Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Marchi, Luca (2018) Innovative connection systems for timber structures. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document
20Mb

Abstract (english)

Connections and fasteners play an essential role in the determination of strength and stability, ductility and robustness, i.e., the overall behaviour of timber structures. In particular, connections subjected to static loads are to be investigated in terms of strength and stiffness, whereas the ones designed to withstand cyclic (e.g., seismic) loads need also the definition of their complete hysteretic response. This Ph.D. dissertation focuses on the behaviour of modern connections being developed and employed in timber engineering.
An initial overview on mechanical connections employed in timber structures and their evolution is reported in the introductive section of this thesis. Advantages as well as critical issues of traditional connections are the motivations for the evolution and the improvements brought by innovative connections. Two different applications of innovative timber connections are analysed and hereby discussed, each one facing different issues. The first one claims to give an insight into modern screws employed in Timber-concrete composite (TCC) structures, where the major objective is to achieve maximum strength and above all stiffness. The second is directly focused on the cyclic performance of modern connections employed in Cross Laminated Timber (CLT) structures where dissipative capacity and structural damping are of utmost importance. Consequently, the present manuscript is subdivided into two main parts.
The first part deals with TCC joints realized with modern screws. The key-point to guarantee adequate mechanical performance to these composite structures is the use of connectors that demonstrate sufficient shear strength and stiffness at the interface between timber beam and concrete slab independently of the presence of an intermediate layer. Modern cylindrical connectors, such as self-tapping screws, are rising interest because they combine remarkable performance, when their withdrawal capacity is exploited, and quickness of execution especially in case of onsite installation. In this paper, a theoretical approach to calculate shear strength and stiffness of TCC joints made with inclined screws is discussed and compared to current design procedures. Furthermore, a report on short-term push-out tests of TCC joints realized with inclined self-tapping screws carried out varying fastener arrangement, diameter and concrete type is given. Consequently, a comparison between the results obtained with the theoretical method and experimental tests is reported and critically discussed in terms of both strength and stiffness.
The last section of the first part present the design of an innovative connector that combines the use of self-tapping screws and a glass-fibre reinforced polymer (GFRP) element as components to realize structural TCC joints. FRP is being used in civil engineering since decades, but most of these applications utilize pre-impregnated thermosetting composites, the most common of which is carbon fibre-reinforced polymer (CFRP). On the contrary, injection moulded thermoplastic materials are relatively new and lack of history of their use in civil infrastructures. The aim is to develop a connection that solves typical installation issues of inclined screws and avoids stress concentration issues that may occur in the concrete layer. Numerical simulations, carried out to design this particular joint and exploiting a hybrid approach, are described in detail. Then, results from the experimental tests conducted to investigate the behaviour of the device subjected to shear loading conditions are compared with the analytical predictions valid for inclined screws previously described.
The second part of this work focuses on the developing of an innovative earthquake-resistant connections employed for CLT structures. The seismic performance of CLT buildings is mainly related to the capability of joints to perform plastic work, since timber elements have limited capability to deform inelastically. Nowadays, the use of hold-down and angle bracket connections, which were originally developed for platform-frame constructions, has been extended also to CLT buildings. Nevertheless, the dissipative capacity of light-frame buildings is mainly diffused in nailing between frames and panels while, in CLT walls, the dissipative contribution is exclusively assured by ductile joints connecting the panels. The need of more reliable connections that provides well predictable and stable hysteretic behaviour, reduced pinching phenomenon (caused by the wood embedment) and strength degradation, justifies the continuous development of “innovative” connections. In this work, a newly developed connection element that overcomes the aforementioned issues and works for both tensile or shear loads is designed and assessed, and various significant aspects are discussed.
Initially, the design procedure of the connection element and preliminary experimental tests that validates the numerical predictions are illustrated. Then, improved versions of the device are illustrated and their experimental results reported with particular attention in describing their hysteretic response and coupled shear-tension strength domain. In this work, an important role is also given to the application of the capacity design criteria applied at the joint level in order to guarantee the best exploitation of the connection’s dissipative capacity. Therefore, theoretical concepts, which describe the overstrength of traditional and innovative connections, confirmed by experimental tests of the brackets anchored to a CLT panel, are also given. In the last chapter is presented a numerical model that, following a macro-element approach, reproduces the actual cyclic response of the investigated device when subjected to combined shear-tension loads. Finally, the results of Non-Linear Dynamic Analyses of a case study CLT building realized which such model are reported and the seismic capacity of the case study building is evaluated.
With these two examples, this thesis aims to give an original contribution in the evaluation of performance of innovative connection systems for timber structures, combining the use of theoretical, numerical and experimental models, and highlighting the emerging differences with respect to the use of traditional fasteners and connections.

Abstract (italian)

