Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Abolaffio, Milo (2017) How Turbulence affects living systems? From micro to macro-scales. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document (PhD thesis)
9Mb

Abstract (english)

In this thesis, we study from a physics perspective three problems related to how turbulence affects living systems. The first problem is an aim to quantify how turbulence changes the uptake of nutrients of micro-organisms, using analytical and numerical simulations. The second problem is a quantification of the relationship between the marine turbulence level depicted as the mixed layer depth and the distribution of foraging points of pelagic birds while the third problem is a verification of the theory of olfactory cued navigation in pelagic birds. In the latter we used calculation from turbulence theory and statistical analysis of real GPS tracks.

Abstract (italian)

In questa tesi studiamo da un punto di vista fisico, tre problemi collegati agli effetti della turbolenza (marina e atmosferica)sui sistemi viventi. Il primo problema è una quantificazione del cambio del flusso di nutrienti da parte di un micro-organismo in turbolenza usando metodi sia numerici che analitici.
Il secondo problema è un indagine quantitativa della relazione presente tra i punti di foraggiamento di uccelli pelagici (in particolare le Berte) e la turbolenza marina misurata attraverso la profondità del mixed layer depth. Infine il terzo è invece una verifica dell'ipotesi di navigazione olfattiva da parte delle Berte mettendo in relazione la distribuzione delle lunghezze dei segmenti di volo lineare delle stesse con il livello della turbolenza atmosferica determinato attraverso l'intensità del vento medio. In questi ultimi due argomenti abbiamo usato calcoli derivanti dalla teoria della turbolenza e un analisi statistica delle traiettorie GPS delle Berte.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Maritan, Amos
Supervisor:Maritan, Amos
Ph.D. course:Ciclo 29 > Corsi 29 > FISICA
Data di deposito della tesi:29 January 2018
Anno di Pubblicazione:29 January 2017
Key Words:turbulence, fluxes, habitat selection, Levy walks, GPS-tracks analysis, movement ecology.
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/07 Ecologia
Area 02 - Scienze fisiche > FIS/07 Fisica applicata (a beni culturali, ambientali, biologia e medicina)
Area 09 - Ingegneria industriale e dell'informazione > ING-IND/06 Fluidodinamica
Struttura di riferimento:Dipartimenti > Dipartimento di Fisica e Astronomia "Galileo Galilei"
Codice ID:11075
Depositato il:07 Nov 2018 15:02
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] U Frisch, T Matsumoto, and J Bec. “Singularities of Euler flow? Cerca con Google

Not out of the blue!” In: Journal of Statistical Physics 113.5 (2003), pp. 761–781. Cerca con Google

[2] Edward M Purcell. “Life at low Reynolds number”. In: American journal of physics 45.1 (1977), pp. 3–11. Cerca con Google

[3] Eric Lauga et al. “Swimming in circles: motion of bacteria near solid boundaries”. In: Biophysical journal 90.2 (2006), pp. 400–412. Cerca con Google

[4] Sangtae Kim. “Singularity solutions for ellipsoids in low-Reynolds-number flows: with applications to the calculation of hydrodynamic interactions in suspensions of ellipsoids”. In: International journal of multiphase flow 12.3 (1986), pp. 469–491. Cerca con Google

[5] url: http : / / glossary . ametsoc . org / wiki / Kolmogorov % 27s _similarity_hypotheses (visited on 11/13/2017). Cerca con Google

[6] PK Yeung et al. “Acceleration and dissipation statistics of numerically simulated isotropic turbulence”. In: Physics of fluids 18.6 (2006), p. 065103. Cerca con Google

[7] Andrey Nikolaevich Kolmogorov. “A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number”. In: Journal of Fluid Mechanics 13.1 (1962), pp. 82–85. Cerca con Google

[8] ZOLTAN Neufeld and T Tél. “Advection in chaotically time-dependent open flows”. In: Physical Review E 57.3 (1998), p. 2832. Cerca con Google

[9] G. Falkovich, K. Gaw ȩdzki, and M. Vergassola. “Particles and fields in fluid turbulence”. In: Rev. Mod. Phys. 73 (4 2001), pp. 913–975. doi: 10.1103/RevModPhys.73.913. url: http://link.aps.org/ doi/10.1103/RevModPhys.73.913. Vai! Cerca con Google

[10] Paul G Falkowski. “The role of phytoplankton photosynthesis in global biogeochemical cycles”. In: Photosynthesis research 39.3 (1994), pp. 235– 258. Cerca con Google

