Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

zabeo, eva (2018) Circulating microparticles and hypercoagulability in obesity. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document
4051Kb

Abstract (english)

Obesity has been associated with hypercoagulability and increased risk of both arterial and venous thromboembolic events. Many different and complex changes in plasma coagulation factors have been described in patients with obesity. Conventional plasma recalcification times don’t assess the entire process in physiological and holistic manner.
In a case-control study, the presence of hypercoagulability was evaluated in free of metabolic syndrome overweight and obese patients by measuring different subtypes of microparticles (MPs), thrombin generation, whole blood rotation thromboelastometry (ROTEM®) and impedance aggregometry (Multiplate®). Furthermore, the levels of MPs were prospectively measured in a group of 20 III degree obese patients before and after 12 months bariatric surgery in order to investigate the effect of weight loss.
Twenty overweight patients (body mass index [BMI] range 25–29.9 kg/m2), 20 with I degree (30-34.9 kg/m2), 20 with II degree (35–39.9 kg/m2) and 20 with III degree obesity (< 40 kg/m2) were enrolled and compared to 40 age and gender-matched normal weight individuals.
Microparticles: a significant increase in median levels of all MP subtypes was observed in the three degrees of obese patients compared to controls. All MPs, except for endothelial-derived MP, all MPs subtypes had significantly decreased at T12. Thrombin generation: obese patients had a significantly shorter median lag time, higher median peak thrombin and increased median endogenous thrombin potential compared to controls. Thromboelastometry: in INTEM and EXTEM tests MCF and AUC were significantly increased in III degree obese compared with controls; MCF in FIBTEM was significantly higher in I, II and III degree obesity than controls. Impedance aggregometry: a significant difference in platelet aggregation was found between III degree obese subjects and healthy controls in each of the tests considered.
We conclude that obesity is associated with overproduction of procoagulant MP and increase thrombin generation. A relationship between hypercoagulability detected by whole blood thromboelastometry and aggregometry and increased fat mass is shown. Assessment of global hemostasis tests may be helpful in the early characterization of the prothrombotic state in obese patients.

Abstract (italian)

L'obesità è una condizione patologica notoriamente associata ad uno stato di ipercoagulabilità e ad un aumentato rischio di eventi tromboembolici sia arteriosi che venosi. Sono state descritte numerose alterazioni di diversi fattori plasmatici della coagulazione negli obesi, ma i convenzionali test di ricalcificazione del plasma non valutano l'intero processo coagulativo in modo fisiologico.
In questo studio caso-controllo, la presenza di ipercoagulabilità è stata valutata in soggetti soprappeso e obesi in assenza di sindrome metabolica, misurando differenti sottopopolazioni di microparticelle (MP), la trombinogenerazione, la tromboelastometria su sangue intero (ROTEM®) e l’aggregometria a impedenza (Multiplate®). Inoltre, i livelli di MP sono stati misurati prospetticamente in un gruppo di 20 pazienti obesi di III grado prima e 12 mesi dopo un intervento di chirurgia bariatrica per studiare l'effetto del calo ponderale.
Venti pazienti in sovrappeso (indice di massa corporea [BMI] range 25-29,9 kg /m2), 20 con grado I (30-34,9 kg/m2), 20 con II grado (35-39,9 kg/m2) e 20 con III grado di obesità (< 40 kg/m2) sono stati arruolati e confrontati con 40 soggetti normopeso confrontabili per sesso e per età.
Microparticelle: è stato osservato un aumento significativo dei livelli mediani di tutti i sottotipi di MP nei tre differenti gradi di obesità rispetto ai controlli. Tutte le differenti sottopopolazioni di microparticelle, ad eccezione di quelle di derivazione endoteliale, sono risultate significativamente diminuite al T12. Trombinogenerazione: i pazienti obesi hanno presentato un tempo di latenza mediano significativamente più breve, un picco di trombina mediano più elevato e un potenziale endogeno di trombina mediano maggiore rispetto ai controlli. Tromboelastometria: nei test INTEM ed EXTEM, MCF e AUC erano significativamente aumentati in soggetti obesi di III grado rispetto ai controlli; l'MCF in FIBTEM era significativamente più alta negli obesi di I, II e III grado rispetto ai controlli. Aggregometria: una differenza significativa nell'aggregazione piastrinica è stata riscontrata tra soggetti obesi di grado III e controlli sani in ciascuno dei test considerati.
Concludiamo che l'obesità è associata ad un aumentata produzione di microparticelle procoagulanti e ad un aumentata sintesi di trombina. È stata descritta una relazione tra ipercoagulabilità rilevata con tromboelastometria su sangue intero e aggregometria e l’aumento della massa grassa. Pertanto, la valutazione con test di emostasi globale può essere utile per la caratterizzazione precoce dello stato protrombotico nei pazienti obesi.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Vettor, Roberto
Ph.D. course:Ciclo 29 > Corsi 29 > SCIENZE MEDICHE, CLINICHE E SPERIMENTALI
Data di deposito della tesi:28 January 2018
Anno di Pubblicazione:2018
Key Words:obesità/obesity; microparticelle/microparticles; trombina/thrombin; emostasi/haemostasis; ipercoagulabilità/hypercoagulability; cardiovascolare/cardiovascular
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/09 Medicina interna
Struttura di riferimento:Dipartimenti > Dipartimento di Medicina
Codice ID:11068
Depositato il:25 Oct 2018 15:44
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. ADA timely statement on Nutrition and Your Health: Dietary Guidelines for Americans. J Am Diet Assoc, 1990. 90(12): p. 1720. Cerca con Google