Le connessioni e gli elementi di fissaggio svolgono un ruolo essenziale nella determinazione della resistenza, stabilità e solidità, ovvero nella risposta globale delle strutture del legno. In particolare, le connessioni soggette a carichi statici devono essere studiate in termini di resistenza e rigidezza, mentre quelle progettate per resistere a carichi ciclici (ad es. sismici), necessitano anche della completa definizione della loro risposta isteretica. Questa tesi si concentra sul comportamento dei collegamenti moderni sviluppati e impiegati nell'ingegneria del legno.
Una prima panoramica sulle connessioni meccaniche impiegate nelle strutture del legno e la loro evoluzione è riportata nella sezione introduttiva di questa tesi. Vantaggi e criticità delle connessioni tradizionali sono le motivazioni dell’evoluzione e dei miglioramenti prodotti dalle connessioni innovative. Vengono analizzate e discusse due diverse applicazioni di connessioni per strutture in legno, ognuna delle quali espone aspetti e problematiche diverse. Il primo afferma di dare una panoramica delle moderne viti utilizzate nelle strutture composte legno-calcestruzzo (TCC), dove l'obiettivo principale è ottenere massima resistenza e ancor più rigidezza. Il secondo, è incentrato direttamente nell’analisi delle prestazioni cicliche delle connessioni moderne utilizzate nelle strutture in CrossLam (CLT) in cui la capacità dissipativa e lo smorzamento strutturale sono della massima importanza. Di conseguenza, il presente manoscritto è suddiviso in due parti principali.
La prima parte riguarda le giunzioni legno-calcestruzzo realizzate con viti moderne. Il punto chiave per garantire prestazioni meccaniche adeguate a queste strutture composite è l'utilizzo di connettori caratterizzati da un'adeguata resistenza e rigidezza tra trave di legno e soletta di calcestruzzo, indipendentemente dalla presenza di uno strato intermedio. I connettori cilindrici moderni, come le viti autofilettanti, possiedono un crescente interesse perché combinano elevate prestazioni, se è sfruttata la loro elevata capacità ad estrazione, e rapidità di esecuzione. In questo lavoro viene proposto un approccio teorico semplificato per calcolare la resistenza al taglio e la rigidezza dei giunti TCC realizzati con viti inclinate e poi confrontato con le attuali procedure di progettazione. Inoltre, viene fornito un rapporto sulle prove di push-out a breve termine di giunti TCC realizzati con viti autofilettanti inclinate, effettuate con vari tipi di fissaggio, diametro e tipo di calcestruzzo. Di conseguenza, viene anche riportato un confronto tra i risultati ottenuti con il metodo teorico e le prove sperimentali e viene discusso criticamente in termini di forza e rigidezza.
L'ultima sezione della prima parte comprende la progettazione di un connettore innovativo che combina l'utilizzo di viti autofilettanti e polimero termoplastico rinforzato con fibra di vetro (GFRP) per realizzare giunti TCC strutturali. Gli FRP vengono utilizzati nell’ingegneria civile da decenni, ma la maggior parte di queste applicazioni utilizza compositi termoindurenti pre-impregnati, il più comune dei quali è il polimero rinforzato in fibra di carbonio (CFRP). Al contrario, i materiali termoplastici sono relativamente nuovi e mancano di storia nell'utilizzo nell'infrastruttura civile. Le simulazioni numeriche, effettuate per progettare questo giunto, sono descritte in dettaglio. Quindi, i risultati delle prove sperimentali condotte per esaminare il comportamento del dispositivo sottoposto a condizioni di carico di taglio sono confrontati con le previsioni analitiche descritte.
La seconda parte di questo lavoro si concentra sullo sviluppo di collegamenti innovativi impiegati per le strutture in CLT. La prestazione sismica degli edifici CLT è principalmente legata alla capacità dei collegamenti di plasticizzarsi, poiché gli elementi del legno hanno una capacità limitata di deformazione inelastica. Oggi, l'utilizzo di connessioni quali hold-down e angolari, originariamente sviluppati per costruzioni tipo platform-frame, è stato esteso anche agli edifici CLT. Tuttavia, la capacità di dissipazione degli edifici a telaio è diffusa soprattutto nella connessione telaio-pannello, mentre nelle strutture in CLT il contributo dissipativo è assicurato esclusivamente da connessioni duttili che collegano i pannelli. La necessità di una connessione più affidabile che fornisca un comportamento isteretico prevedibile ed affidabile, un fenomeno ridotto di “pinching” (causato dal rifollamento del legno) e una degrado di resistenza giustifica lo sviluppo continuo di connessioni "innovative". In questo lavoro è stato progettato e valutato un elemento di connessione che sormonti i problemi sopradescritti e che lavora sia per i carichi di trazione che per taglio, e ne vengono discussi gli aspetti più significativi.
Inizialmente viene illustrata la procedura di progettazione dell'elemento di connessione e dei test sperimentali preliminari che convalidano le previsioni numeriche. Successivamente vengono descritte le fasi di progettazione e test di ulteriori versioni migliorate delle staffe dissipative e sono riportati i loro risultati sperimentali facendo particolare attenzione nel descrivere la loro risposta isteretica e il dominio di resistenza tensione-taglio. Un ruolo importante in questo lavoro è dato all'applicazione dei criteri di gerarchia delle resistenze (progettazione in capacità) a livello di connessione al fine di garantire il miglior sfruttamento della capacità dissipativa della connessione. Di conseguenza, vengono forniti concetti teorici che descrivono l’applicazione di tali concetti a connessioni tradizionali e innovative, e confermate da prove sperimentali delle staffe oggetto di studio ancorate a un pannello CLT. Infine, i risultati di simulazioni numeriche dettagliate e prove cicliche quasi-statiche sono state utilizzate per sviluppare un modello di macro-elemento implementato in un codice numerico che ha permesso di determinare le prestazioni sismiche di un edificio caso studio in CLT realizzato con tali connessioni.
Con questi due esempi la presente tesi mira a definire un originale procedura di valutazione delle performance delle connessioni innovative per legno, combinando l'uso di modelli teorici, numerici ed analisi sperimentali e mettendone in evidenza le differenze emergenti rispetto all'impiego di sistemi di connessioni tradizionali.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Scotta, Roberto
Supervisor:Hofmann, Jan and Sandhaas, Carmen
Ph.D. course:Ciclo 29 > Corsi 29 > SCIENZE DELL'INGEGNERIA CIVILE E AMBIENTALE
Data di deposito della tesi:31 January 2018
Anno di Pubblicazione:31 January 2018
Key Words:timber engineering, timber-concrete connections, self-tapping screws, analytical model, Glass-fibre-reinforced polymers, injection moulding, Cross Laminated Timber, dissipative connections, hysteretic model, viscous damping, shear-tensile strength domain, seismic design, macro-element model, behaviour factor. ingegneria del legno, connessioni legno-calcestruzzo, viti autofilettanti, modelli analitici, polimeri fibrorinforzati, stampaggio per iniezione, connessioni per CrossLam, connessioni dissipative, modello isteretico, smorzamento viscoso equivalente, dominio di resistenza taglio-trazione, modello a macro-elementi, fattore di struttura.
Settori scientifico-disciplinari MIUR:Area 08 - Ingegneria civile e Architettura > ICAR/09 Tecnica delle costruzioni
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Civile, Edile e Ambientale
Codice ID:11111
Depositato il:31 Oct 2018 09:55
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

“OpenSees. Open System for Earthquake Engineering Simulation” (2009). Pacific Earthquake Engineering Research Center, University of California, Berkeley. Available at http://opensees .berkeley.edu. Vai! Cerca con Google

