Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Bucci, Massimo (2018) La variazione della velocità di picco del flusso aortico e del diametro della vena cava caudale: studio di due nuovi indici di volemia e il loro utilizzo come predittori di risposta ai fluidi in cani anestetizzati e ventilati meccanicamente. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document
1084Kb

Abstract (english)

Administration of IV fluid to optimize volume status and prevent inadequate tissue perfusion is a perioperative major task for the anaesthetist. Early fluid resuscitation improves cardiac output in preload-dependent subjects, but excessive fluid load can worsen postoperative outcome. Many variables have been proposed to predict fluid responsiveness. Dynamic variables reflect the variation in preload induced by mechanical ventilation and are reliable predictors of volume expansion. Dynamic preload indices, such as systolic pressure variation (SPV), aortic flow peak velocity variation (∆Vpeak) and distensibility index of the caudal vena cava (CVCDI), are reliable indices for predicting fluid responsiveness in humans. This study aimed to investigate the ability of these indices to predict fluid response in healthy dogs undergoing general anaesthesia and mechanical ventilation. The study included 24 dogs. ∆Vpeak, CVCDI, and SPV were calculated before a volume expansion (5 mL/kg bolus of lactated Ringer’s solution). The aortic velocity time integral (VTI) was measured before and after the volume expansion as surrogate of stroke volume. Dogs were considered responders (group R, n = 9) when the VTI increase was ≥15% and non-responders (group NR, n = 15) when the increase was <15%. ∆Vpeak, CVCDI and SPV before volume expansion were higher in group R than in group NR (P = 0.0009, P = 0.0003, and P = 0.0271, respectively). Receiver operating characteristic (ROC) curves were plotted for the three indices. The areas under the ROC curves for SPV, ΔVpeak, and CVCDI were 0.91 (CI 0.73–0.99; P = 0.0001), 0.95 (CI 0.77–1; P = 0.0001), and 0.78 (CI 0.56–0.92; P = 0.015), respectively. The best cut-offs were 6.7% for SPV (sensitivity, 77.78%; specificity, 93.33%), 9.4% for ΔVpeak (sensitivity, 88.89%; specificity, 100%), and 24% for CVCDI (sensitivity, 77.78%; specificity, 73.33). In conclusion, ∆Vpeak, CVCDI, and SPV are reliable predictors of fluid responsiveness in dogs undergoing general anaesthesia and mechanical ventilation.

Abstract (italian)

La somministrazione intravenosa di fluidi per ottimizzare lo stato volemico e prevenire l'inadeguata perfusione tissutale è uno dei principali obiettivi dell’anestesista nel periodo perioperatorio. Un'adeguata fluidoterapia nei soggetti precarico-dipendenti può aumentare la portata cardiaca del paziente, ma un'eccessiva somministrazione di fluidi può influenzare negativamente l’outcome postoperatorio. Numerose variabili emodinamiche sono state proposte per predire la responsività ai fluidi. Le variabili dinamiche riflettono la variazione del precarico indotto dalla ventilazione meccanica e hanno un eccellente valore predittivo. Gli indici dinamici di precarico, quali la variazione di pressione sistolica (SPV), la variazione della velocità di picco del flusso aortico (ΔVpeak) e l'indice di distensibilità della vena cava caudale (CVCDI), sono indici attendibili per prevedere la reattività ai fluidi negli esseri umani. Questo studio ha lo scopo di indagare la capacità di questi indici di prevedere la risposta ai fluidi nei cani sani sottoposti ad anestesia generale e ventilati meccanicamente. Lo studio ha incluso 24 cani. ΔVpeak, CVCDI e SPV sono stati calcolati prima di effettuare un'espansione volemica con 5 mL / kg di soluzione Ringer di lattato. L'integrale velocità-tempo aortico (VTI) è stato misurato prima e dopo l'espansione volemica come surrogato della gittata sistolica. I cani sono stati considerati responder (gruppo R, n = 9) quando l'aumento di VTI era ≥15% e non-responder (gruppo NR, n = 15) quando l'aumento era <15%. ΔVpeak, CVCDI e SPV prima dell'espansione volemica erano più alte nel gruppo R rispetto al gruppo NR (P = 0.0009, P = 0.0003 e P = 0.0271 rispettivamente). Le curve (ROC) Receiver Operating Characteristic sono state tracciate per i tre indici. Le aree sotto le curve ROC per SPV, ΔVpeak e CVCDI erano rispettivamente 0,91 (CI 0,73-0,99, P = 0,0001), 0,95 (CI 0,77-1; P = 0,0001) e 0,78 (CI 0,56-0,92; P = 0,015). I miglior valori di cut-off sono stati 6,7% per la SPV (sensibilità, 77,78%, specificità 93,33%), 9,4% per ΔVpeak (sensibilità, 88,89%, specificità, 100%) e 24% per CVCDI (sensibilità, 77,78%, 73,33).