2. Oliveros, E., et al., The concept of normal weight obesity. Prog Cardiovasc Dis, 2014. 56(4): p. 426-33. Cerca con Google

3. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser, 2000. 894: p. i-xii, 1-253. Cerca con Google

4. Nuttall, F.Q., Body Mass Index: Obesity, BMI, and Health: A Critical Review. Nutr Today, 2015. 50(3): p. 117-128. Cerca con Google

5. National Task Force on the, P. and O. Treatment of, Overweight, obesity, and health risk. Arch Intern Med, 2000. 160(7): p. 898-904. Cerca con Google

6. Sowers, J.R., Obesity as a cardiovascular risk factor. Am J Med, 2003. 115 Suppl 8A: p. 37S-41S. Cerca con Google

7. Jung, C.H., W.J. Lee, and K.H. Song, Metabolically healthy obesity: a friend or foe? Korean J Intern Med, 2017. 32(4): p. 611-621. Cerca con Google

8. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: executive summary. Expert Panel on the Identification, Evaluation, and Treatment of Overweight in Adults. Am J Clin Nutr, 1998. 68(4): p. 899-917. Cerca con Google

9. Ogden, C.L., et al., Prevalence of obesity among adults: United States, 2011-2012. NCHS Data Brief, 2013(131): p. 1-8. Cerca con Google

10. Ng, M., et al., Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, 2014. 384(9945): p. 766-81. Cerca con Google

11. Duranti, S., et al., Obesity and microbiota: an example of an intricate relationship. Genes Nutr, 2017. 12: p. 18. Cerca con Google

12. Kant, A.K. and B.I. Graubard, Secular trends in patterns of self-reported food consumption of adult Americans: NHANES 1971-1975 to NHANES 1999-2002. Am J Clin Nutr, 2006. 84(5): p. 1215-23. Cerca con Google

13. Prentice, A.M. and S.A. Jebb, Obesity in Britain: gluttony or sloth? BMJ, 1995. 311(7002): p. 437-9. Cerca con Google

14. Dietz, W.H., Jr. and S.L. Gortmaker, Do we fatten our children at the television set? Obesity and television viewing in children and adolescents. Pediatrics, 1985. 75(5): p. 807-12. Cerca con Google

