of the two-component hydrograph separation.
The hydrometric and tracer data was analyzed for 15 rainfall-runoff events between September 2015 and October 2016 during different wetness conditions in a small catchment in the Italian pre-Alps. Continuous measurements for streamflow, precipitation, air temperature, shallow groundwater levels at six locations in different parts of the catchment (riparian, bottom of the hillslope, mid hillslope and upper hillslope), soil moisture at four locations along a riparian-hillslope transect were available for the study period. Samples for isotopic and geochemical analysis were taken from precipitation, stream, shallow groundwater, soil water at 5 locations (riparian at 10 cm and 20 cm depth; mid hillslope at 10 cm and 30 cm depth; upper hillslope at 30 cm depth). Electrical conductivity was measured directly in the field using a portable meter. Isotopic composition and ion concentrations were determined in the laboratory of Legnaro (Dip. TESAF, University of Padova) by laser absorption spectroscopy and ion-chromatography, respectively.
Mixing plot analysis shows that precipitation, near-surface riparian soil water and shallow groundwater are the main contributors to runoff. Two-component hydrograph separation showed that new water contributions increase with increasing rainfall amount and intensity and decrease with increasing antecedent wetness conditions. During events with high rainfall intensity with dry antecedent conditions, the new water fraction was high, especially in the initial phase of the event and near the streamflow peak, suggesting that streamflow is mainly generated by direct channel precipitation and saturated overland flow in the riparian zone. With increasing wetness conditions, pre-event water dominated runoff, suggesting the development of subsurface stormflow and an increasing contribution from groundwater pools located in different parts of the catchment. In the middle and at the end of large events in wet periods, the new water fraction in streamflow increased due to the expansion of the saturated area near the stream and flow through shallow soil layers. Differences in the event water fractions computed using isotopes, EC or major ions, suggest an ionic enrichment of rainfall due to the accumulation of ions in the ephemeral portion of the stream and the soil surface.

Abstract (italiano)

Negli ultimi decenni e’ aumentato sempre di piu’ l’interesse nel meglio comprendere i complessi processi idrologici. In particolare, i meccanismi attraverso cui la precipitazione controlla i processi di generazione di deflusso superficiale e la variabilita’ spaziale e temporale delle componenti di deflusso sono attualmente ancora poco chiari. L’uso integrato dei traccianti isotopici e geochimici, abbinato ai dati idrometrici, si sta dimostrando uno strumento efficace e sempre piu’ utilizzato per studiare i sistemi idrologici e i meccanismi di generazione di deflusso superficiale e sottosuperficiale. In questo studio, gli isotopi stabili dell’acqua, la conducibilita’ elettrica e gli ioni sono stati utilizzati come traccianti insieme ai dati idrometrici al fine di i) analizzare la risposta della falda e dell’umidita’ del suolo rispetto alla risposta del torrente durante gli eventi di afflusso-deflusso ii) analizzare la variabilita’ spaziale e temporale dei traccianti (isotopi stabili dell’acqua, EC e ioni) nelle diverse componenti di deflusso superficiale iii) valutare il controllo esercitato dalle principali caratteristiche dell’evento sui processi di generazione di deflusso superficiale e ii) verificare come l’uso di diversi traccianti influenza i risultati ottenuti dalla separazione dell’idrogramma a due componenti.
Per questo studio, sono stati analizzati i dati idrometrici e dei traccianti ricavati da 15 eventi di pioggia campionati durante diverse condizioni di umidita’ del suolo nel periodo che va da settembre 2015 ad ottobre 2016 in un piccolo bacino nelle prealpi italiane. Durante questo periodo sono stati misurati in continuo il livello del torrente, la precipitazione, la temperatura dell’aria, il livello della falda in 6 punti posti in diverse parti del bacino (zona riparia, zona di basso versante, versante) e l’umidita’ del suolo in 4 punti disposti lungo un transetto dal torrente al versante. Inoltre sono stati raccolti a scala di evento campioni di acqua per l’analisi isotopica e geochimica dalla pioggia, dal torrente, dalla falda e dal suolo in 5 punti a diverse profondita’ (nella zona riparia a 10 cm e 20 cm di profondita’; nella zona a meta’ versante a 10 cm e 30 cm di profondita’; nella parte alta del versante a 30 cm di profondita’). La conducibilita’ elettrica e’ stata misurata direttamente in campo utilizzando un conduttimetro. Le concentrazioni isotopiche e ioniche sono state misurate nel laboratorio di Legnaro (Dip. TESAF, Universita’ degli Studi di Padova) rispettivamente tramite spettroscopia laser e cromatografia ionica.
L’analisi EMMA rivela che la precipitazione, l’acqua di suolo nella zona riparia e la falda superficiale sono le principali componenti che contribuiscono all’evento di piena. La tecnica di separazione dell’idrogramma a due componenti rivela che il contributo di acqua nuova al torrente aumenta con l’aumentare della pioggia totale e dell’intensita’ di pioggia mentre diminuisce durante condizioni di umidita’ antecedente l’evento umide. Durante gli eventi che avvengono in condizioni di umidita’ secche e che sono caratterizzati da elevate intensita’ di pioggia, l’acqua nuova contribuisce al torrente in maggior misura, soprattutto nelle fasi iniziali dell’evento e in prossimita’ del picco di portata, indicando che l’acqua nuova proviene principalmente dalla pioggia incanalata direttamente nel torrente e dal deflusso superficiale che si forma nella zona riparia. Con l’aumento delle condizioni di umidita’, l’acqua vecchia (di pre-evento) inizia a contribuire maggiormente al torrente, indicando uno sviluppo della connessione sottosuperficiale durante l’evento ed un maggior contributo di acqua di falda proveniente da diverse parti nel bacino. Nella fase intermedia e finale di eventi avvenuti durante periodi umidi e caratterizzati da elevate quantita’ di pioggia, aumenta la componente di acqua nuova nel torrente, aumento dovuto all’espansione della zona satura vicino al torrente. Le differenze riscontrate nel calcolo della componente di acqua nuova usando i traccianti isotopici e geochimici suggeriscono che la pioggia viene arricchita in ioni prima di essere incanalata nel torrente a causa dell’accumulo di ioni nella zona effimera del torrente e negli strati superficiali del suolo.