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Franci, Paolo
Ph.D. course:Ciclo 29 > Corsi 29 > SCIENZE VETERINARIE
Data di deposito della tesi:21 January 2018
Anno di Pubblicazione:13 November 2018
Key Words:Cane Anestesia Volemia Flusso aortico Vena cava caudale
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > VET/09 Clinica chirurgica veterinaria
Struttura di riferimento:Dipartimenti > Dipartimento di Medicina Animale, Produzioni e Salute
Codice ID:11048
Depositato il:09 Nov 2018 10:39
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Achar, S.K., Sagar, M.S., Shetty, R., Samanth, J., Nayac, C., Madhu, V., Shetty, T., 2016. Respiratory variation in aortic flow peak velocity and inferior vena cava distensibility as indices of fluid responsiveness in anaesthetised and mechanically ventilated children. Indian Journal of Anaesthesia 60 (2):121-126 Cerca con Google

Baek, S.M., Makabali, G.G., Bryan-Brown, C.W., Kusek, J.M., Shoemaker, W.C.,1975. Plasma expansion in surgical patients with high central venous pressure (CVP); the relationship of blood volume to hematocrit, CVP, pulmonary wedge pressure, and cardiorespiratory changes. Surgery 78(3):304-15. Cerca con Google

Barbier, C., Loubieres, Y., Schmit, C., Hayon, J., Ricome, J.L., Jardin, F., Vieillard-Baron, A., 2004. Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Medicine 30, 1740-1746. Cerca con Google

Benes, J., Giglio, M., Brienza, N., Michard, F., 2014. The effect of goal-directed fluid therapy based on dynamic parameters on post-surgical outcome: a meta-analysis of randomized controlled trials. Critical Care 18, 584-594 Cerca con Google

Berne, R.M., Levy, M.N., 1990. Hemodynamics. In: Principles of physiology. St. Luis: CV Mosby, 245-254. Cerca con Google

Brandstrup, B., 2006. Fluid therapy for the surgical patient. Best Practice & Research Clinical Anaesthesiology 20(2):265-83. Cerca con Google

Brun, C., Zieleskiewicz, L., Textoris, J., Muller, L., Bellefleur, J.P., Antonini, F., Tourret, M., Ortega, D., Vellin, A., Lefrant, J.Y. et al., 2013. Prediction of fluid responsiveness in severe preeclamptic patients with oliguria. Intensive Care Medicine 39, 593-600. Cerca con Google

Bundgaard-Nielsen, M., Secher, N.H., Kehlet, H., 2009. 'Liberal' vs. 'restrictive' perioperative fluid therapy--a critical assessment of the evidence. Acta Anaesthesiologica Scandinavica 53(7):843-851. Cerca con Google

Chappel, D., Hofmann-Kiefer, K., Conzen, P., Rehm, M., 2008. A rational approach to perioperative fluid management. Anesthesiology 109:723-740 Cerca con Google

Coste, J., Pouchot, J., 2003. A grey zone for quantitative diagnostic and screening tests. International Journal of Epidemiology 32, 304-313 Cerca con Google