ACI 318-08 (2008). “Building Code Requirements for Structural Concrete and Commentary”. American Concrete Institute. Cerca con Google

ACI 349-85 (1985). “Code Requirements for Nuclear Safety Related Concrete Structures”. American Concrete Institute. Cerca con Google

Aicher S., Klck, W., Dill-langer, G., and Radovic, B. (2003). “Nails and nailplates as shear connectors for timber-concrete composite constructions”. Otto-Graf-Journal, 14:189. Cerca con Google

Aicher, S., Reinhardt, H. W., and Garrecht, H. (2013). Materials and Joints in Timber Structures: Recent Developments of Technology (Vol.9) (preface). Springer. Dordrecht, Netherlands. Cerca con Google

ANSYS® Mechanical APDL, Help System, Contact Technology Guide. Cerca con Google

ANSYS® Mechanical Workbench and APDL, Help System, Theory Reference. Cerca con Google

ANSYS® Mechanical Workbench. Cerca con Google

B. Dujic, K. Strus, R. Zarnic, A. Ceccotti. (2010). “Prediction of dynamic response of a 7-storey massive X-lam wooden building tested on a shaking table”. In Proceedings of the 11th World Conference on Timber Engineering WCTE, Riva del Garda, Italy. Cerca con Google

Baird, A., Smith, T., Palermo, A., and Pampanin, S. (2014). “Experimental and numerical study of U-shape flexural plate (UFP) dissipators”. In New Zealand Society for Earthquake Engineering Conference, Auckland, New Zealand. Cerca con Google

Baldessari, C. (2010). “In-plane behaviour of differently refurbished timber floors”. Ph.D. Thesis, University of Trento, Italy. Cerca con Google

Bathon, L., Bletz, O., and Schmidt, J. (2006). “Hurricane proof buildings - An innovative solution using prefabricated modular woodconcrete-composite elements”. In Proceedings of the 9th World Conference on Timber Engineering (WCTE), 6-10 August 2006, Portland, Oregon, USA. Cerca con Google

Bejtka, I., and Blass, H.J., (2002). “Joints with inclined screws”. In Proceedings of Meeting 35 of the Working Commission W18-Timber Structures, CIB, Kyoto, Japan. PAPER CIB-W18/35-7-4. Cerca con Google

Blass, H.J., Schmid, M., Litze, H., and Wagner, B. (2000). “Nail plate reinforced joints with dowel-type fasteners”. In Proceedings of the World Conference on Timber Engineering (WCTE), July 31-August 3 2000, Whistler Resort, British Columbia, Canada. Cerca con Google

Brandon, D., Ansell, M. P., Harris, R., Walker, P., and Bregulla, J. (2014). “Modelling of non-metallic timber connections at elevated temperatures”. In Materials and Joints in Timber Structures (pp. 231-241). Springer. Dordrecht, Netherlands. Cerca con Google

Ceccotti, A. (1995). “Timber-concrete composite structures”. Timber engineering, Step, 2(1). Cerca con Google

Ceccotti, A. (2002). “Composite concrete‐timber structures”. Progress in Structural Engineering and Materials, 4(3):264-275. Cerca con Google

Ceccotti, A. (2003). “Il manuale del legno strutturale Vol. II”. Mancosu Editore, Roma. Cerca con Google

Ceccotti, A. (2008). “New technologies for construction of medium-rise buildings in seismic regions: the XLAM case”. Structural Engineering International. DOI: 10.2749/101686608784218680. Cerca con Google

Ceccotti, A., and Sandhaas, C. (2010). “A proposal for a standard procedure to establish the seismic behaviour factor q of timber buildings.” In Proceedings of the 11th World Conference on Timber Engineering WCTE, Riva del Garda, Italy. Cerca con Google

Ceccotti, A., and Vignoli, A. (1990). “Engineered timber structures: An evaluation of their seismic behaviour”. In Proceedings of the International Timber Engineering Conference, Tokyo, Japan (pp. 946-953). Cerca con Google

Ceccotti, A., Follesa, M., and Lauriola, M.P. (2007). “Le strutture di legno in zona sismica. Criteri e regole per la progettazione ed il restauro”. C.L.U.T. Editrice, Torino, Italy. Cerca con Google

Ceccotti, A., Sandhaas, C., Okabe, M., Yasumura, M., Minowa, C. and Kawai, N. (2013). “SOFIE project—3D shaking table test on a seven-storey full-scale cross-laminated timber building”. Earthquake Engineering and Structural Dynamics, 42(13):2003–2021. Cerca con Google

Chopra, A. K. (1995). Dynamics of structures (Vol. 3, p. 339). Prentice hall, New Jersey. Cerca con Google

Crocetti, R., Sartori, T., and Tomasi, R. (2015). “Innovative timber-concrete composite structures with prefabricated FRC slabs”. Journal of Structural Engineering. DOI: 10.1061/(ASCE)ST.1943-541X.0001203. Cerca con Google

Dias, A.M.P. G., Lopes S.M.R., Van De Kuilen, J.W.G., and Cruz H.M.P. (2007). “Load-carrying capacity of timber-concrete joints with dowel-type fasteners”. Journal of Structural Engineering, 133(5):720-727. ASCE. Cerca con Google

Dias, A.M.P.G. (2004). “Experimental shear–friction tests on dowel-type fastener timber–concrete joints”. In Proceedings of the 8th World conference on Timber Engineering (WCTE), 14-17 June 2004, Lahti, Finland. Cerca con Google

Dias, A.M.P.G. (2005). “Mechanical behaviour of timber-concrete joints”. Ph.D. Thesis Delft University of Technology, Netherlands. Cerca con Google

Dias, A.M.P.G., Cruz, H.M.P., Lopes, S.M.R., and van de Kuilen, J.W. (2010). “Stiffness of dowel-type fasteners in timber–concrete joints”. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 163(4):257-266. Cerca con Google

Dias, A.M.P.G., Van de Kuilen, J.W.G., Cruz, H., and Lopez, S. (2004). “Non-linear FEM models for timber–concrete joints made with dowel type fasteners”. In Proceedings of the 8th World conference on Timber Engineering (WCTE), 14-17 June 2004, Lahti, Finland. Cerca con Google