[11] Amer Al-Homoud and Miki Hondzo. “Enhanced uptake of dissolved oxygen and glucose by Escherichia coli in a turbulent flow”. In: Applied microbiology and biotechnology 79.4 (2008), pp. 643–655. Cerca con Google

[12] Miki Hondzo and Alfred Wuest. “Do microscopic organisms feel turbulent flows?” In: Environmental science & technology 43.3 (2008), pp. 764–768. Cerca con Google

[13] Jeffrey S Guasto, Roberto Rusconi, and Roman Stocker. “Fluid mechanics of planktonic microorganisms”. In: Annual Review of Fluid Mechanics 44 (2012), pp. 373–400. Cerca con Google

[14] Colin Torney and Zoltán Neufeld. “Transport and aggregation of self-propelled particles in fluid flows”. In: Physical review letters 99.7(2007), p. 078101. Cerca con Google

[15] JT Locsei and TJ Pedley. “Run and tumble chemotaxis in a shearflow: the effect of temporal comparisons, persistence, rotational diffusion, and cell shape”. In: Bulletin of mathematical biology 71.5 (2009), pp. 1089–1116. Cerca con Google

[16] Howard C Berg. E. coli in Motion. Springer Science & Business Media, 2008. Cerca con Google

[17] JAVIER JIMÉNEZ. “Oceanic turbulence at millimeter scales”. In: Oceanographic Literature Review 3.45 (1998), p. 598. Cerca con Google

[18] M Cencini et al. “Dynamics and statistics of heavy particles in turbulent flows”. In: Journal of Turbulence 7 (2006), N36. Cerca con Google

[19] Jeremie Bec et al. “Heavy particle concentration in turbulence at dissipative and inertial scales”. In: Physical review letters 98.8 (2007), p. 084502. Cerca con Google

[20] GK Batchelor. “Mass transfer from a particle suspended in fluid with a steady linear ambient velocity distribution”. In: Journal of Fluid Mechanics 95.2 (1979), pp. 369–400. Cerca con Google

[21] Andreas Acrivos. “A note on the rate of heat or mass transfer from a small particle freely suspended in a linear shear field”. In: Journal of Fluid Mechanics 98.2 (1980), pp. 299–304. Cerca con Google

[22] Chao Yang et al. “Mass/heat transfer from a neutrally buoyant sphere in simple shear flow at finite Reynolds and Peclet numbers”. In: AIChE Journal 57.6 (2011), pp. 1419–1433. Cerca con Google

[23] L Karp-Boss, E Boss, and PA Jumars. “Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion”. In: Oceanographic Literature Review 5.44 (1997), p. 530. Cerca con Google

[24] L. Seuront. Fractals and Multifractals in Ecology and Aquatic Science. CRC Press, 2009. isbn: 9781420004243. url: https://books.google.it/books?id=Far9Bfbw\_J8C. Vai! Cerca con Google

[25] L Gary Leal. Advanced transport phenomena: fluid mechanics and convective transport processes. Cambridge University Press, 2007. Cerca con Google

[26] I.P. Gupalo, I.S. Riazantsev, and V.I. Ulin. “Diffusion on a particle in a homogeneous translational-shear flow”. In: Prikladnaia Matematika i Mekhanika 39 (1975), pp. 497–504. Cerca con Google

[27] Sattar Taheri-Araghi et al. “Cell-size control and homeostasis in bacteria”. In: Current Biology 25.3 (2015), pp. 385–391. Cerca con Google

[28] Anastassia M Makarieva, Victor G Gorshkov, and Bai-Lian Li. “Energetics of the smallest: do bacteria breathe at the same rate as whales?” In: Proceedings of the Royal Society of London B: Biological Sciences 272.1577 (2005), pp. 2219–2224. Cerca con Google

[29] Wikipedia contributors. Renewal theory — Wikipedia, The Free Encyclopedia. [Online; accessed 27-January-2018]. 2017. url: https://en.wikipedia.org/w/index . php ? title = Renewal_theory&oldid=810230743. Vai! Cerca con Google

[30] Amer Al-Homoud and Miki Hondzo. “Energy dissipation estimates in oscillating grid setup: LDV and PIV measurements”. In: Environmental Fluid Mechanics 7.2 (2007), pp. 143–158. Cerca con Google

[31] Òscar Guadayol et al. “Evaluation of oscillating grids and orbital shakers as means to generate isotropic and homogeneous small-scale turbulence in laboratory enclosures commonly used in plankton studies”. In: Limnology and Oceanography: Methods 7.4 (2009), pp. 287–303. Cerca con Google