Coyle, J.P., Teplick, R.S., Long M.C., Davison, J.K., 1983. Respiratory variations in systemic arterial pressure as an indicator of volume status. Anesthesiology 59, A53 Cerca con Google

  Cerca con Google

da Silva Ramos, F.J., de Oliveira, E.M., Park, M., Schettino, G.P., Azevedo, L.C., 2011. Heart-lung interactions with different ventilatory settings during acute lung injury and hypovolaemia: an experimental study. British Journal of Anaesthesia 106, 394-402. Cerca con Google

Denault, A.Y., Gorcsan, J. 3rd., Pinsky, M.R., 2001. Dynamic effects of positive-pressure ventilation on canine left ventricular pressure-volume relations. Journal of Applied Physiology 91(1):298-308. Cerca con Google

de Oliveira, O.H., Freitas, F.G., Ladeira, R.T., Fischer, C.H., Bafi, A.T., Azevedo, L.C., Machado, F.R., 2016. Comparison between respiratory changes in the inferior vena cava diameter and pulse pressure variation to predict fluid responsiveness in postoperative patients. Journal of Critical Care 34, 46-49. Cerca con Google

Davis H., Jensen T., Johnson A., Knowles P., Meyer R., Rucinsky R., Shafford H., 2013. Fluid therapy guidelines for dogs and cats. Journal of American Animal Hospital Association, 149-159. Cerca con Google

Desgranges, F.P., Desebbe, O., Pereira de Souza Neto, E., Raphael, D., Chassard, D., 2016. Respiratory variation in aortic blood flow peak velocity to predict fluid responsiveness in mechanically ventilated children: a systematic review and meta-analysis. Paediatric Anaesthesia 26, 37-47. Cerca con Google

Durand, P., Chevret, L., Essouri, S., Haas, V., Devictor, D., 2008. Respiratory variations in aortic blood flow predict fluid responsiveness in ventilated children. Intensive Care Medicine 34, 888-894. Cerca con Google

Feissel, M., Michard, F., Mangin, I., Ruyer, O., Faller, J.P., Teboul, J.L., 2001. Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest 119, 867-873. Cerca con Google

Feissel, M., Michard, F., Faller, J.P., Teboul, J.L., 2004. The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Medicine 30, 1834-1837. Cerca con Google

Gan, H., Cannesson, M., Chandler, J.R., Ansermino, J.M., 2013. Predicting fluid responsiveness in children: a systematic review. Anesthesia and Analgesia 117, 1380-1392. Cerca con Google

Guerin, L., Monnet, X., Teboul, J.L., 2013. Monitoring volume and fluid responsiveness: from static to dynamic indicators. Best Practice & Research Clinical Anaesthesiology 27(2):177-85. Cerca con Google

Guyton, A.C., 1955. Determination of cardiac output by equating venous return curves with cardiac response curves. Physiology Reviews 35(1):123-129. Cerca con Google

Guyton, A.C., Lindsey, A.W., Kaufmann, B.N.,1955. Effect of mean circulatory filling pressure and other peripheral circulatory factors on cardiac output. American Journal of Physiology 180(3):463–468. Cerca con Google

Guyton, A.C., Lindsey, A.W., Abernathy, B., Richardson, T., 1957. Venous return at various right atrial pressures and the normal venous return curve. American Journal of Physiology. 189(3):609-15. Cerca con Google

Holte, K., Kehlet, H., 2006. Fluid therapy and surgical outcomes in elective surgery: a need for reassessment in fast-track surgery. Journal of the American College of Surgeons 202(6):971-89. Cerca con Google

Hu, X., Weinbaum, S., 1999 A new view of Starling's hypothesis at the microstructural level. Microvascular Research 58(3):281-304. Cerca con Google

Hughes, R.E., Magovern, G.J., 1959 The relationship between right atrial pressure and blood volume. Archives of Surgery; 79:238. Cerca con Google

Hutchinson, K.M., Shaw, S.P., 2016. A review of central venous pressure and its reliability as a hemodynamic monitoring tool in veterinary medicine. Topics in Companion Animal Medicine; 31(3):109-121. Cerca con Google