Dias, A.M.P.G., Van de Kuilen, J.W.G., Lopes, S., and Cruz, H. (2007). “A non-linear 3D FEM model to simulate timber–concrete joints”. Advances in Engineering Software. DOI: //doi.org/10.1016/j.advengsoft.2006.08.024. Cerca con Google

DIN 571 “Hexagon head wood screws” Deutsches Institut für Normung, Germany. Cerca con Google

Drake, R.D. (2003). “The advancement of structural connection techniques for timber buildings”. Ph.D. Thesis. University of Bath, UK. Cerca con Google

EAD 130118-00-0603 (2016). “Screws for use in timber constructions”. EOTA, Brussels, Belgium. Cerca con Google

Ellingsbø, P., and Malo, K.A. (2012). “Withdrawal capacity of long self-tapping screws parallel to grain direction”. In Proceedings of the 12th World conference on Timber Engineering (WCTE). 15-19 July 2012, Auckland, New Zealand. Cerca con Google

EN 10025-2 (2004). “Hot rolled products of structural steels. Technical delivery conditions for non-alloy structural steels”. CEN. Brussels, Belgium. Cerca con Google

EN 12390-3 (2009). “Testing hardened concrete - Compressive strength of test specimens. CEN. Brussels, Belgium. Cerca con Google

EN 12512 (2001). “Timber structures - test methods - cyclic testing of joints made with mechanical fasteners”. CEN. Brussels, Belgium. Cerca con Google

EN 13183-2 (2002). “Moisture content of a piece of sawn timber - Estimation by electrical resistance method”. CEN. Brussels, Belgium. Cerca con Google

EN 14080 (2013). “Timber structures - Glued laminated timber and glued solid timber: Requirements”. CEN. Brussels, Belgium. Cerca con Google

EN 14358 (2016) “Timber structures - Calculation and verification of characteristic values”. CEN. Brussels, Belgium. Cerca con Google

EN 14592 (2012). “Timber structures - Dowel-type fasteners – Requirements”. CEN. Brussels, Belgium. Cerca con Google

EN 1990 (2002). “Basis of structural design”. CEN. Brussels, Belgium. Cerca con Google

EN 1992-1-1 Eurocode 2 (2014). “Design of concrete structures, Part 1-1, General rules and rules for buildings”. CEN. Brussels, Belgium. Cerca con Google

EN 1993-1-1 Eurocode 3 (2005). “Design of steel structures, Part 1-1: General rules and rules for buildings”. CEN. Brussels, Belgium. Cerca con Google

EN 1995-1-1 Eurocode 5 (2004). “Design of timber structures, Part 1-1, General: Common rules and rules for buildings”. CEN. Brussels, Belgium. Cerca con Google

EN 1995-2 Eurocode 5 (2009) “Design of Timber Structures, Part 2, Bridges”. CEN. Brussels, Belgium. Cerca con Google

EN 1998-1-1 Eurocode 8 (2004). “Design of structures for earthquake resistance, part 1: general rules, seismic actions and rules for buildings”. CEN. Brussels, Belgium. Cerca con Google

EN 26891 (1991). “Joints made with mechanical fasteners. General principle for the determination of strength and deformation characteristics”. CEN. Brussels, Belgium. Cerca con Google

EN ISO 1110 (1998). “Plastics - Polyamides - Accelerated conditioning of test specimens”. CEN. Brussels, Belgium. Cerca con Google

EN ISO 291 (2008). “Plastics -- Standard atmospheres for conditioning and testing”. CEN. Brussels, Belgium. Cerca con Google

EN ISO 6892-1 (2009). “Metallic Materials - Tensile Testing - Part 1: Method of Test at Room Temperature”. CEN: Brussels, Belgium. Cerca con Google

EN ISO 8970 (2010). “Timber structures - Testing of joints made with mechanical fasteners - Requirements for wood density”. CEN. Brussels, Belgium. Cerca con Google

European Organisation for Technical Assessment (EOTA) (2010). “ETAG 001: metal anchors for use in Concrete. Annex C: design methods for anchorages”. Charlottenlund, Denmark. Cerca con Google

European Organisation for Technical Assessment (EOTA) (2016). “Self-tapping screws for use in timber structures”. European Technical Approval ETA-11/0027. Charlottenlund, Denmark. Cerca con Google

European Organisation for Technical Assessment (EOTA) (2016). “Self-tapping screws for use in timber structures”. European Technical Approval ETA-12/0073. Charlottenlund, Denmark. Cerca con Google

Fernandez-Cabo, J. L., Arriaga, F., Majano-Majano, A., and Iñiguez-González, G. (2012). “Short-term performance of the HSB® shear plate-type connector for timber–concrete composite beams”. Construction and Building Materials. 30:455-462. Cerca con Google

Finnish Road Administration. (1999). “The Vihantasalmi Bridge— Mäntyharju, Finland 1997–1999.” Available at: www.underwater.pg.gda.pl/ didactics/ISPG/Mosty/Vihantasalmi%20bridge.htm. Vai! Cerca con Google

Flatscher, G., and Schickhofer, G. (2015). “Shaking-table test of a cross-laminated timber structure”. Proceedings of the ICE – Structures and Buildings, 168(11):878–888. Cerca con Google

Foliente, G. C., Karacabeyli, E., and Yasumura, M. (1998). “International test standards for joints in timber structures under earthquake and wind loads”. In Proceedings of Structural Engineers World Congress (SEWC), July 19-23, San Francisco, California, USA. Cerca con Google

Foliente, G.C. (1996). “Issues in seismic performance testing and evaluation of timber structural systems”. In Proceedings of International Wood Engineering Conference, New Orleans, United States, Vol.1, pp.29-36. Cerca con Google

Follesa, M., Fragiacomo, M., Casagrande, D., Tomasi, R., Piazza, M., Vassallo, D., and Rossi, S. (2016). “The new version of Chapter 8 of Eurocode 8”. Proceedings of the 14th World Conference on Timber Engineering (WCTE), 22-25 August 2016, Vienna, Austria. Cerca con Google