Statistiche Download
Tipo di EPrint:Tesi di dottorato
Relatore:Borga, Marco
Correlatore:van Meerveld, Ilja
Dottorato (corsi e scuole):Ciclo 30 > Corsi 30 > TERRITORIO, AMBIENTE, RISORSE E SALUTE
Data di deposito della tesi:15 Gennaio 2018
Anno di Pubblicazione:15 Gennaio 2018
Parole chiave (italiano / inglese):runoff generation processes,hydrograph separation, isotopes, ions
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/08 Idraulica agraria e sistemazioni idraulico-forestali
Struttura di riferimento:Dipartimenti > Dipartimento Territorio e Sistemi Agro-Forestali
Codice ID:11020
Depositato il:09 Nov 2018 14:40
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

AA.VV., 1981. Stable Isotope Hydrology, Deuterium and Oxygen in the Water Cycle. International Atomic Energy Agency, Vienna, 337. Cerca con Google

Almasri M.N. and Kaluarachchi J.J., 2004. Assessment and management of long-term nitrate pollution of ground water in agriculture-dominated watersheds. Journal of Hydrology, 295: 225–245, DOI: 10.1016/j.jhydrol.2004.03.013. Cerca con Google

Amerman C. R., 1965. The use of unit-source watershed data for runoff prediction. Water Resources Researches, 14: 499–507, DOI: 10.1029/WR001i004p00499. Cerca con Google

Anderson M. G. and Burt T. P., 1978. The role of topography in controlling throughflow generation. Earth Surf Processes Landforms, 3: 331-344, DOI: 10.1002/esp.3290030402. Cerca con Google

Arnett R. R., 1974. Environmental factors affecting speed and volume of topsoil interflow. In Fluvial Processes in Instrumented Watersheds, edited by Gregory K. J. and Walling D. E., 7-22, Institute of British Geographers. Cerca con Google

ARPAV, 2005. Carta dei suoli del Veneto. ARPAV - Osservatorio Regionale Suolo, Castelfranco Veneto (TV). Cerca con Google

Arreghini S., de Cabo L., Seoane R., Tomazin N., Serafíni R. and de Iorio A.F., 2005. Influence of rainfall on the discharge, nutrient concentrations and loads of a stream of the “Pampa Ondulada” (Buenos Aires, Argentina). Limnetica, Asociación Española de Limnología, Madrid, Spain, 24(3-4): 225-236. Cerca con Google

Ator S.W. and Ferrari M.J., 1997. Nitrate and selected pesticides in ground water of the Mid-Atlantic Region. US Geological Survey, Water-Resources Investigation Report, 97-4139. Cerca con Google

Aubertin G. M., 1971. Nature and extent of macropores in forest soils and their influence on subsurface water movement. Forest Serv. Pap. NE (US), 192: 33. Cerca con Google

Bachmair S. and Weiler M., 2012. Hillslope characteristics as controls of subsurface flow variability. Hydrology Earth System Sciences, 16: 3699–3715, DOI: 10.5194/hess-16-3699-2012. Cerca con Google

Bansah S. and Ali G., 2017. Evaluating the effects of tracer choice and end-member definitions on hydrograph separation results across nested, seasonally cold watersheds. Water Resources Research, 53: 8851-8871, DOI: 10.1002/2016WR020252. Cerca con Google

Barthold F.K., Wu J., Vache’ K.B., Schneider K., Frede H.G. and Breuer L., 2010. Identification of geographic runoff sources in a data sparse region: hydrological processes and the limitations of tracer-based approaches. Hydrological Processes, 24: 2313–2327, DOI: 10.1002/hyp.7678. Cerca con Google

Barthold F. K., Turner B. L., Elsenbeer H. and Zimmermann A., 2016. A hydrochemical approach to quantify the role of return flow in a surface flow‐dominated catchment. Hydrological Processes, DOI: 10.1002/hyp.11083. Cerca con Google

Beasly R. S., 1976. Contribution of subsurface flow from the upper slopes of forested watersheds to channel flow. Soil Science Society of America Journal, 40: 955-957. Cerca con Google

Betson R.P. and Marius J.B., 1969. Source areas of storm runoff. Water Resources Research, 5: 574–582, DOI: 10.1029/WR005i003p00574. Cerca con Google

Betson R.P., 1964. What Is Watershed Runoff? Journal of Geophysical Research, 69: 1541-1552, DOI: 10.1029/JZ069i008p01541. Cerca con Google

Beven K. and Germann P., 1982. Macropores and water flow in soils. Water Resources Research, 18(5): 1311–1325, DOI: 10.1029/WR018i005p01311. Cerca con Google

Beven K., 1978. The hydrological response of headwater and sideslope areas. Hydrological Sciences Bulletin, 23: 419-437. Cerca con Google

Blume T., Zehe E. and Bronstert A., 2007. Rainfall-runoff response, event-based runoff coefficients and hydrograph separation. Hydrological Sciences Journal, 52(5): 843–862, DOI:10.1623/hysj.52.5.843. Cerca con Google

Blume T., Zehe E. and Bronstert A., 2007. Use of soil moisture dynamics and patterns for the investigation of runoff generation processes with emphasis on preferential flow. Hydrology and Earth System Sciences, 4: 2587–2624. Cerca con Google

Blume T., Zehe E., Reusser D. E., Iroume A. and Bronstert A., 2008. Investigation of runoff generation in a pristine, poorly gauged catchment in the Chilean Andes I: A multi-method experimental study. Hydrological Processes, 22(18): 3661 – 3675, DOI:10.1002/hyp.6971. Cerca con Google

Bonell M. and Gilmour D. A., 1978. The development of overland flow in a tropical rainforest catchment. Journal of Hydrology, 39: 365-382, DOI: 10.1016/0022-1694(78)90012-4. Cerca con Google

Bonell M., Gilmour D. A. and Sinclair D. F., 1981. Soil hydraulic properties and their effect on surface and subsurface water transfer in a tropical rain forest catchment. Hydrological Sciences Bulletin, 26: 1-18. Cerca con Google