Jardin, F., Farcot, J.C., Gueret, P., Prost, J.F., Ozier, Y., Bourdarias, J.P., 1983. Cyclic changes in arterial pulse during respiratory support. Circulation 68, 266-274. Cerca con Google

Levick, J.R., Michel, C.C., 2010. Microvascular fluid exchange and the revised Starling principle. Cardiovascular Research. 87(2):198-210. Cerca con Google

Lewis, J.F., Kuo, L.C., Nelson, J.G., Limacher, M.C., Quinones, M.A., 1984. Pulsed Doppler echocardiographic determination of stroke volume and cardiac output: clinical validation of two new methods using the apical window. Circulation 70, 425-431. Cerca con Google

Luecke, T., Pelosi, P., 2005. Clinical review: positive end-expiratory pressure and cardiac output. Critical Care 9, 607-621. Cerca con Google

Marik, P.E., Pram, M., Vahid, B., 2008. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 134:172-178. Cerca con Google

Marik, P.E., Cavallazzi, R., Vasu, T., Hirani, A., 2009. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Critical Care Medicine 37, 2642-2647. Cerca con Google

Marik, P.E., Monnet, X., Teboul, J.L., 2011. Hemodynamic parameters tu guide fluid therapy. Annals of Intensive Care 1:1. Cerca con Google

Myburgh, J.A., Mythen, M.G., 2013. Resuscitation fluids. The New England Journal of Medicine 369:1243-125. Cerca con Google

Meneghini, C., Rabozzi, R., Franci, P., 2016. Correlation of the ratio of caudal vena cava diameter and aorta diameter with systolic pressure variation in anesthetized dogs. American Journal of Veterinary Research 77, 137-143. Cerca con Google

Michard, F., Teboul, J.L., 2002. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest 121, 2000-2008. Cerca con Google

Michard, F., 2005. Changes in arterial pressure during mechanical ventilation. Anesthesiology 103, 419-428; quiz 449-445. Cerca con Google

. Cerca con Google

Michard., F., Boussat, S., Chemla, D., Anguel, N., Mercat, A., Lecarpentier, Y., Richard, C., Pinsky, M.R., Teboul, J.L., 2000. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. American Journal of Respiratory Critical Care Medicine 162(1):134-8 Cerca con Google

. Cerca con Google

Muir, W.W., Ueyama, Y., Noel-Morgan, J., Kilborne, A., Page, J., 2017. A Systematic Review of the Quality of IV Fluid Therapy in Veterinary Medicine. Frontiers in Veterinary Science (4),127. Cerca con Google

Nguyen, H.B., Losey, T., Rasmussen, J., Oliver, R., Guptill, M., Wittlake, W.A., Corbett, S.W., 2006. Interrater reliability of cardiac output measurements by transcutaneous Doppler ultrasound: implications for noninvasive hemodynamic monitoring in the ED. The American Journal of Emergency Medicine 24, 828-835. Cerca con Google

Nichols, W.W., O’Rourke, M.F., 1990. Vascular impedence. In: Blood flow in arteries: theoretical, experimental and clinical principles. Philadelphia: Lea and Febiger 283-329. Cerca con Google

Pereira de Souza Neto, E., Grousson, S., Duflo, F., Ducreux, C., Joly, H., Convert, J., Mottolese, C., Dailler, F., Cannesson, M., 2011. Predicting fluid responsiveness in mechanically ventilated children under general anaesthesia using dynamic parameters and transthoracic echocardiography. British Journal of Anaesthesia 106, 856-864. Cerca con Google

Perel, A., Pizov, R., Cotev, S., 1987. Systolic blood pressure variation is a sensitive indicator of hypovolemia in ventilated dogs subjected to graded hemorrhage. Anesthesiology 67, 498-502. Cerca con Google

Pinsky, M.R., 1984. Instantaneous venous return curves in an intact canine preparation. Journal of Applied Physiology 56(3):765-71. Cerca con Google