Follesa, M., Fragiacomo, M., Vassallo, D., Piazza, M., Tomasi, R., Rossi, S., and Casagrande, D. (2015). “A proposal for a new Background Document of Chapter 8 of Eurocode 8”. In Proceedings of International Network on Timber Engineering Research (INTER), meeting 49, Šibenik, Croatia. Cerca con Google

Foschi, R.O., and Bonac, T., (1977). “Load slip characteristic for connections with common nails”. Wood Science Technology, 9(3):118–123. Cerca con Google

Fragiacomo, M., Amadio, C., and Macorini, L. (2007). “Short and long-term performance of the "tecnaria" stud connector for timber-concrete composite beams”. Materials and Structures. DOI: 10.1617/s11527-006-9200-2. Cerca con Google

Fragiacomo, M., Dujic, B., and Sustersic, I. (2011). “Elastic and ductile design of multi-storey crosslam massive wooden buildings under seismic actions”. Engineering Structures, 33:3043–3053. Cerca con Google

Frangi, A., and Fontana, M. (2003). “Elasto-plastic model for timber-concrete composite beams with ductile connection”. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), 13(1):47-57. Cerca con Google

Gattesco, N., Dudine, A., and Franceschinis, R. (2012). “Experimental investigation on the seismic behavior of timber shear walls with particle boards”. In Proceedings of the 12th World conference on Timber Engineering (WCTE). 15-19 July 2012, Auckland, New Zealand. Cerca con Google

Gattesco, N.; and Boem, I. (2015). “Seismic performances and behavior factor of post-and-beam timber buildings braced with nailed shear walls”. Engineering Structures, 100:674–685. Cerca con Google

Gavric, I., Ceccotti, A., and Fragiacomo, M. (2011). “Experimental cyclic tests on cross-laminated timber panels and typical connections”. In Proceedings of the XIV ANIDIS, Bari, Italy, 18-22 September 2011. Cerca con Google

Gavric, I., Fragiacomo, M., and Ceccotti, A. (2015). “Cyclic behavior of CLT wall systems: Experimental tests and analytical prediction models”. Journal of Structural Engineering. DOI:10.1061/(ASCE)ST.1943-541X.0001246. Cerca con Google

Gavric, I., Fragiacomo, M., and Ceccotti, A. (2013). “Capacity seismic design of X-LAM wall system based on connection mechanical properties”. In Proceedings of the Meeting 46 of the Working Commission W18-Timber Structures, CIB, Vancouver, BC, Canada, 26-29 August 2013, paper CIB-W18/46-15-2. Cerca con Google

Gavric, I., Fragiacomo, M., and Ceccotti, A. (2015). “Cyclic behaviour of typical metal connectors for cross-laminated (CLT) structures”. Materials and structures, 48(6):1841-1857. Cerca con Google

Gavric, I., Fragiacomo, M., Popovski, M. and Ceccotti, A. (2014) “Behaviour of cross-laminated timber panels under cyclic loads”. In Materials and Joints in Timber Structures (pp. 689–702). Springer. Dordrecht, Netherlands Cerca con Google

Gavric, I., Rinaldin, G., Amadio, C., Fragiacomo, M., and Ceccotti, A. (2012). ”Experimental and numerical analyses of the seismic behaviour of cross-laminated wall systems”. In Proceedings of the 15th World Conference on Earthquake Engineering, September 24-28, Lisbon, Portugal. Cerca con Google

Gelfi, P. (2012). “SIMQKE_GR”, Version 2.7. University of Brescia, Italy. Available online: http://dicata.ing.unibs.it/gelfi. Vai! Cerca con Google

Gelfi, P., Giuriani, E., and Marini, A. (2002). “Stud shear connection design for composite concrete slab and wood beams”. Journal of Structural Engineering, 128(12):1544-1550. ASCE. Cerca con Google

General Design Principles for DuPont Engineering Polymers. 2000 Cerca con Google

Germano, F., Metelli, G., and Giuriani, E. (2015). “Experimental results on the role of sheathing-to-frame and base connections of a European timber framed shear wall”. Construction and Building Materials, 80:315–328. Cerca con Google

Goodship, V. (2004). “Practical guide to injection moulding”. Smithers Rapra Publishing. Cerca con Google

Gutkowski, R., Balogh, J., and To, L.G. (2010). “Finite element modelling of short-term field response of composite wood-concrete floors/decks”. Journal of Structural Engineering, 136(6):707–714. ASCE. Cerca con Google

Gutkowski, R., Brown, K., Shigidi, A., and Natterer, J. (2008). “Laboratory tests of composite wood-concrete beams”. Construction and Building Materials. DOI: 10.1016/j.conbuildmat.2007.03.013. Cerca con Google

Hashemi, A., Zarnani, P., Masoudnia, R., & Quenneville, P. (2017). “Seismic resistant rocking coupled walls with innovative Resilient Slip Friction (RSF) joints”. Journal of Constructional Steel Research, 129:215-226. Cerca con Google

Hassanieh, A., Valipour, H. R., Bradford, M. A., and Sandhaas, C. (2017). “Modelling of steel-timber composite connections: Validation of finite element model and parametric study”. Engineering Structures, 138:35-49. Cerca con Google

Heco Italia S.r.l. (2016). “Tests to determine the influence of self drilling dowel type fasteners on the mechanical behaviour of flitch plate connections”. Lignum Test Center, Graz, Austria. Cerca con Google

Henry, R. S., Aaleti, S., Sritharan, S., and Ingham, J. M. (2009). “Concept and finite-element modeling of new steel shear connectors for self-centering wall systems”. Journal of Engineering Mechanics, 136(2):220-229. ASCE. Cerca con Google

Hill R. (1950). The Mathematical Theory of Plasticity. Clarendon Press. Oxford, UK. Cerca con Google

Hoffman, O. (1967). “The brittle strength of orthotropic materials”. Journal of Composite Materials, 1(2):200-206. Cerca con Google

http://www.materialdatacenter.com/ Vai! Cerca con Google

Iqbal, A., Pampanin, S., and Buchanan, A. H. (2010). Seismic performance of prestressed timber beam-column sub-assemblies. In Proceedings of the New Zealand society for Earthquake Engineering annual conference, Wellington, New Zealand. Cerca con Google