15. Farooqi, I.S. and S. O'Rahilly, New advances in the genetics of early onset obesity. Int J Obes (Lond), 2005. 29(10): p. 1149-52. Cerca con Google

16. Whitaker, R.C., et al., Predicting obesity in young adulthood from childhood and parental obesity. N Engl J Med, 1997. 337(13): p. 869-73. Cerca con Google

17. Neel, J.V., Diabetes mellitus: a "thrifty" genotype rendered detrimental by "progress"? 1962. Bull World Health Organ, 1999. 77(8): p. 694-703; discussion 692-3. Cerca con Google

18. da Fonseca, A.C.P., et al., Genetics of non-syndromic childhood obesity and the use of high-throughput DNA sequencing technologies. J Diabetes Complications, 2017. 31(10): p. 1549-1561. Cerca con Google

19. Peeters, A., et al., Obesity in adulthood and its consequences for life expectancy: a life-table analysis. Ann Intern Med, 2003. 138(1): p. 24-32. Cerca con Google

20. Fontaine, K.R., et al., Years of life lost due to obesity. JAMA, 2003. 289(2): p. 187-93. Cerca con Google

21. Pi-Sunyer, F.X., The obesity epidemic: pathophysiology and consequences of obesity. Obes Res, 2002. 10 Suppl 2: p. 97S-104S. Cerca con Google

22. Dagenais, G.R., et al., Prognostic impact of body weight and abdominal obesity in women and men with cardiovascular disease. Am Heart J, 2005. 149(1): p. 54-60. Cerca con Google

23. Al Suwaidi, J., et al., Obesity is independently associated with coronary endothelial dysfunction in patients with normal or mildly diseased coronary arteries. J Am Coll Cardiol, 2001. 37(6): p. 1523-8. Cerca con Google

24. Gaudet, D., et al., Relationships of abdominal obesity and hyperinsulinemia to angiographically assessed coronary artery disease in men with known mutations in the LDL receptor gene. Circulation, 1998. 97(9): p. 871-7. Cerca con Google

25. Petrauskiene, V., et al., The risk of venous thromboembolism is markedly elevated in patients with diabetes. Diabetologia, 2005. 48(5): p. 1017-21. Cerca con Google

26. Goldhaber, S.Z., et al., A prospective study of risk factors for pulmonary embolism in women. JAMA, 1997. 277(8): p. 642-5. Cerca con Google

27. Deguchi, H., et al., High-density lipoprotein deficiency and dyslipoproteinemia associated with venous thrombosis in men. Circulation, 2005. 112(6): p. 893-9. Cerca con Google

28. Doggen, C.J., et al., Serum lipid levels and the risk of venous thrombosis. Arterioscler Thromb Vasc Biol, 2004. 24(10): p. 1970-5. Cerca con Google

29. Ageno, W., et al., The metabolic syndrome and the risk of venous thrombosis: a case-control study. J Thromb Haemost, 2006. 4(9): p. 1914-8. Cerca con Google

30. Cushman, M., et al., Deep vein thrombosis and pulmonary embolism in two cohorts: the longitudinal investigation of thromboembolism etiology. Am J Med, 2004. 117(1): p. 19-25. Cerca con Google

31. Prandoni, P., Venous and arterial thrombosis: Two aspects of the same disease? Clin Epidemiol, 2009. 1: p. 1-6. Cerca con Google

32. Ageno, W., et al., Cardiovascular risk factors and venous thromboembolism: a meta-analysis. Circulation, 2008. 117(1): p. 93-102. Cerca con Google

33. Ray, J.G., Dyslipidemia, statins, and venous thromboembolism: a potential risk factor and a potential treatment. Curr Opin Pulm Med, 2003. 9(5): p. 378-84. Cerca con Google

34. Sundell, I.B., et al., Fibrinolytic variables are related to age, sex, blood pressure, and body build measurements: a cross-sectional study in Norsjo, Sweden. J Clin Epidemiol, 1989. 42(8): p. 719-23. Cerca con Google