Brown V.A., McDonnell J.J., Burns D.A. and Kendall C., 1999. The role of event water, a rapid shallow flow component, and catchment size in summer stormflow. Journal of Hydrology, 217: 171–190, DOI: 10.1016/S0022-1694(98)00247-9. Cerca con Google

Burns D. A., Plummer L. N., McDonnell J. J., Busenberg E., Casile G. C., Kendall C., Hooper R. P., Freer J. E., Peters N. E., Beven K. J. and Schlosser P., 2003. The geochemical evolution of riparian ground water in a forested piedmont catchment. Ground Water, 41(7): 913–925, DOI: 10.1111/j.1745-6584.2003.tb02434.x. Cerca con Google

Burns D.A. and McDonnell J.J., 1998. Effects of a beaver pond on runoff processes: comparison of two headwater catchments. Journal of Hydrology, 205: 248–264, DOI: 10.1016/S0022-1694(98)00081-X. Cerca con Google

Burns D.A., McDonnell J.J., Hooper R.P., Peters N.E., Freer J.E., Kendall C. and Beven K., 2001. Quantifying contributions to storm runoff through end-member mixing analysis and hydrologic measurements at the Panola Mountain Research Watershed (Georgia, USA). Hydrological Processes, 15: 1903-1924, DOI: 10.1002/hyp.246. Cerca con Google

Buttle J.M. and McDonald D.J., 2002. Coupled vertical and lateral preferential flow on a forested slope. Water Resources Research, 38(5): 1060, DOI:10.1029/2001WR000773. Cerca con Google

Buttle J.M., 1994. Isotope hydrograph separations and rapid delivery of pre-event water from drainage basins. Progress in Physical Geography, 18: 16–41, DOI: 10.1177/030913339401800102. Cerca con Google

Caissie D., Pollock T.L. and Cunjak R.A., 1996. Variation in stream water chemistry and hydrograph separation in a small drainage basin. Journal of Hydrology, 178: 137-157, DOI: 10.1016/0022-1694(95)02806-4. Cerca con Google

Casper M. C., Volkmann H. N., Waldenmeyer G. and Plate E. J., 2003: The separation of flow pathways in a sandstone catchment of the northern Black Forest using DOC and a nested approach. Physics and chemistry of the earth, 28(6-7): 269–275, DOI: 10.1016/S1474-7065(03)00037-8. Cerca con Google

Cervi F., Ronchetti F., Martinelli G., Bogaard T. A. and Corsini A., 2012. Origin and assessment of deep groundwater inflow in the Ca’ Lita landslide using hydrochemistry and in situ monitoring. Hydrology and Earth System. Sciences, 16: 4205–4221, DOI: 10.5194/hess-16-4205-2012. Cerca con Google

Cey E.E., Rudolph D.L., Parkin G.W. and Aravena R., 1998. Quantifying groundwater discharge to a small perennial stream in southern Ontario, Canada. Journal of Hydrology, 210 (1–4): 21–37, DOI: 10.1016/S0022-1694(98)00172-3. Cerca con Google

Chang S.C. and Matzner E., 2000. The effect of beech stemflow on spatial patterns of soil solution chemistry and seepage fluxes in a mixed beech/oak stand. Hydrological processes, 14(1): 135-144, DOI: 10.1002/(SICI)1099-1085(200001)14:1<135::AID-HYP915>3.0.CO;2-R. Cerca con Google

Chen J., Liu X., Wang C., Rao W., Tan H., Dong H., Sun X., Wang Y. and Su Z., 2011. Isotopic constraints on the origin of groundwater in the Ordos Basin of northern China. Environmental Earth Sciences, 66: 505–517. Cerca con Google

Christophersen N. and Hooper R.P., 1992. Multivariate analysis of stream water chemical data: The use of principal components analysis for the end-member mixing problem. Water Resources Research, 28(1): 99-107, DOI: 10.1029/91WR02518. Cerca con Google

Christophersen N., Neal C., Hooper R.P., Vogt R.D. and Andersen S., 1990. Modelling streamwater chemistry as a mixture of soilwater endmembers - a step towards second generation acidification models. Journal of Hydrology, 116: 307–320, DOI: 10.1016/0022-1694(90)90130-P. Cerca con Google

Cook P. G. and Herczeg A. L., 1999. Environmental tracers in subsurface hydrology. Kluwer, Dordrecht. Cerca con Google

Correa A., Windhorst D., Tetzlaff D., Crespo P., Celleri R., Feyen J. and Breuer L., 2017. Temporal dynamics in dominant runoff sources and flow paths in the Andean Paramo. Water Resources Research, 53: 5998–6017, DOI:10.1002/2016WR020187. Cerca con Google

Creed I.F., Band L.E., Foster N.W., Morisson I.K., Nicolson J.A., Semkin R.S. and Jeffries D.S., 1996. Regulation of nitrate N release from temperate forests: a test of the N flushing hypothesis. Water Resources Research, 32(11): 3337–3354, DOI: 10.1029/96WR02399. Cerca con Google

Crouzet E., Hubert P., Olive P., Siwertz E. and Marce A., 1970. Le tritium dans les mesures d'hydrologie de surface: Determination experimentale du coefficient de ruisselement. Journal of Hydrology, 11: 217-229, DOI: 10.1016/0022-1694(70)90063-6. Cerca con Google

Dansgaard W., 1964. Stable isotopes in precipitation. Tellus, 16: 436-468, DOI: 10.1111/j.2153-3490.1964.tb00181.x. Cerca con Google

De Vries J. J. and Simmers I., 2002. Groundwater recharge: an overview of processes and challenges: Hydrogeology Journal, 10: 5–17, DOI: 10.1007/s10040-001-0171-7. Cerca con Google

De Vries W. and Breeuwsma A., 1987. The relation between soil acidification and element cycling. Water, Air, and Soil Pollution, 35(3–4): 293–310, DOI: 10.1007/bf00290937. Cerca con Google

Dekker L. W. and Ritsema C. J., 1994. How Water Moves in a Water Repellent Sandy Soil .1. Potential and Actual Water Repellency. Water Resources Research, 30: 2507–2517, DOI: 10.1029/94WR00749. Cerca con Google