Iqbal, A., Pampanin, S., Buchanan, A., and Palermo, A. (2007). Improved seismic performance of LVL post-tensioned walls coupled with UFP devices. In Proceedings of the 8th Pacific Conference on Earthquake Engineering. Cerca con Google

Izzi, M., Flatscher, G., Fragiacomo, M., and Schickhofer, G. (2016). „Experimental investigations and design provisions of steel-to-timber joints with annular-ringed shank nails for Cross-Laminated Timber structures”. Construction and Building Materials, 122:446-457. Cerca con Google

Izzi, M., Polastri, A., and Fragiacomo, M. (2016). “Advanced modelling of CLT wall systems for earthquake resistant timber structures” In International Network on Timber Engineering Research (INTER), meeting 49, Graz, Austria, Paper INTER/49-15-6. Cerca con Google

Johansen, K.W. (1949). “Theory of timber connections”. International Association of bridge and structural Engineering, Bern, p. 249-262. Cerca con Google

Jorge, L.F., Schänzlin, J., Lopes, S.M.R., Cruz, H., and Kuhlmann, U. (2010). “Time-dependent behaviour of timber lightweight concrete composite floors”. Engineering structures, 32(12):3966-3973. Cerca con Google

Jorge, L.F.C., Lopes, S.M.R., and Cruz, H.M.P. (2011) “Interlayer influence on timber-LWAC composite structures with screw connections. Journal of Structural Engineering. DOI: 10.1061/(ASCE)ST.1943-541X.0000299. Cerca con Google

Jorissen, A., and Fragiacomo, M., (2011). “General notes on ductility in timber structures”. Engineering Structures, 33(11):2987-2997. Cerca con Google

Karacabeyli, E., and Ceccotti, A. (1996). “Quasi-static reversed-cyclic testing of nailed joints”. In Proceedings of Meeting 29 of the Working Commission W18-Timber Structures, Universität Karlsruhe, Karlsruhe, Germany. PAPER CIB-W18/29-7-7. Cerca con Google

Karacabeyli, E., Yasumura, M., Foliente, G.C., and Ceccotti, A., (2005). “Background Information on ISO Standard 16670 for Cyclic Testing of Connections”. In Proceedings of the Meeting 38 of the Working Commission W18-Timber Structures, CIB, Karlsruhe, Germany, paper CIB-W18/38-15-1 Cerca con Google

Kavaliauskas, S., Kvedaras, A. K., and Valiūnas, B. (2007). “Mechanical behaviour of timber‐to‐concrete connections with inclined screws”. Journal of Civil Engineering and Management, 13(3):193-199. Cerca con Google

Kelly, J. M., Skinner, R. I., and Heine, A. J. (1972). “Mechanisms of energy absorption in special devices for use in earthquake resistant structures”. Bulletin of NZ Society for Earthquake Engineering, 5(3):63-88. Cerca con Google

Kirkham, W. J., Gupta, R., & Miller, T. H. (2013). “State of the art: Seismic behavior of wood-frame residential structures”. Journal of Structural Engineering, 140(4), 04013097. Cerca con Google

Kramer, A., Barbosa, A.R., and Sinha, A. (2015). “Performance of steel energy dissipators connected to cross-laminated timber wall panels subjected to tension and cyclic loading”. Journal of Structural Engineering, 142(4):E4015013. Cerca con Google

Kuhlmann, U., and Aldi, P. (2008). “Fatigue of timber-concrete-composite beams: characterisation of the connection behaviour through push-out tests”. In Proceedings of the 10th World Conference on Timber Engineering (WCTE), 2-5 June 2008, Miyazaki, Japan. Cerca con Google

Kuhlmann, U., and Schänzlin, J. (2001). “Grooves as shear connectors for timber-concrete composite decks”. In Proceedings of International RILEM Symposium on Joints in Timber Structures. Stuttgart, Germany. pp.283–290. Cerca con Google

Latour, M., and Rizzano, G. (2015). “Cyclic behavior and modeling of a dissipative connector for cross-laminated timber panel buildings”. Journal of Earthquake Engineering, 19(1):137-171. Cerca con Google

Liu, J., and Lam, F. (2016). “Experimental test of cross laminated timber connections under bi-directional loading”. In Proceedings of the 14th World Conference on Timber Engineering (WCTE), 22nd- 25th August, Vienna University of Technology, Austria. Cerca con Google

Loo, W. Y., Kun, C., Quenneville, P., and Chouw, N. (2014). “Experimental testing of a rocking timber shear wall with slip‐friction connectors”. Earthquake Engineering and Structural Dynamics, 43(11): 1621-1639. Cerca con Google

Lopes, S., Jorge, L., and Cruz, H. (2012). “Evaluation of non-linear behavior of timber–concrete composite structures using FE model”. Materials and structures, 45(5):653-662. Cerca con Google

Lowes, L. N., Mitra, N., and Altoontash, A. (2003). “A beam-column joint model for simulating the earthquake response of reinforced concrete frames”. Pacific Earthquake Engineering Research Center, Report 2003/10. Cerca con Google

Lukaszewska, E., Fragiacomo, M., and Johnsson, H. (2010). “Laboratory tests and numerical analyses of prefabricated timber-concrete composite floors”. Journal of Structural Enginnering, 136(1):46–55. ASCE. Cerca con Google

Lukaszewska, E., Johnsson, H., and Fragiacomo, M. (2008). “Performance of connections for prefabricated timber-concrete composite floors”. Materials and Structures. DOI: 10.1617/s11527-007-9346-6. Cerca con Google

Marchi, L., Scotta, R., and Pozza, L. (2017). “Experimental and theoretical evaluation of TCC connections with inclined self-tapping screws”. Materials and Structures. http://dx.doi.org/10.1617/s11527-017-1047-1. Vai! Cerca con Google

Marchi, L., Trutalli, D., Scotta, R., and Pozza, L. (2017). “Numerical simulation of the coupled tension-shear response of an innovative dissipative connection for CLT buildings”. In proceedings of the 6th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN), pp. 247-254, 15-17 June 2017, Rhodes Island, Greece. ISBN: 978-618-82844-3-2. DOI: 10.7712/120117. Cerca con Google