[32] Daniel B Blum et al. “Effects of nonuniversal large scales on conditional structure functions in turbulence”. In: Physics of Fluids 22.1(2010), p. 015107. Cerca con Google

[33] Caijuan Zhan et al. “Accumulation of motile elongated micro-organisms in turbulence”. In: Journal of Fluid Mechanics 739 (2014), pp. 22–36. Cerca con Google

[34] Wikipedia. Mixed layer — Wikipedia, The Free Encyclopedia. [Online; accessed 15-November-2017]. 2017. url: https : / / en . wikipedia.org/w/index.php?title=Mixed_layer&oldid=805600756. Cerca con Google

[35] Clement de Boyer Montegut et al. “Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology”. In: Journal of Geophysical Research: Oceans 109.C12 (2004). Cerca con Google

[36] Keith E Brainerd and Michael C Gregg. “Surface mixed and mixing layer depths”. In: Deep Sea Research Part I: Oceanographic Research Papers 42.9 (1995), pp. 1521–1543. Cerca con Google

[37] Rafel Simó and Carlos Pedrós-Alió. “Role of vertical mixing in controlling the oceanic production of dimethyl sulphide”. In: Nature 402.6760 (1999), pp. 396–399. Cerca con Google

[38] Wikipedia. Shearwater — Wikipedia, The Free Encyclopedia. [Online; accessed 15-November-2017]. 2017. url: https : / / en . wikipedia.org/w/index.php?title=Shearwater&oldid=804206007. Cerca con Google

[39] Jacopo G Cecere et al. “Commercial fisheries, inter-colony competition and sea depth affect foraging location of breeding Scopoli’s Shearwaters Calonectris diomedea”. In: Ibis 157.2 (2015), pp. 284–298. Cerca con Google

[40] Leandro Bugoni, Liliana D’Alba, and Robert W Furness. “Marine habitat use of wintering spectacled petrels Procellaria conspicillata, and overlap with longline fishery”. In: Marine Ecology Progress Series 374 (2009), pp. 273–285. Cerca con Google

[41] Michelle A Kappes et al. “Hawaiian albatrosses track interannual variability of marine habitats in the North Pacific”. In: Progress in Oceanography 86.1 (2010), pp. 246–260. Cerca con Google

[42] Iván Ramírez et al. “Year-round distribution and habitat preferences of the Bugio petrel”. In: Marine Ecology Progress Series 476 (2013), pp. 269–284. Cerca con Google

[43] Thomas A Clay et al. “Proximate drivers of spatial segregation in non-breeding albatrosses”. In: Scientific reports 6 (2016). Cerca con Google

[44] Daniel Oro et al. “Influence of food availability on demography and local population dynamics in a long-lived seabird”. In: Proceedings of the Royal Society of London B: Biological Sciences 271.1537 (2004), pp. 387–396. Cerca con Google

[45] Robert JM Crawford and Bruce M Dyer. “Responses by four seabird species to a fluctuating availability of Cape Anchovy Engraulis capensis off South Africa”. In: Ibis 137.3 (1995), pp. 329–339. Cerca con Google

[46] J Gasparini et al. “Food availability affects the maternal transfer of androgens and antibodies into eggs of a colonial seabird”. In: Journal of evolutionary biology 20.3 (2007), pp. 874–880. Cerca con Google

[47] Matthew D Johnson and Thomas W Sherry. “Effects of food availability on the distribution of migratory warblers among habitats in Jamaica”. In: Journal of Animal Ecology 70.4 (2001), pp. 546–560. Cerca con Google

[48] Atle Mysterud and Rolf Anker Ims. “Functional responses in habitat use: availability influences relative use in trade-off situations”. In: Ecology 79.4 (1998), pp. 1435–1441. Cerca con Google

[49] Vers N Agostini and Andrew Bakun. “Ocean triads’ in the Mediterranean Sea: physical mechanisms potentially structuring reproductive habitat suitability (with example application to European anchovy, Engraulis encrasicolus)”. In: Fisheries Oceanography 11.3 (2002), pp. 129–142. Cerca con Google

[50] Ewan D Wakefield, Richard A Phillips, and Jason Matthiopoulos. “Quantifying habitat use and preferences of pelagic seabirds using individual movement data: a review”. In: Marine Ecology Progress Series 391 (2009), pp. 165–182. Cerca con Google