Detty J.M. and McGuire K.J., 2010. Threshold changes in storm runoff generation at a till-mantled headwater catchment. Water Resources Research, 46: W07525, DOI: 10.1029/2009WR008102. Cerca con Google

Dunne T. and Black R. D., 1970. Partial area contributions to storm runoff in a small New England watershed. Water Resources Research, 6: 1296-1311, DOI: 10.1029/WR006i005p01296. Cerca con Google

Dunne T. and Black R. D., 1970. An experimental investigation of runoff production in permeable soils. Water Resources Research, 6: 478-490, DOI: 10.1029/WR006i002p00478. Cerca con Google

Dunne, T., Moore T. R. and Taylor C. H., 1975. Recognition and prediction of runoff producing zones in humid regions. Hydrological Sciences Bulletin, 20: 305-327. Cerca con Google

Ehleringer J.R. and Dawson T.E., 1992. Water uptake by plant perspective from stable isotope composition: commissione review. Plant Cell Environment, 15: 1073-1082. Cerca con Google

Elsenbeer H., Lorieri D. and Bonell M., 1995. Mixing model approaches to estimate storm flow sources in an overland flow-dominated tropical rain-forest catchment. Water Resources Research, 31(9): 2267–2278, DOI:10.1029/95WR01651. Cerca con Google

Fannin R.J., Jaakkola J., Wilkinson M.T. and Hetherington E.D., 2000. Hydrologic response of soils to precipitation at Carnation Creek, British Columbia, Canada. Water Resources Research, 36: 1481–1494, DOI: 10.1029/2000WR900027. Cerca con Google

Feller M.C. and Kimmins J.P., 1979. Chemical characteristics of small streams near Haney in Southwestern British Columbia. Water Resources Research, 15: 247-258, DOI: 10.1029/WR015i002p00247. Cerca con Google

Fischer B.M.C., Rinderer M., Schneider P., Ewen T. and Seibert J., 2015. Contributing sources to base flow in pre-alpine headwaters using spatial snapshot sampling. Hydrological Processes, 29: 5321–5336, DOI: 10.1002/hyp.10529. Cerca con Google

Fischer B.M.C., Stähli M. and Seibert J., 2016. Pre-event water contributions to runoff events of different magnitude in pre-alpine headwaters. Hydrology Research, 48(1): 28-47, DOI: 10.2166/nh.2016.176. Cerca con Google

Freeze R. A., 1974. Streamflow generation. Reviews of Geophysics and Space, 12: 627–647, DOI: 10.1029/RG012i004p00627. Cerca con Google

Frisbee M.D., Phillips F.M., Campbell A.R., Liu F. and Sanchez S.A., 2011. Streamflow generation in a large, alpine watershed in the southern Rocky Mountains of Colorado: Is streamflow generation simply the aggregation of hillslope runoff responses. Water Resources Research, 47: W06512, DOI: 10.1029/2010WR009391. Cerca con Google

Fritz P., JCherry. A., Weyer K. U. and Sklash M., 1976. Storm runoff analyses using environmental isotopes and major ions. In Interpretation of Environmental Isotope and Hydrochemical Data in Groundwater Hydrology, 111-130, IAEA, Vienna. Cerca con Google

Garvelmann J., Külls C. and Weiler M., 2012. A porewater-based stable isotope approach for the investigation of subsurface hydrological processes. Hydrology and Earth System Sciences, 16: 631–640, DOI: 10.5194/hess-16-631-2012. Cerca con Google

Gat J.R., 1970. Environmental isotope balance of Lake Tiberias. Isotope Hydrology. International Atomic Energy Agency, Vienna, 109–127. Cerca con Google

Genereux D., 1998. Quantifying uncertainty in tracer-based hydrograph separations. Water Resources Research, 34(4): 915 – 919, DOI: 10.1029/98WR00010. Cerca con Google

Gonfiantini R.,1986. Environmental isotopes in lake studies. In Handbook of Environmental Isotope Geochemistry, edited by Fritz P. and Fontes J. C.,New York Elsevier. Cerca con Google

Haga H., Matsumoto Y., Matsutani J., Fujita M., Nishida K. and Sakamoto Y., 2005. Flow paths, rainfall properties, and antecedent soil moisture controlling lags to peak discharge in a granitic unchanneled catchment. Water Resources Research, 41: W12410, DOI: 10.1029/ 2005WR004236 Cerca con Google

Hallberg G.R. and Keeney D.R., 1993. Nitrate. In Regional ground-water quality, edited by Alley W.M., 297-322., New York, N.Y., Van Nostrand Reinhold. Cerca con Google

Hamed Y. and Dhahri F., 2013. Hydro-geochemical and isotopic composition of groundwater, with emphasis on sources of salinity, in the aquifer system in Northwestern Tunisia. Journal of African Earth Sciences, 83: 10–24, DOI: 10.1016/j.jafrearsci.2013.02.004. Cerca con Google

Harris D.M., McDonnell J.J. and Rodhe A., 1995. Hydrograph separation using continuous open system isotope mixing. Water Resources Research, 31: 157–171, DOI: 10.1029/94WR01966. Cerca con Google

Harter T., Davis H., Mathews M. and Meyer R., 2002. Shallow ground water quality on dairy farms with irrigated forage crops. Journal of Contaminant Hydrology, 55: 287–315, DOI: 10.1016/S0169-7722(01)00189-9. Cerca con Google

Haught D. R. W. and van Meerveld H. J., 2011. Spatial variation in transient water table responses: differences between an upper and lower hillslope zone. Hydrological Processes, 25: 3866–3877, DOI: 10.1002/hyp.8354. Cerca con Google

Hewlett J. D. and Hibbert A. R., 1963. Moisture and energy conditions within a sloping soil mass during drainage. Journal of Geophysical Research, 68: 1081-1087, DOI: 10.1029/JZ068i004p01081. Cerca con Google

Hewlett J. D. and Hibbert A. R., 1967. Factors affecting the response of small watersheds to precipitation in humid areas. In International Symposium on Forest Hydrology, edited by Sopper W. E. and Lull H. W., 275-290, Pergamon, New York. Cerca con Google