35. Landin, K., et al., Abdominal obesity is associated with an impaired fibrinolytic activity and elevated plasminogen activator inhibitor-1. Metabolism, 1990. 39(10): p. 1044-8. Cerca con Google

36. Sakkinen, P.A., et al., Clustering of procoagulation, inflammation, and fibrinolysis variables with metabolic factors in insulin resistance syndrome. Am J Epidemiol, 2000. 152(10): p. 897-907. Cerca con Google

37. Englyst, N.A., et al., A novel role for CD36 in VLDL-enhanced platelet activation. Diabetes, 2003. 52(5): p. 1248-55. Cerca con Google

38. Michelson, A.D., How platelets work: platelet function and dysfunction. J Thromb Thrombolysis, 2003. 16(1-2): p. 7-12. Cerca con Google

39. Ruggeri, Z.M., Platelets in atherothrombosis. Nat Med, 2002. 8(11): p. 1227-34. Cerca con Google

40. Duke, W.W., The relation of blood platelets to hemorrhagic disease. By W.W. Duke. JAMA, 1983. 250(9): p. 1201-9. Cerca con Google

41. Born, G.V., Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature, 1962. 194: p. 927-9. Cerca con Google

42. Paniccia, R., et al., Platelet function tests: a comparative review. Vasc Health Risk Manag, 2015. 11: p. 133-48. Cerca con Google

43. Macfarlane, R.G., An Enzyme Cascade in the Blood Clotting Mechanism, and Its Function as a Biochemical Amplifier. Nature, 1964. 202: p. 498-9. Cerca con Google

44. Nair, S.C., et al., Tests of global haemostasis and their applications in bleeding disorders. Haemophilia, 2010. 16 Suppl 5: p. 85-92. Cerca con Google

45. Reiner, A.P., D.S. Siscovick, and F.R. Rosendaal, Hemostatic risk factors and arterial thrombotic disease. Thromb Haemost, 2001. 85(4): p. 584-95. Cerca con Google

46. Mertens, I. and L.F. Van Gaal, Obesity, haemostasis and the fibrinolytic system. Obes Rev, 2002. 3(2): p. 85-101. Cerca con Google

47. Hoffman, M. and D.M. Monroe, 3rd, The action of high-dose factor VIIa (FVIIa) in a cell-based model of hemostasis. Dis Mon, 2003. 49(1): p. 14-21. Cerca con Google

48. Loskutoff, D.J. and F. Samad, The adipocyte and hemostatic balance in obesity: studies of PAI-1. Arterioscler Thromb Vasc Biol, 1998. 18(1): p. 1-6. Cerca con Google

49. Rijken, D.C. and S. Uitte de Willige, Inhibition of Fibrinolysis by Coagulation Factor XIII. Biomed Res Int, 2017. 2017: p. 1209676. Cerca con Google

50. Lundgren, C.H., et al., Elaboration of type-1 plasminogen activator inhibitor from adipocytes. A potential pathogenetic link between obesity and cardiovascular disease. Circulation, 1996. 93(1): p. 106-10. Cerca con Google

51. Abdollahi, M., M. Cushman, and F.R. Rosendaal, Obesity: risk of venous thrombosis and the interaction with coagulation factor levels and oral contraceptive use. Thromb Haemost, 2003. 89(3): p. 493-8. Cerca con Google

52. Ilich, A., I. Bokarev, and N.S. Key, Global assays of fibrinolysis. Int J Lab Hematol, 2017. 39(5): p. 441-447. Cerca con Google

53. Hoffman, M. and D.M. Monroe, 3rd, A cell-based model of hemostasis. Thromb Haemost, 2001. 85(6): p. 958-65. Cerca con Google

54. Morel, O., et al., Cellular mechanisms underlying the formation of circulating microparticles. Arterioscler Thromb Vasc Biol, 2011. 31(1): p. 15-26. Cerca con Google

55. VanWijk, M.J., et al., Microparticles in cardiovascular diseases. Cardiovasc Res, 2003. 59(2): p. 277-87. Cerca con Google