[51] EK Stenevik, S Sundby, and R Cloete. “Influence of buoyancy and vertical distribution of sardine Sardinops sagax eggs and larvae on their 99transport in the northern Benguela ecosystem”. In: African Journal of Marine Science 23 (2001), pp. 85–97. Cerca con Google

[52] WK Koched et al. “Environmental conditions influencing the larvalfish assemblage during summer in the Gulf of Gabes (Tunisia: South central Mediterranean)”. In: Mediterranean Marine Science 16.3 (2015), pp. 666–681. Cerca con Google

[53] Gabrielle A Nevitt, Richard R Veit, and Peter Kareiva. “Dimethyl sulphide as a foraging cue for Antarctic procellariiform seabirds”. In: Nature 376.6542 (1995), pp. 680–682. Cerca con Google

[54] Henri Weimerskirch. “Are seabirds foraging for unpredictable resources?” In: Deep Sea Research Part II: Topical Studies in Oceanography 54.3 (2007), pp. 211–223. Cerca con Google

[55] Frederic Bartumeus et al. “Fishery discards impact on seabird movement patterns at regional scales”. In: Current Biology 20.3 (2010), pp. 215–222. Cerca con Google

[56] Ewan D Wakefield et al. “Space partitioning without territoriality in gannets”. In: Science 341.6141 (2013), pp. 68–70. Cerca con Google

[57] Jacopo G Cecere, Giorgia Gaibani, and Simona Imperio. “Effects of environmental variability and offspring growth on the movement ecology of breeding Scopoli’s shearwater Calonectris diomedea”. In: Current Zoology 60.5 (2014), pp. 622–630. Cerca con Google

[58] Richard E Thomson and Isaac V Fine. “Estimating mixed layer depth from oceanic profile data”. In: Journal of Atmospheric and Oceanic Technology 20.2 (2003), pp. 319–329. Cerca con Google

[59] H Peters, MC Gregg, and JM Toole. “Meridional variability of turbulence through the equatorial undercurrent”. In: Journal of Geophysical Research: Oceans 94.C12 (1989), pp. 18003–18009. Cerca con Google

[60] Grigory Isayev and Levitus. Seasonal variability of mixed layer depth for the world ocean. US Department of Commerce, National Oceanic, Atmospheric Administration, National Environmental Satellite, Data, and Information Service, 1997. Cerca con Google

[61] url: http://marine.copernicus.eu/ (visited on 10/13/2016). Vai! Cerca con Google

[62] Nicholas Paul Fofonoff and RC Millard Jr. “Algorithms for the computation of fundamental properties of seawater.” In: (1983). Cerca con Google

[63] Intergovernmental Oceanographic Commission et al. “The International thermodynamic equation of seawater–2010: calculation and use of thermodynamic properties.[includes corrections up to 31st October 2015].” In: (2010). Cerca con Google

[64] Joan Garriga et al. “Expectation-maximization binary clustering for behavioural annotation”. In: PloS one 11.3 (2016), e0151984. Cerca con Google

[65] Maite Louzao et al. “Coupling instantaneous energy-budget models and behavioural mode analysis to estimate optimal foraging strategy: an example with wandering albatrosses”. In: Movement ecology 2.1 (2014), p. 8. Cerca con Google

[66] url: http://www.bodc.ac.uk/projects/international/gebco/ (visited on 10/13/2016). Vai! Cerca con Google

[67] url: http://oceancolor.gsfc.nasa.gov/ (visited on 10/13/2016). Vai! Cerca con Google

[68] url: http://www.science.oregonstate.edu/ocean.productivity/ Vai! Cerca con Google

index.php (visited on 10/13/2016). Cerca con Google

[69] url: https : / / en . wikipedia . org / wiki / Generalized _ linear _mixed_model (visited on 10/13/2016). Cerca con Google

[70] Maurizio Sarà. “Feeding habits of Cory’s shearwater (Calonectris diomedea) in the central Mediterranean Sea”. In: Status and conservation of 101seabirds. SEO/BirdLife and Medmaravis, Madrid (1993), pp. 213–220. Cerca con Google

[71] José Manuel Arcos and Daniel Oro. “Significance of fisheries discards for a threatened Mediterranean seabird, the Balearic shearwater Puffinus mauretanicus”. In: Marine Ecology Progress Series 239 (2002), pp. 209–220. Cerca con Google

[72] Kenneth Henry Mann and John RN Lazier. Dynamics of marine ecosystems: biological-physical interactions in the oceans. John Wiley & Sons, 2013. Cerca con Google