Hewlett J. D. and Nutter W. L., 1970. The varying source area of streamflow from upland basins. In Proceedings of the Symposium on Interdisciplinary Aspects of Watershed Management, 65-83, American Society of Civil Engineers, New York. Cerca con Google

Hewlett J.D., 1961. Watershed management in report for 1961 Southeastern Forest Experiment Station. US Forest Service, Asheville, North Carolina. Cerca con Google

Hill A.R. and Waddington J.M., 1993. Analysis of storm run-off sources using oxygen-18 in a headwater swamp. Hydrological Processes, 7: 305–316, DOI: 10.1002/hyp.3360070308. Cerca con Google

Hinton M.J., Schiff S. L. and English M.C., 1994. Examining the contributions of glacial till water to storm runoff using two- and three- component hydrograph separations. Water Resources Research, 30: 983-993, DOI: 10.1029/93WR03246. Cerca con Google

Hoeg S., Uhlenbrook S. and Leibundgut Ch., 2000. Hydrograph separation in a mountainous catchment combining hydrochemical and isotopic tracers. Hydrological Processes, 14(7): 1199-1216, DOI: 10.1002/(SICI)1099-1085(200005)14:7<1199::AID-HYP35>3.0.CO;2-K. Cerca con Google

Hooper R. P., 2003. Diagnostic tools for mixing models of stream water chemistry. Water Resources Researches, 39(3): 1055, DOI:10.1029/2002WR001528. Cerca con Google

Hooper R.P., 2001. Applying the scientific method to small catchment studies: a review of the Panola Mountain experience. Hydrological Processes, 15: 2039–2050, DOI: 10.1002/hyp.255. Cerca con Google

Hooper R.P., Christopherson N. and Peters N.E, 1990. Modelling streamwater chemistry as a mixture of soilwater end-members-an application to the Panola Mountain catchment, Georgia, USA. Journal of Hydrology, 116: 321-343, DOI: 10.1016/0022-1694(90)90131-G. Cerca con Google

Horton R. E., 1933. The role of infiltration in the hydrologic cycle. Transactions, American Geophysical Union, 14: 446–460, DOI: 10.1029/TR014i001p00446. Cerca con Google

Hsueh-Yu Lu, 2014. Application of water chemistry as a hydrological tracer in a volcano catchment area: A case study of the Tatun Volcano Group, North Taiwan. Journal of Hydrology, 511: 825-837, DOI: 10.1016/j.jhydrol.2014.02.036. Cerca con Google

Inamdar S. P. and Mitchell M. J., 2007. Contributions of riparian and hillslope waters to storm runoff across multiple catchments and storm events in a glaciated forested watershed. Journal of Hydrology, 341: 116–130, DOI: 10.1016/j.jhydrol.2007.05.007. Cerca con Google

Inamdar S., Dhillon G., Singh S., Dutta S., Levia D., Scott D., Mitchell M., Stan J. and McHale P., 2013. Temporal variation in end member chemistry and its influence on runoff mixing patterns in a forested, Piedmont catchment. Water resources researches, 49: 1828–1844, DOI:10.1002/wrcr.20158. Cerca con Google

Inamdar S.P., Christopher S. and Mitchell M.J., 2004. Export mechanisms for dissolved organic carbon and nitrate during summer storm events in a glaciated forested catchment in New York, USA. Hydrological Processes, 18(14): 2651– 2661, DOI: 10.1002/hyp.5572. Cerca con Google

Iovino F., Borghetti M. and Veltri A., 2009. Foreste e ciclo dell’acqua. Forest@, 6: 256-273. Cerca con Google

James A.L. and Roulet N.T., 2009. Antecedent moisture conditions and catchment morphology as controls on spatial patterns of runoff generation in small forest catchments. Journal of Hydrology, 377(3-4): 351–366, DOI: 10.1016/j.jhydrol.2009.08.039. Cerca con Google

Johnson M.S. and Lehmann J., 2006. Double-funneling of trees: Stemflow and root-induced preferential flow. Ecoscience, 13 (3): 324-333, DOI: 10.2980/i1195-6860-13-3-324.1. Cerca con Google

Jones J.A.A., 2010. Soil piping and catchment response. Hydrological Processes, 24: 1548–1566, DOI: 10.1002/hyp.7634. Cerca con Google

Kamdee K., Srisuk K., Lorphensri O., Chitradon R., Noipow N., Laoharojanaphand S. and Chantarachot W., 2013. Use of isotope hydrology for groundwater resources study in Upper Chi river basin. Journal of Radioanalytical and Nuclear Chemistry, 297: 405–418, DOI: 10.1007/s10967-012-2401-y. Cerca con Google

Katsuyama M., Ohte N. and Kobash S., 2001. A three-component end-member analysis of stream water hydrochemistry in a small Japanese forested headwater catchment. Hydrological Processes, 15: 249–260, DOI: 10.1002/hyp.155. Cerca con Google

Kendall C. and McDonnell J.J., 1998. Isotope Tracers in Catchment Hydrology. Elsevier Science Limited, Amsterdam. Cerca con Google

Kendall C., McDonnell J.J. and Gu W., 2001. A look inside black box hydrograph separation models: a study at the Hydrohill catchment. Hydrological Processes, 15: 1877–1902, DOI: 10.1002/hyp.245. Cerca con Google

Kennedy V.C., Kendall C., Zellweger G.W., Wyerman T.A. and Avanzino R.J., 1986. Determination of the components of stormflow using water chemistry and environmental isotopes, Mattole river basin, California. Journal of Hydrology, 84: 107–140, DOI:10.1016/0022-1694(86)90047-8. Cerca con Google

Kennedy V.C., 1977. Geochemistry of the Mattole river of northern California. Unite States Department of the Interior Geological Survey. Cerca con Google

Kirkby, M.J. and R.J. Chorley, 1967. Overland flow, throughflow, and erosion. International Association of Scientific Hydrology Bulletin, 7, DOI: 10.1080/02626666709493533. Cerca con Google