56. Bevers, E.M., et al., Generation of prothrombin-converting activity and the exposure of phosphatidylserine at the outer surface of platelets. Eur J Biochem, 1982. 122(2): p. 429-36. Cerca con Google

57. Hugel, B., et al., Membrane microparticles: two sides of the coin. Physiology (Bethesda), 2005. 20: p. 22-7. Cerca con Google

58. Mause, S.F. and C. Weber, Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res, 2010. 107(9): p. 1047-57. Cerca con Google

59. Burger, D., et al., Microparticles: biomarkers and beyond. Clin Sci (Lond), 2013. 124(7): p. 423-41. Cerca con Google

60. Varon, D. and E. Shai, Platelets and their microparticles as key players in pathophysiological responses. J Thromb Haemost, 2015. 13 Suppl 1: p. S40-6. Cerca con Google

61. Piccin, A., W.G. Murphy, and O.P. Smith, Circulating microparticles: pathophysiology and clinical implications. Blood Rev, 2007. 21(3): p. 157-71. Cerca con Google

62. van der Zee, P.M., et al., P-selectin- and CD63-exposing platelet microparticles reflect platelet activation in peripheral arterial disease and myocardial infarction. Clin Chem, 2006. 52(4): p. 657-64. Cerca con Google

63. Kreutz, R.P., et al., Morbid obesity and metabolic syndrome in Ossabaw miniature swine are associated with increased platelet reactivity. Diabetes Metab Syndr Obes, 2011. 4: p. 99-105. Cerca con Google

64. Csongradi, E., et al., Increased levels of platelet activation markers are positively associated with carotid wall thickness and other atherosclerotic risk factors in obese patients. Thromb Haemost, 2011. 106(4): p. 683-92. Cerca con Google

65. Basili, S., et al., Insulin resistance as a determinant of platelet activation in obese women. J Am Coll Cardiol, 2006. 48(12): p. 2531-8. Cerca con Google

66. Hameed, A., et al., Levels of platelet-derived microparticles and soluble p-selectin in patients of acute myocardial infarction (case control study). J Pak Med Assoc, 2017. 67(7): p. 998-1003. Cerca con Google

67. Hayward, C.P., Platelet activation in the pathogenesis of obesity and vascular disease. Thromb Haemost, 2011. 106(4): p. 567-8. Cerca con Google

68. Deng, F., S. Wang, and L. Zhang, Endothelial Microparticles Act as Novel Diagnostic and Therapeutic Biomarkers of Diabetes and Its Complications: A Literature Review. Biomed Res Int, 2016. 2016: p. 9802026. Cerca con Google

69. Mutin, M., F. Dignat-George, and J. Sampol, Immunologic phenotype of cultured endothelial cells: quantitative analysis of cell surface molecules. Tissue Antigens, 1997. 50(5): p. 449-58. Cerca con Google

70. Jimenez, J.J., et al., Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis. Thromb Res, 2003. 109(4): p. 175-80. Cerca con Google

71. Leroyer, A.S., et al., Endothelial-derived microparticles: Biological conveyors at the crossroad of inflammation, thrombosis and angiogenesis. Thromb Haemost, 2010. 104(3): p. 456-63. Cerca con Google

72. Yun, C.H., et al., Increased circulating endothelial microparticles and carotid atherosclerosis in obstructive sleep apnea. J Clin Neurol, 2010. 6(2): p. 89-98. Cerca con Google

73. Li, M., et al., Tobacco smoke induces the generation of procoagulant microvesicles from human monocytes/macrophages. Arterioscler Thromb Vasc Biol, 2010. 30(9): p. 1818-24. Cerca con Google

74. Trzepizur, W., et al., Nocturnal release of leukocyte-derived microparticles in males with obstructive sleep apnoea. Eur Respir J, 2011. 37(5): p. 1293-5. Cerca con Google

75. Angelillo-Scherrer, A., Leukocyte-derived microparticles in vascular homeostasis. Circ Res, 2012. 110(2): p. 356-69. Cerca con Google