Marchi, L., Trutalli, D., Scotta, R., Pozza, L., and Ceccotti, A. (2016). “A new dissipative connection for CLT buildings”. In proceedings of the Third International Conference ICSA, 27-29 July 2016, Guimaraes, Portugal. Structures and Architecture 17:169-177. Print ISBN: 978-1-138-02651-3, DOI: 10.1201/b20891-20. Cerca con Google

Massari, M. (2017). “Seismic Behavior of Cross laminated Timber (CLT) Structural Systems: from Traditional Steel Connections to Low-Damage Solutions” Ph.D. Thesis, University of Bologna, Italy. Cerca con Google

McLain, T. E. (1984). “Mechanical fastening of structural wood members—Design and research status”. In Structural wood research: State-of-the-art and research needs (pp. 33-68). ASCE. Cerca con Google

Mettem, C. (2003). “Structural timber-concrete composites - Advantages of a little known innovation”. The Structural Engineer, 81(4):17-19. Cerca con Google

Möhler, K. (1956). “On the load carrying behavior of beams and columns of compound sections with flexible connections”. Habilitation, Technical Univ. of Karlsruhe, Germany (in German). Cerca con Google

Moshiri, F., Shrestha, R., and Crews, K. (2014). “The Predictive Model for Stiffness of Inclined Screws as Shear Connection in Timber-Concrete Composite Floor”. RILEM Bookseries. DOI: 10.1007/978-94-007-7811-5_40. Cerca con Google

Muñoz, W., Mohammad, M., Salenikovich, A., and Quenneville, P. (2008). “Need for a harmonized approach for calculations of ductility of timber assemblies”. In Proceedings of Meeting 41 of the Working Commission W18-Timber Structures, St. Andrews, NB, Canada. Cerca con Google

Natterer, J., and Hoeft, M. (1987). “Zum Tragverhalten von Holz-Beton-Verbund-Konstruktionen” Forschungsbericht. (No. IBOIS-REPORT-1987-001). Cerca con Google

Natterer, J., Hamm, J., and Favre, P. (1996). “Composite wood-concrete floors for multi-story buildings”. In Proceedings of International Wood Engineering Conference, New Orleans, United States, Vol. 3, 431–435. Cerca con Google

Newmark, N. M. (1951). “Tests and analysis of composite beams with incomplete interaction”. Proceedings of the Society for Experimental Stress Analysis, 9(1), 75-92. Cerca con Google

Oudjene, M., Meghlat, E. M., Ait-Aider, H., and Batoz, J. L. (2013). “Non-linear finite element modelling of the structural behaviour of screwed timber-to-concrete composite connections”. Composite Structures, 102:20-28. Cerca con Google

Palermo, A., Pampanin, S., and Buchanan, A. H. (2006). “Experimental investigations on LVL seismic resistant wall and frame subassemblies”. Cerca con Google

Patton-Mallory, M., Pellicane, P. J., and Smith, F. W. (1997). “Modeling bolted connections in wood”. Journal of structural engineering, 123(8):1054-1062. Cerca con Google

Paulay, T., and Priestley, M.J.N. (1992). Seismic design of reinforced concrete and masonry buildings. Wiley, New York. Cerca con Google

Pedersen, M. (2002). “Dowel type timber connections”. Ph.D. Thesis Delft University of Technology, Netherlands. Cerca con Google

Pei, S., van de Lindt, J. W., & Popovski, M. (2012). “Approximate R-factor for cross-laminated timber walls in multistory buildings”. Journal of Architectural Engineering, 19(4):245-255. Cerca con Google

Piazza, M., Baldessari, C., and Tomasi, R. (2008). “The role of in-plane floor stiffness in the seismic behaviour of traditional buildings”. In Proceedings of the 14th World Conference on Earthquake Engineering (WCTE), Beijing, China (pp. 12-17). Cerca con Google

Piazza, M., Polastri, A., and Tomasi, R. (2011). “Ductility of Joints in Timber Structures”. Proceedings of the ICE – Structures and Buildings, 164(2):79–90. Cerca con Google

Polastri, A., Angeli, A., and Dal Ri, G. (2014). “A new construction system for CLT structures”. In Proceedings of the World Conference on Timber Engineering (WCTE), 10-14 August 2014, Quebec City, QC, Canada. Cerca con Google

Popovski, M., and Gavric, I. (2015). “Performance of a 2-story CLT house subjected to lateral loads”. Journal of Structural Engineering. DOI:10.1061/(ASCE)ST.1943-541X.0001315. Cerca con Google

Popovski, M., Pei, S., Van de Lindt, J. W., & Karacabeyli, E. (2014). “Force modification factors for CLT structures for NBCC”. In Materials and Joints in Timber Structures (pp. 543–553). Springer. Dordrecht, Netherlands. Cerca con Google

Pozza, L. (2013). “Ductility and behaviour factor of wood structural systems”. Ph.D. Thesis, University of Padova, Italy. Cerca con Google

Pozza, L., and Scotta, R. (2015). “Influence of wall assembly on behaviour of cross-laminated timber buildings”. Proceedings of the ICE – Structures and Buildings, 168(4):275-286. Cerca con Google

Pozza, L., Saetta, A., Savoia, M., and D. Talledo (2016) “Coupled axial-shear numerical model for CLT connections”. Construction and Building Material Journal. In press. Cerca con Google

Pozza, L., Scotta, R., Trutalli, D. and Polastri, A. (2015). “Behaviour factor for innovative massive timber shear walls”. Bulletin of Earthquake Engineering, 13(11):3449-3469. Cerca con Google

Pozza, L., Scotta, R., Trutalli, D., Ceccotti, A., and Polastri, A. (2013). “Analytical formulation based on extensive numerical simulations of behavior factor q for CLT buildings”. In Proceedings of the Meeting 46 of the Working Commission W18-Timber Structures, CIB, Vancouver, BC, Canada, paper CIB-W18/46-15-5. Cerca con Google

Pozza, L., Scotta, R., Trutalli, D., Polastri, and A., Smith, I. (2016). “Experimentally based q-factor estimation of cross-laminated timber walls”. Proceedings of the ICE – Structures and Buildings. DOI:10.1680/jstbu.15.00009. Cerca con Google