Kvaerner J. and Klove B., 2006. Tracing sources of summer stream flow in boreal headwaters using isotopic signatures and water geochemical components. Journal of Hydrology, 331: 186–204, DOI: 10.1016/j. jhydrol.2006.05.008. Cerca con Google

Ladouche B., Probst A., Viville D., Idir S., Baque C., Loubet M., Probst J.L. and Bariac T., 2001. Hydrograph separation using isotopic, chemical and hydrological approaches (streng- bach catchement, France). Journal of Hydrology, 242: 255–274, DOI:10.1016/S0022-1694(00)00391-7. Cerca con Google

Laudon H. and Slaymaker O., 1997. Hydrograph separation using stable isotopes, silica and electrical conductivity: an alpine example. Journal of Hydrology, 201: 82–101, DOI: 10.1016/S0022-1694(97)00030-9. Cerca con Google

Lee K., Kim J., Lee D., Kim Y. and Lee D., 2007. Analysis of water movement through an unsaturated soil zone in Jeju Island, Korea using stable oxygen and hydrogen isotopes. Journal of Hydrology, 345: 199–211, DOI: 10.1016/j.jhydrol.2007.08.006. Cerca con Google

Li X.Y., Liu L.Y., Gao S.Y., Ma Y.J. and Yang Z.P., 2008. Stemflow in three shrubs and its effect on soil water enhancement in semiarid loess region of China. Agricultural and Forest Meteorolgy, 148: 1501-1507, DOI: 10.1016/j.agrformet.2008.05.003. Cerca con Google

Liang W.L., Kosugi K. and Mizuyama T., 2011. Soil water dynamics around a tree on a hillslope with or without rainwater supplied by stemflow. Water Resources Research, 47, DOI: 10.1029/2010WR009856. Cerca con Google

Liu F.J., Parmenter R., Brooks P.D., Conklin M.H and Bales R.C, 2008. Seasonal and interannual variation of streamflow pathways and biogeochemical implications in semi-arid, forested catchments in Valles Caldera, New Mexico. Ecohydrology, 1: 239–252, DOI:10.1002/eco.22. Cerca con Google

Machavaram M.V., Whittemore D.O., Conrad M.E. and Miller N.L., 2006. Precipitation induced stream flow: An event based chemical and isotopic study of a small stream in the Great Plains region of the USA. Journal of Hydrology, 330: 470-480, DOI: 10.1016/j.jhydrol.2006.04.004. Cerca con Google

Marc V., Didon-Lescot J.F. and Michael C., 2001. Investigation of the hydrological processes using chemical and isotopic tracers in a small Mediterranean forested catchment during autumn recharge. Journal of Hydrology, 247(3-4): 215–229, DOI: 10.1016/S0022-1694(01)00386-9. Cerca con Google

Maurya A.S., Shah M., Deshpande R.D., Bhardwaj R.M., Prasad A. and Gupta S.K., 2011. Hydrograph separation and precipitation source identification using stable water isotopes and conductivity: River Ganga at Himalayan foothills. Hydrological Processes, 25: 1521–1530, DOI: 10.1002/hyp.7912. Cerca con Google

McCartney M.P., Neal C. and Neal M., 1998. Use of deuterium to understand runoff generation in a headwater catchment containing a dambo. Hydrology Earth System Sciences, 2(1): 65–76. Cerca con Google

McDonnell J.J., 1990. A rationale for old water discharge through macropores in a steep, humid catchment. Water Resources Research, 26: 2821–2832, DOI: 10.1029/WR026i011p02821. Cerca con Google

McKinney C.R., McCrea J.M., Epstein S., Allen H.A. and Urey H.C., 1950. Improvements in mass spectrometers for the measurement of small differences in isotope abundance ratios. Review of Scientific Instrument, 21: 724-730, DOI: 0.1063/1.1745698. Cerca con Google

Meriano M., Howard K.W.F. and Eyles N., 2011. The role of midsummer urban aquifer recharge in stormflow generation using isotopic and chemical hydrograph separation techniques. Journal of Hydrology, 396(1–2): 82–93, DOI: 10.1016/j.jhydrol.2010.10.041. Cerca con Google

Mohanty B. P., Bowman R. S., Hendrickx J. M. H., Simunek J. and Van Genuchten M. T., 1998. Preferential transport of nitrate to a tile drain in an intermittent-flood-irrigated field: Model development and experimental evaluation. Water Resources Research, 34: 1061–1076, DOI: 10.1029/98WR00294. Cerca con Google

Mosley M.P., 1979. Streamflow generation in a forested watershed, New Zealand. Water Resources Research, 15: 795-806, DOI: 10.1029/WR015i004p00795. Cerca con Google

Mosley M.P., 1982. Subsurface flow velocities through selected forest soils, South Island, New Zealand. Journal of Hydrology, 55: 65–92, DOI: 10.1016/0022-1694(82)90121-4. Cerca con Google

Mueller M.H., Alaoui A. and Alewell C., 2016. Water and solute dynamics during rainfall events in headwater catchments in the Central Swiss Alps under the influence of green alder shrubs and wetland soils. Ecohydrology, 9: 950–963, DOI: 10.1002/eco.1692. Cerca con Google

Muñoz-Villers L.E. and McDonnell J.J., 2012. Runoff generation in a steep, tropical montane cloud forest catchment on permeable volcanic substrate. Water Resources Research, 48: W09528, DOI: 10.1029/ 2011WR011316. Cerca con Google

Muraoka K. and Hirata T., 1988. Streamwater chemistry during rainfall events in a forested basin. Journal of Hydrology, 102(1-4): 235-253, DOI: 10.1016/0022-1694(88)90100-X. Cerca con Google

Nolan K.M. and Hill B.R., 1990. Storm-runoff generation in the Permanente Creek drainage basin, west central California: an example of flood wave effects on runoff composition. Journal of Hydrology, 113: 343–367, DOI: 10.1016/0022-1694(90)90183-X. Cerca con Google

Norbiato D., Borga M., Merz R., Blöschl G. and Carton A., 2009. Controls on event runoff coefficients in the eastern Italian Alps. Journal of Hydrology, 375: 312–325, DOI: 10.1016/j.jhydrol.2009.06.044. Cerca con Google