76. Mackman, N., R.E. Tilley, and N.S. Key, Role of the extrinsic pathway of blood coagulation in hemostasis and thrombosis. Arterioscler Thromb Vasc Biol, 2007. 27(8): p. 1687-93. Cerca con Google

77. Owens, A.P., 3rd and N. Mackman, Microparticles in hemostasis and thrombosis. Circ Res, 2011. 108(10): p. 1284-97. Cerca con Google

78. Alkhatatbeh, M.J., et al., The putative diabetic plasma marker, soluble CD36, is non-cleaved, non-soluble and entirely associated with microparticles. J Thromb Haemost, 2011. 9(4): p. 844-51. Cerca con Google

79. Alkhatatbeh, M.J., et al., The origin of circulating CD36 in type 2 diabetes. Nutr Diabetes, 2013. 3: p. e59. Cerca con Google

80. van Veen, J.J., A. Gatt, and M. Makris, Thrombin generation testing in routine clinical practice: are we there yet? Br J Haematol, 2008. 142(6): p. 889-903. Cerca con Google

81. Hemker, H.C., et al., The calibrated automated thrombogram (CAT): a universal routine test for hyper- and hypocoagulability. Pathophysiol Haemost Thromb, 2002. 32(5-6): p. 249-53. Cerca con Google

82. Beijers, H.J., et al., Body composition as determinant of thrombin generation in plasma: the Hoorn study. Arterioscler Thromb Vasc Biol, 2010. 30(12): p. 2639-47. Cerca con Google

83. Ay, L., et al., Thrombin generation in morbid obesity: significant reduction after weight loss. J Thromb Haemost, 2010. 8(4): p. 759-65. Cerca con Google

84. Luddington, R.J., Thrombelastography/thromboelastometry. Clin Lab Haematol, 2005. 27(2): p. 81-90. Cerca con Google

85. Spiezia, L., et al., Whole blood coagulation assessment using rotation thrombelastogram thromboelastometry in patients with acute deep vein thrombosis. Blood Coagul Fibrinolysis, 2008. 19(5): p. 355-60. Cerca con Google

86. Born, G.V. and M.J. Cross, Effect of adenosine diphosphate on the concentration of platelets in circulating blood. Nature, 1963. 197: p. 974-6. Cerca con Google

87. Cardinal, D.C. and R.J. Flower, The electronic aggregometer: a novel device for assessing platelet behavior in blood. J Pharmacol Methods, 1980. 3(2): p. 135-58. Cerca con Google

88. Toth, O., et al., Multiple electrode aggregometry: a new device to measure platelet aggregation in whole blood. Thromb Haemost, 2006. 96(6): p. 781-8. Cerca con Google

89. Breet, N.J., et al., Comparison of platelet function tests in predicting clinical outcome in patients undergoing coronary stent implantation. JAMA, 2010. 303(8): p. 754-62. Cerca con Google

90. Fain, J.N., et al., Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology, 2004. 145(5): p. 2273-82. Cerca con Google

91. Stolarczyk, E., Adipose tissue inflammation in obesity: a metabolic or immune response? Curr Opin Pharmacol, 2017. 37: p. 35-40. Cerca con Google

92. Flier, J.S., Obesity wars: molecular progress confronts an expanding epidemic. Cell, 2004. 116(2): p. 337-50. Cerca con Google

93. Farooqi, I.S., et al., Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor. N Engl J Med, 2007. 356(3): p. 237-47. Cerca con Google

94. Ahima, R.S. and J.S. Flier, Leptin. Annu Rev Physiol, 2000. 62: p. 413-37. Cerca con Google

95. Konstantinides, S., et al., Leptin-dependent platelet aggregation and arterial thrombosis suggests a mechanism for atherothrombotic disease in obesity. J Clin Invest, 2001. 108(10): p. 1533-40. Cerca con Google