[73] Marianna Giannoulaki et al. “The spatial distribution of anchovy and sardine in the northern Aegean Sea in relation to hydrographic regimes”. In: Belgian Journal of Zoology 135.2 (2005), p. 151. Cerca con Google

[74] Isabel Afán et al. “Foraging movements and habitat niche of two closely related seabirds breeding in sympatry”. In: Marine biology 161.3 (2014), pp. 657–668. Cerca con Google

[75] David Grémillet et al. “A junk-food hypothesis for gannets feeding on fishery waste”. In: Proceedings of the Royal Society of London B: Biological Sciences 275.1639 (2008), pp. 1149–1156. Cerca con Google

[76] Jacopo G Cecere et al. “Movement patterns and habitat use during incubation and chick-rearing of Cory’s shearwaters (Calonectris diomedea diomedea)(Aves: Vertebrata) from Central Mediterranean: influence of seascape and breeding stage”. In: Ital. J. Zool. (Modena) 80.1 (2013), pp. 82–89. Cerca con Google

[77] JOSÉ P GRANADEIRO et al. “Flexible foraging strategy of Cory’s shearwater, Calonectris diomedea, during the chick-rearing period”. In: Animal Behaviour 56.5 (1998), pp. 1169–1176. Cerca con Google

[78] MC Magalhães, RS Santos, and KC Hamer. “Dual-foraging of Cory’s shearwaters in the Azores: feeding locations, behaviour at sea and implications for food provisioning of chicks”. In: Marine Ecology Progress Series 359 (2008), pp. 283–293. Cerca con Google

[79] Manuel Barange and Ian Hampton. “Spatial structure of co-occurring anchovy and sardine populations from acoustic data: implications for survey design”. In: Fisheries Oceanography 6.2 (1997), pp. 94–108. Cerca con Google

[80] Teresa Militão et al. “Individual migratory patterns of two threatened seabirds revealed using stable isotope and geolocation analyses”. In: Diversity and Distributions 19.3 (2013), pp. 317–329. Cerca con Google

[81] Frederick Schram et al. Treatise on Zoology-Anatomy, Taxonomy, Biology. The Crustacea, Volume 9 Part A: Eucarida: Euphausiacea, Amphionidacea, and Decapoda (partim). Vol. 9. BRILL, 2010. Cerca con Google

[82] Vitor H Paiva et al. “Foraging plasticity in a pelagic seabird species along a marine productivity gradient”. In: Marine Ecology Progress Series 398 (2010), pp. 259–274. Cerca con Google

[83] G.M. Viswanathan et al. The Physics of Foraging: An Introduction to Random Searches and Biological Encounters. Cambridge University Press, 2011. isbn: 9781139497558. Cerca con Google

[84] Pierre Bovet and Simon Benhamou. “Spatial analysis of animals’ movements using a correlated random walk model”. In: Journal of theoretical biology 131.4 (1988), pp. 419–433. Cerca con Google

[85] Gandhimohan M Viswanathan et al. “Lévy flight search patterns of wandering albatrosses”. In: Nature 381.6581 (1996), p. 413. Cerca con Google

[86] GM Viswanathan et al. “Optimizing the success of random searches”. In: Nature 401.6756 (1999), 911–914. issn: 0028-0836. Cerca con Google

[87] Monique de Jager et al. “Lévy walks evolve through interaction between movement and environmental complexity”. In: Science 332.6037 (2011), pp. 1551–1553. Cerca con Google

[88] Enrica Pollonara et al. “Olfaction and topography, but not magnetic cues, control navigation in a pelagic seabird: displacements with shearwaters in the Mediterranean Sea”. In: Sci. Rep. 5 (2015). Cerca con Google

[89] Andrew M Reynolds et al. “Pelagic seabird flight patterns are consistent with a reliance on olfactory maps for oceanic navigation”. In: Proc. R. Soc. B (2015). Cerca con Google

[90] WS Lewellen and RI Sykes. “Analysis of concentration fluctuations from lidar observations of atmospheric plumes”. In: Journal of climate and applied meteorology 25.8 (1986), pp. 1145–1154. Cerca con Google

[91] Erik Sparre Andersen. “On sums of symmetrically dependent random variables”. In: Scandinavian Actuarial Journal 1953.sup1 (1953), pp. 123–138. Cerca con Google

[92] Antonio Celani, Emmanuel Villermaux, and Massimo Vergassola. “Odorlandscapes in turbulent environments”. In: Phys. Rev. X 4.4 (2014), p. 041015. Cerca con Google