Ocampo C.J., Oldham C.E., Sivapalan M. and Turner J.V., 2006. Hydrological versus biogeochemical controls on catchment nitrate export: a test of the flushing mechanism. Hydrological Processes, 20(20): 4269–4286, DOI: 10.1002/hyp.6311. Cerca con Google

Pearce A. J., Stewart M. K. and Sklash M. G., 1986. Storm Runoff Generation in Humid Headwater Catchments: Where Does the Water Come From? Water Resources Research, 22(8): 1263-1272, DOI: 10.1029/WR022i008p01263. Cerca con Google

Pellerin B.A., Wollheim W.M., Feng X. and Charles J.V., 2008. The application of electrical conductivity as a tracer for hydrograph separation in urban catchments. Hydrological Processes, 22: 1810–1818, DOI: 10.1002/hyp.6786. Cerca con Google

Penna D., Mantese N., Hopp L., Dalla Fontana G. and M. Borga, 2014. Spatio-temporal variability of piezometric response on two steep alpine hillslopes. Hydrologcal Processes, 29: 198-2011, DOI: 10.1002/hyp.10140. Cerca con Google

Penna D., Tromp-van Meerveld H.J., Gobbi A., Borga M. and Dalla Fontana G., 2011. The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment. Hydrology and Earth System Sciences, 15: 689–702, DOI: 10.5194/hess-15-689-2011. Cerca con Google

Penna D., van Meerveld H.J., Oliviero O., Zuecco G., Assendelft R.S., Dalla Fontana G. and Borga M., 2015. Seasonal changes in runoff generation in a small forested mountain catchment. Hydrological processes, 29: 2027–2042, DOI: 10.1002/hyp.10347. Cerca con Google

Peters D.L., Buttle J.M., Taylor C.H. and LaZerte B.D., 1995. Runoff production in a forested, shallow soil, Canadian Shield basin. Water Resources Research, 31: 1291–1304, DOI: 10.1029/94WR03286. Cerca con Google

Pilgrim D. H., 1966. Radioactive tracing of storm runoff on a small catchment, I, Experimental technique. Journal of Hydrology, 4: 209-305, DOI: 10.1016/0022-1694(66)90094-1. Cerca con Google

Pilgrim D. H., 1966. Radioactive tracing of storm runoff on a small catchment, II, Discussion of results. Journal of Hydrology, 4: 306-326, DOI: 10.1016/0022-1694(66)90095-3. Cerca con Google

Pilgrim D. H., 1976. Travel times and nonlinearity of flood runoff from tracer measurements on a small watershed. Water Resources Research, 12: 487-496, DOI: 10.1029/WR012i003p00487. Cerca con Google

Pilgrim D. H., 1983. Some problems in transferring hydrological relationships between small and large drainage basins and between regions. Journal of Hydrology, 65: 49-72, DOI: 10.1016/0022-1694(83)90210-X. Cerca con Google

Pilgrim D. H., Huff D. D. and Steele T. D., 1978. A field evaluation of surface and subsurface runoff, II, Runoff processes. Journal of Hydrology, 38: 319-341, DOI: 10.1016/0022-1694(78)90077-X. Cerca con Google

Pinder G. F. and Jones J. F., 1969. Determination of the groundwater component of peak discharge from the chemistry of total runoff water. Water Resources Researches, 5(2): 438-445, DOI: 10.1029/WR005i002p00438. Cerca con Google

Pionke H.B., Hoover J.R., Schnabel R.R., Gburek W.J., Urban J.B. and Rogowski A.S., 1988. Chemical–hydrologic interactions in the near-stream zone. Water Resources Research, 24: 1101–1110, DOI: 10.1029/WR024i007p01101. Cerca con Google

Ragan R. M., 1968. An experimental investigation of partial area contributions. In: Hydrological Aspects of the Utilization of Water, Reports and Discussions (Proc. IAHS Assembly at Bern), 241–251, IAHS Publ. 76. Cerca con Google

Rice K. C. and Hornberger G. M., 1998. Comparison of hydrochemical tracers to estimate source contributions to peak flow in a small, forested headwater catchment. Water Resources Research, 34: 1755–1766, DOI: 10.1029/98WR00917. Cerca con Google

Richey D.G., McDonnell J.J., Erbe M.W. and Hurd T.M., 1998. Hydrograph separations based on chemical and isotopic concentrations: a critical appraisal of published studies from New Zealand, North America and Europe. Hydrological Processes, 37: 95–111. Cerca con Google

Rinderer M., van Meerveld H.I., Manfred Stähli M. and Seibert J., 2016. Is groundwater response timing in a pre-alpine catchment controlled more by topography or by rainfall? Hydrological Processes, 30: 1036–1051, DOI: 10.1002/hyp.10634. Cerca con Google

Rusjan S., Brilly M. and Mikos M., 2008. Flushing of nitrate from a forested watershed: an insight into hydrological nitrate mobilization mechanisms through seasonal high-frequency stream nitrate dynamics. Journal of Hydrology, 354(1–4): 187–202, DOI: 10.1016/j.jhydrol.2008.03.009. Cerca con Google

Schellekens J., Scatena F. N., Bruijnzeel L. A., van Dijk A., Groen M. M. A. and van Hogezand R. J. P., 2004. Stormflow generation in a small rainforest catchment in the Luquillo experimental forest, Puerto Rico. Hydrological Processes, 18(3): 505–530, DOI:10.1002/hyp.1335. Cerca con Google

Sedea R., Di Lallo E. and De Vecchi G., 1986. Carta Geologica Dell'area Di Valli Del Pasubio - Posina – Laghi. 1:20.000. Consiglio Nazionale Delle Ricerche and Universita’ Di Padova, Italy. Cerca con Google

Segura C., James A.L., Lazzati D. and Roulet N.T., 2012. Scaling relationships for event water contributions and transit times in small-forested catchments in Eastern Quebec. Water Resources Research, 48: W07502, DOI: 10.1029/2012WR011890. Cerca con Google