96. Corsonello, A., et al., Leptin-dependent platelet aggregation in healthy, overweight and obese subjects. Int J Obes Relat Metab Disord, 2003. 27(5): p. 566-73. Cerca con Google

97. Ruan, H. and H.F. Lodish, Insulin resistance in adipose tissue: direct and indirect effects of tumor necrosis factor-alpha. Cytokine Growth Factor Rev, 2003. 14(5): p. 447-55. Cerca con Google

98. Ruan, H., et al., Profiling gene transcription in vivo reveals adipose tissue as an immediate target of tumor necrosis factor-alpha: implications for insulin resistance. Diabetes, 2002. 51(11): p. 3176-88. Cerca con Google

99. Yoshinaga, R., et al., High-sensitivity C reactive protein as a predictor of inhospital mortality in patients with cardiovascular disease at an emergency department: a retrospective cohort study. BMJ Open, 2017. 7(10): p. e015112. Cerca con Google

100. Corbalan, M.D., et al., Effectiveness of cognitive-behavioral therapy based on the Mediterranean diet for the treatment of obesity. Nutrition, 2009. 25(7-8): p. 861-9. Cerca con Google

101. Jensen, M.D., et al., 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. J Am Coll Cardiol, 2014. 63(25 Pt B): p. 2985-3023. Cerca con Google

102. Hess, D.S. and D.W. Hess, Biliopancreatic diversion with a duodenal switch. Obes Surg, 1998. 8(3): p. 267-82. Cerca con Google

103. Matthews, D.R., et al., Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 1985. 28(7): p. 412-9. Cerca con Google

104. Expert Panel on Detection, E. and A. Treatment of High Blood Cholesterol in, Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA, 2001. 285(19): p. 2486-97. Cerca con Google

105. Koutroumpi, S., et al., Thrombin generation in Cushing's Syndrome: do the conventional clotting indices tell the whole truth? Pituitary, 2014. 17(1): p. 68-75. Cerca con Google

106. Lacroix, R., et al., Standardization of platelet-derived microparticle enumeration by flow cytometry with calibrated beads: results of the International Society on Thrombosis and Haemostasis SSC Collaborative workshop. J Thromb Haemost, 2010. 8(11): p. 2571-4. Cerca con Google

107. Campello, E., et al., Evaluation of a procoagulant phospholipid functional assay as a routine test for measuring circulating microparticle activity. Blood Coagul Fibrinolysis, 2014. 25(5): p. 534-7. Cerca con Google

108. Ten Cate, H., Thrombin generation in clinical conditions. Thromb Res, 2012. 129(3): p. 367-70. Cerca con Google

109. Santilli, F., et al., Platelet activation in obesity and metabolic syndrome. Obes Rev, 2012. 13(1): p. 27-42. Cerca con Google

110. Bordeaux, B.C., et al., Effect of obesity on platelet reactivity and response to low-dose aspirin. Prev Cardiol, 2010. 13(2): p. 56-62. Cerca con Google

111. Darvall, K.A., et al., Obesity and thrombosis. Eur J Vasc Endovasc Surg, 2007. 33(2): p. 223-33. Cerca con Google

112. Rosito, G.A., et al., Association between obesity and a prothrombotic state: the Framingham Offspring Study. Thromb Haemost, 2004. 91(4): p. 683-9. Cerca con Google

113. Morel, O., et al., Short-term very low-calorie diet in obese females improves the haemostatic balance through the reduction of leptin levels, PAI-1 concentrations and a diminished release of platelet and leukocyte-derived microparticles. Int J Obes (Lond), 2011. 35(12): p. 1479-86. Cerca con Google

114. Taura, P., et al., Clinical markers of the hypercoagulable state by rotational thrombelastometry in obese patients submitted to bariatric surgery. Surg Endosc, 2014. 28(2): p. 543-51. Cerca con Google

115. Haas, T., et al., Comparison of thromboelastometry (ROTEM(R)) with standard plasmatic coagulation testing in paediatric surgery. Br J Anaesth, 2012. 108(1): p. 36-41. Cerca con Google