Pinsky, M.R., 1997. The hemodynamic consequences of mechanical ventilation: an evolving story. Intensive Care Medicine 23, 493-503. Cerca con Google

Pinsky, M.R., 2002. Functional hemodynamic monitoring. Intensive Care Medicine 20:386-388. Cerca con Google

Pinsky, M.R., 2014. Functional haemodynamic monitoring. Current Opinion in Critical Care 20(3):288-93. Cerca con Google

Pinsky, M.R., 2015. Understanding preload reserve using functional hemodynamic monitoring. Intensive Care Medicine 41:1480–1482 Cerca con Google

Pinsky, M.R., 2017. Combining functional hemodynamic measures to increase precision in defining volume responsiveness. Critical Care Medicine 45(3):558-559. Cerca con Google

Rabozzi, R., Franci, P., 2014. Use of systolic pressure variation to predict the cardiovascular response to mini-fluid challenge in anaesthetised dogs. The Veterinary Journal 202, 367-37. Cerca con Google

Rahbari, N.N., Zimmermann, J.B., Schmidt, T., Koch, M., Weigand, M.A., Weitz, J., 2009. Meta-analysis of standard, restrictive and supplemental fluid administration in colorectal surgery. British Journal of Surgery 96(4), 331-341. Cerca con Google

Rothe, C., 1983. Venous system: physiology of the capacitance vessels. In: Handbook of Physiology; American Physiological Society, Bethesda 357-352. Cerca con Google

Sellgren, J., Ejnell, H., Elam, M., Pontén, J., Wallin, B.G., 1994. Sympathetic musclenerve activity, peripheral blood flows, and baroreceptor reflexes in humans during propofol anesthesia and surgery. Anesthesiology 80(3):534-44. Cerca con Google

Starling, E.H., 1896. On the absorption of fluids from the connective tissue space. The Journal of physiology 19, 312-326- Cerca con Google

Starling, E. H., 1918. The Linacre lecture on the law of the heart. Longmans, Green & Company. Cerca con Google

Stephenson, R.B., 2005. Cuore come pompa. In: Manuale di fisiologia veterinaria. Antonio Delfino editore – Roma. 155-160. Cerca con Google

Stephenson, R.B., 2005. Visione d’insieme dell’attività cardiovascolare. In: Manuale di fisiologia veterinaria. Antonio Delfino editore – Roma. 110-122. Cerca con Google

Stewart, R.M., Park, P.K., Hunt, J.P., McIntyre, R.C. Jr, McCarthy, J., Zarzabal, L.A., Michalek, J.E., 2009. Less is more: improved outcomes in surgical patients with conservative fluid administration and central venous catheter monitoring. Journal of American College Surgeons 208(5), 725-735 Cerca con Google

Vallet, B., Blanloeil, Y., Cholley, B., Orliaguet, G., Pierre, S., Tavernier, B., 2013. Guidelines for perioperative haemodynamic optimization. Annales Françaises d’Anesthésie et de Réanimation 32, 151-158. Cerca con Google

Via, G., Tavazzi, G., Price, S., 2016. Ten situations where inferior vena cava ultrasound may fail to accurately predict fluid responsiveness: a physiologically based point of view. Intensive Care Medicine 42(7):1164-7. Cerca con Google

Wiedemann H.P., Wheeler A.P., Bernard G.R., Thompson B.T., Hayden D., deBoisblanc B., Connors A.F. Jr, Hite R.D., Harabin A.L., 2006. Comparison of two fluid-management strategies in acute lung injury. New England Journal of Medicine 354(24), 2567-75. Cerca con Google

Wilms H., Mittal A., Haydock M.D., van den Heever M., Devaud M., Windsor J.A., 2014. A systematic review of goal directed fluid therapy: rating of evidence for goals and monitoring methods. Journal of Critical Care 29(2), 204-209. Cerca con Google

Yang, X., Du, B., 2014. Does pulse pressure variation predict fluid responsiveness in critically ill patients? A systematic review and meta-analysis. Critical Care 18, 650-663. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record