Sidle R.C., Kitahara H., Terajima T. and Nakai Y., 1995. Experimental studies on the effects of pipeflow on throughflow partitioning. Journal of Hydrology, 165: 207–219, DOI: 10.1029/98WR00917. Cerca con Google

Sklash M.G. and Farvolden R.N., 1979. The role of groundwater in storm runoff. Journal of Hydrology, 43: 45–65, DOI: 10.1016/0022-1694(79)90164-1. Cerca con Google

Sklash M.G., Farvolden R.N. and Fritz P. A, 1976. Conceptual model of watershed response to rainfall developed through the use of oxygen-18 as a natural tracer. Canadian Journal of Earth Science, 13: 271-283. Cerca con Google

Soulsby C., Chen M., Ferrier R.C., Helliwell R.C., Jenkins A. and Harriman R., 1998. Hydrogeochemistry of shallow groundwater in an upland Scottish catchment. Hydrological Processes, 12: 1111–1127, DOI: 10.1002/(SICI)1099-1085. Cerca con Google

Suarez V.V.C., Okello A. M. L.S., Wenninger J. W. and Uhlenbrook S., 2015. Understanding runoff processes in a semi-arid environment through isotope and hydrochemical hydrograph separations. Hydrology Earth System Sciences, 19: 4183–4199, DOI: 10.5194/hess-19-4183-2015. Cerca con Google

Sukhija B. S., Reddy D. V., Nagabhushanam P. and Syed Hussain, 2003. Recharge processes: Piston flow vs preferential flow in semi-arid aquifers of India. Hydrogeology Journal, 11(3): 387-395, DOI: 10.1007/s10040-002-0243-3indican. Cerca con Google

Taniguchi M., Tsujimura M. and Tanaka T., 1996. Significance of stemflow in groundwater recharge. 1: Evaluation of the stemflow contribution to recharge using a mass balance approach. Hydrological Processes, 10: 71-80, DOI: 10.1002/(SICI)1099-1085(199601)10:1<71::AID-HYP301>3.0.CO;2-Q. Cerca con Google

Tarboton D., 2003. Rainfall-runoff processes. Utah State University, 1:2. Cerca con Google

Tetzlaff D. and Soulsby C., 2008. Sources of baseflow in large catchments—using tracers to develop a holistic understanding of runoff generation. Journal of Hydrology, 359: 287–302, DOI: 10.1016/j.jhydrol.2008.07.008. Cerca con Google

Troendle C. A. and Hofmeyer J. W., 1971. Storm flow related to measured physical parameters on small forested watersheds in West Virginia. Eos Transactions AGU, 52: 204, DOI: 10.1029/WR022i008p01263. Cerca con Google

Tsukamoto Y., 1961. An experiment on subsurface flow. Journal of the Japanese Forestry Society, 43: 61-68. Cerca con Google

Turner J.V., Macpherson D.K. and Stokes R.A., 1987. The mechanisms of catchment flow processes using natural variations in deuterium and oxygen-18. Journal of Hydrology, 94: 143–162, DOI: 10.1016/0022-1694(87)90037-0. Cerca con Google

U.S. Forest Service, 1961. Watershed management: Some ideas about storm runoff and base flow, annual report, 61-66, Southeast Forest Exp. Sta., Asheville, N. C.. Cerca con Google

Van Der Velde Y., De Rooij G. H., Rozemeijer J. C., van Geer,F. C. and Broers H. P., 2010. Nitrate response of a lowland catchment: On the relation between stream concentration and travel time distribution dynamics. Water Resources Research, 46: W11534, DOI: 10.1029/2010wr009105. Cerca con Google

Wang H., Gao J.E., Li X.H., Zhang S.l. and Wang H.J., 2015. Nitrate accumulation and leaching in surface and ground water based on simulated rainfall experiments. PLoS One, 10(8): e0136274, DOI:10.1371/journal.pone.0136274. Cerca con Google

Weiler M., McDonnell J.J., Tromp-Van Meerveld I. and Uchida T., 2005. Subsurface stormflow. In Encyclopedia of Hydrological Sciences, edited by Anderson M., Wiley J. and Sons Ltd. Cerca con Google

Wels C., Cornett R.J. and Lazerte B.D., 1991. Hydrograph separation: a comparison of geochemical and isotopic tracers. Journal of Hydrology, 122(1): 253–274, DOI: 10.1016/0022-1694(91)90181-G. Cerca con Google

Wenninger J., Uhlenbrook S., Tilch N. and Leibundgut Ch., 2004. Experimental evidence of fast groundwater responses in a hillslope/floodplain area in the Black Forest Mountains, Germany. Hydrological Processes, 18: 3305–3322, DOI: 10.1002/hyp.5686. Cerca con Google

Weyman D. R., 1970. Throughflow on hillslopes and its relation to the stream hydrograph. lnternational Association of Hydrological Sciences Bulletin, 15: 25-33. Cerca con Google

Whipkey R. Z., 1965. Subsurface flow on forested slopes. lnternational Association of Hydrological Sciences Bulletin, 10: 74-85. Cerca con Google

Whipkey R. Z., 1967. Theory and mechanics of subsurface stormflow. In International Symposium of Forest Hydrology, edited by Sopper W. E. and Lull H. W., 255-260, Pergamon, New York. Cerca con Google

Yang L., Song X., Zhang Y., Han D., Zhang B. and Long D., 2012. Characterizing interactions between surface water and groundwater in the Jialu River basin using major ion chemistry and stable isotopes. Hydrology and Earth System Sciences, 16: 4265–4277, DOI: 10.5194/hess-16-4265-2012. Cerca con Google

Yuko A., Uchida T. and Ohte N., 2002. Residence times and flow paths of water in steep unchannelled catchments, Tanakami, Japan. Journal of Hydrology, 261: 173–192, DOI: 10.1016/S0022-1694(02)00005-7. Cerca con Google

Zhang B., Tang J.L., Gao Ch. and Zepp H., 2011. Subsurface lateral flow from hillslope and its contribution to nitrate loading in streams through an agricultural catchment during subtropical rainstorm events. Hydrology and Earth System Sciences, 15: 3153–3170, DOI:10.5194/hess-15-3153-2011. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record