[93] Wade R McGillis et al. “Carbon dioxide flux techniques performed during GasEx-98”. In: Marine Chemistry 75.4 (2001), pp. 267–280. Cerca con Google

[94] NOAA. http://coastwatch.pfeg.noaa.gov/erddap/info/jplCcmpL3Wind6Hourly_LonPM180/index.html. Online; last access: Thu, 09 Jun 2016 10:12:42 GMT. 2016. Vai! Cerca con Google

[95] Scott Chamberlan. rerddap: General Purpose Client for ERDDAP Servers. https://github.com/ropensci/rerddap. R package version 0.3.4. 2016. Vai! Cerca con Google

[96] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria, 2015. url: https://www.R-project.org/. Vai! Cerca con Google

[97] Andrew M. Edwards et al. “Revisiting Levy flight search patterns of wandering albatrosses, bumblebees and deer”. In: Nature 449.7165 (2007), 1044–U5. Cerca con Google

[98] Anna Gagliardo et al. “Oceanic navigation in Cory’s shearwaters: evidence for a crucial role of olfactory cues for homing after displacement”. In: J. Exp. Biol. 216.15 (2013), 2798–2805. Cerca con Google

[99] O Padget et al. “Anosmia impairs homing orientation but not foraging behaviour in free-ranging shearwaters”. In: Sci. Rep. 7 (2017). Cerca con Google

[100] Gustav Kramer. “Experiments on bird orientation and their interpretation.” In: Ibis 99.2 (1957), pp. 196–227. issn: 1474-919X. Cerca con Google

[101] Hans G Wallraff. Avian navigation: pigeon homing as a paradigm. Springer Science & Business Media, 2005. Cerca con Google

[102] Stefano Focardi and Jacopo G. Cecere. “The Levy flight foraging hypothesis in a pelagic seabird”. In: J. Anim. Ecol. 83.2 (2014), pp. 353–364. issn: 1365-2656. Cerca con Google

[103] Vitor H Paiva et al. “Flight dynamics of Cory’s shearwater foraging in a coastal environment”. In: Zoology 113.1 (2010), pp. 47–56. Cerca con Google

[104] Andrei V Komolkin et al. “Theoretically possible spatial accuracy of geomagnetic maps used by migrating animals”. In: J. R. Soc. Interface 14.128 (2017), p. 20161002. Cerca con Google

[105] Martin Wikelski et al. “True navigation in migrating gulls requires intact olfactory nerves”. In: Sci. Rep. 5 (2015). issn: 2045-2322. Cerca con Google

[106] Cornelia Buehlmann et al. “Desert ants use olfactory scenes for navigation”. In: Anim. Behav. 106 (2015), pp. 99 –105. Cerca con Google

[107] Jennifer L DeBose and Gabrielle A Nevitt. “The use of odors at different spatial scales: comparing birds with fish”. In: J. Chem. Ecol. 34.7 (2008), pp. 867–881. Cerca con Google

[108] COMSOL Inc.. 2017. url: https://www.comsol.it/. Vai! Cerca con Google

[109] F. Hecht. “New development in FreeFem++”. In: J. Numer. Math. 20.3-4 (2012), pp. 251–265. issn: 1570-2820. Cerca con Google

[110] Colin K Drummond and Frederic A Lyman. “Mass transfer from a sphere in an oscillating flow with zero mean velocity”. In: Computational Mechanics 6.4 (1990), pp. 315–326. Cerca con Google

[111] George B Jeffery. “The motion of ellipsoidal particles immersed in a viscous fluid”. In: 102.715 (1922), pp. 161–179. Cerca con Google

[112] Laurent Chevillard and Charles Meneveau. “Lagrangian dynamics and statistical geometric structure of turbulence”. In: Physical review letters 97.17 (2006), p. 174501. Cerca con Google

[113] Andrei D Polyanin et al. Hydrodynamics, mass and heat transfer in chemical engineering. Vol. 14. CRC Press, 2001. Cerca con Google

[114] John Happel and Howard Brenner. Low Reynolds number hydrody-namics: with special applications to particulate media. Vol. 1. Springer Science & Business Media, 2012. Cerca con Google

[115] Markus Nyberg, Tobias Ambjörnsson, and Ludvig Lizana. “A simple method to calculate first-passage time densities with arbitrary initial conditions”. In: New Journal of Physics 18.6 (2016), p. 063019. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record