116. Schaden, E., et al., Fibrinogen function after severe burn injury. Burns, 2012. 38(1): p. 77-82. Cerca con Google

117. Kozek-Langenecker, S.A., Perioperative coagulation monitoring. Best Pract Res Clin Anaesthesiol, 2010. 24(1): p. 27-40. Cerca con Google

118. Solomon, C., et al., A comparison of fibrinogen measurement methods with fibrin clot elasticity assessed by thromboelastometry, before and after administration of fibrinogen concentrate in cardiac surgery patients. Transfusion, 2011. 51(8): p. 1695-706. Cerca con Google

119. Helal, O., et al., Increased levels of microparticles originating from endothelial cells, platelets and erythrocytes in subjects with metabolic syndrome: relationship with oxidative stress. Nutr Metab Cardiovasc Dis, 2011. 21(9): p. 665-71. Cerca con Google

120. Zhang, X., et al., Platelet-derived microparticle count and surface molecule expression differ between subjects with and without type 2 diabetes, independently of obesity status. J Thromb Thrombolysis, 2014. 37(4): p. 455-63. Cerca con Google

121. Stepanian, A., et al., Microparticle increase in severe obesity: not related to metabolic syndrome and unchanged after massive weight loss. Obesity (Silver Spring), 2013. 21(11): p. 2236-43. Cerca con Google

122. Gregor, M.F. and G.S. Hotamisligil, Inflammatory mechanisms in obesity. Annu Rev Immunol, 2011. 29: p. 415-45. Cerca con Google

123. Tian, Y.F., et al., Leptin-mediated inflammatory signaling crucially links visceral fat inflammation to obesity-associated beta-cell dysfunction. Life Sci, 2014. 116(1): p. 51-8. Cerca con Google

124. Murakami, T., et al., Impact of weight reduction on production of platelet-derived microparticles and fibrinolytic parameters in obesity. Thromb Res, 2007. 119(1): p. 45-53. Cerca con Google

125. Cheng, V., et al., Restoration of glycemic control in patients with type 2 diabetes mellitus after bariatric surgery is associated with reduction in microparticles. Surg Obes Relat Dis, 2013. 9(2): p. 207-12. Cerca con Google

126. Thorne, R.F., et al., CD36 is a receptor for oxidized high density lipoprotein: implications for the development of atherosclerosis. FEBS Lett, 2007. 581(6): p. 1227-32. Cerca con Google

127. Sanchez, C., et al., Diet modulates endogenous thrombin generation, a biological estimate of thrombosis risk, independently of the metabolic status. Arterioscler Thromb Vasc Biol, 2012. 32(10): p. 2394-404. Cerca con Google

128. Lacroix, R., et al., Standardization of pre-analytical variables in plasma microparticle determination: results of the International Society on Thrombosis and Haemostasis SSC Collaborative workshop. J Thromb Haemost, 2013. Cerca con Google

129. Gheldof, D., et al., Thrombin generation assay and transmission electron microscopy: a useful combination to study tissue factor-bearing microvesicles. J Extracell Vesicles, 2013. 2. Cerca con Google

130. Connor, D.E., et al., The majority of circulating platelet-derived microparticles fail to bind annexin V, lack phospholipid-dependent procoagulant activity and demonstrate greater expression of glycoprotein Ib. Thromb Haemost, 2010. 103(5): p. 1044-52. Cerca con Google

131. Shantsila, E., et al., Circulating microparticles: challenges and perspectives of flow cytometric assessment. Thromb Haemost, 2014. 111(6): p. 1009-14. Cerca con Google

132. Arraud, N., et al., Fluorescence triggering: A general strategy for enumerating and phenotyping extracellular vesicles by flow cytometry. Cytometry A, 2016. 89(2): p. 184-95. Cerca con Google

133. Lacroix, R., et al., Revisited role of microparticles in arterial and venous thrombosis. J Thromb Haemost, 2013. 11 Suppl 1: p. 24-35. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record