Prakash, V., Powell, G. H., and Campbell, S. (1993). “DRAIN-2DX Base Program Description and User Guide, Version 141”. Report. UCB/SEMM-93/17, University of California, at Berkeley, Berkeley, CA. Cerca con Google

Priestley, M. N., Sritharan, S., Conley, J. R., and Pampanin, S. (1999). “Preliminary results and conclusions from the PRESSS five-story precast concrete test building”. PCI journal, 44(6):42-67. Cerca con Google

Priestley, M.J.N.; Seible, F.; Calvi, G.M. Seismic Design and Retrofit of Bridges; Wiley: New York, NY, USA, 1996. Cerca con Google

Tomasi, R., and Smith, I. (2014). “Experimental characterization of monotonic and cyclic loading responses of CLT panel-to-foundation angle bracket connections”. Journal of Materials in Civil Engineering, 27(6), 04014189. Cerca con Google

Racher, P. (1995). Mechanical timber joints-general. Timber Engineering-STEP lecture C, 1, 1-10. Cerca con Google

Ramberg, W., and Osgood, W.R. (1943). “Description of stress-strain curves by three parameters”. NACA, TN-902. Cerca con Google

Rinaldin, G., Amadio, C., and Fragiacomo, M. (2013). “A component approach for the hysteretic behaviour of connections in cross‐laminated wooden structures”. Earthquake Engineering and Structural Dynamics, 42(13):2023-2042. Cerca con Google

Ringhofer, A., Brandner, R., and Schickhofer, G. (2015). “A universal approach for withdrawal properties of self-tapping screws in solid timber and laminated timber products”. In Proceedings of International Network on Timber Engineering Research (INTER), meeting 48, 24-27 August 2015, Šibenik, Croatia. Paper INTER/48-7-1. Cerca con Google

Ringhofer, A., Brandner, R., and Schickhofer, G. (2015). “Withdrawal resistance of self-tapping screws in unidirectional and orthogonal layered timber products”. Materials and Structures, 48(5):1435-1447. Cerca con Google

Rodd, P.D., and Leijten, A.J.M. (2003). “High‐performance dowel‐type joints for timber structures”. Progress in Structural Engineering and Materials, 5(2):77-89. Cerca con Google

Rodrigues, J.N., Dias, A. M., and Providência, P. (2013). “Timber-concrete composite bridges: State-of-the-art review”. BioResources, 8(4):6630-6649. Cerca con Google

Ross, R.J. (2010). Wood handbook: Wood as an engineering material. Cerca con Google

Sakamoto I., Fujita K. (2000). “Structural analyses on traditional timber buildings in Japan”. Proceeding of Conservation of the ancient timber load bearing structures meeting, March 2000, Florence, Italy. Cerca con Google

Sandhaas C. (2012). “Constitutive model for wood based on continuum damage mechanics”. In Proceedings of the 12th World conference on Timber Engineering (WCTE). 15-19 July 2012, Auckland, New Zealand. Cerca con Google

Sandhaas C. (2012). “Mechanical behaviour of timber joints with slotted-in steel plates”. Ph.D. Thesis Delft University of Technology, Netherlands. Cerca con Google

Sandhaas, C., Boukes, J., Van de Kuilen, J.W.G. and Ceccotti, A. (2009). “Analysis of X-lam panel-to-panel connections under monotonic and cyclic loading”. In Proceedings of the Meeting 42 of the Working Commission W18-Timber Structures, CIB, Dübendorf, Switzerland, paper CIB-W18/42-12-2. Cerca con Google

Sarti, F. (2015). “Seismic Design of Low-Damage Post-Tensioned Timber Wall Systems”. Ph.D. Thesis. University of Canterbury, Christchurch, New Zealand. Cerca con Google

Sarti, F., Palermo, A., and Pampanin, S., (2015). “Quasi-static cyclic testing of two-thirds scale unbonded posttensioned rocking dissipative timber walls”. Journal of Structural Engineering. DOI:10.1061/(ASCE)ST.1943-541X.0001291. Cerca con Google

Sartori, T., Piazza, M., Tomasi, R., and Grossi, P. (2012). “Characterization of the mechanical behavior of light-frame shear walls through full-scale tests”. In Proceedings of the 12th World conference on Ttimber Engineering (WCTE). 15-19 July 2012, Auckland, New Zealand. Cerca con Google

Schmidt, T., and Blaas, H.J., (2017). “Dissipative joints for CLT shear walls”. In Proceedings of International Network on Timber Engineering Research (INTER), meeting 50, 28-31 August 2017, Kyoto, Japan. Paper INTER/50-15-2. Cerca con Google

Scotta, R., Marchi, L., Trutalli, D., and Pozza, L. (2016). “A dissipative connector for CLT buildings: concept, design and testing”. Materials, MDPI. DOI:10.3390/ma9030139. Cerca con Google

Scotta, R., Marchi, L., Trutalli, D., and Pozza, L. (2017). “Engineered aluminium beams for anchoring timber buildings to foundation”. Structural Engineering International, 27(2):158-164. IABSE. DOI: 10.2749/101686617X14881932435736 Cerca con Google

Scotta, R., Pozza, L., Trutalli, D., Marchi, L. and Ceccotti, A. (2015). “Dissipative connections for squat or scarcely jointed CLT buildings. Experimental tests and numerical validation”. In proceedings of International Network on Timber Engineering Research (INTER), meeting 48, 24-27 August 2015, Šibenik, Croatia. Paper INTER/48-15-4. Cerca con Google

Scotta, R., Trutalli, D., Marchi, L., and Pozza, L. (2017). “Capacity design of CLT structures with traditional or innovative seismic-resistant brackets”. In Proceedings of International Network on Timber Engineering Research (INTER), meeting 50, 28-31 August 2017, Kyoto, Japan. Paper INTER/50-15-5. Cerca con Google

Skinner, J., Bregulla, J., Harris, R., Paine, K., and Walker, P. (2014). “Screw connectors for thin topping, timberconcrete composites. Materials and Structures. DOI: 10.1617/s11527-013-0158-6. Cerca con Google

Smith, I., and Foliente, G. (2002). “Load and resistance factor design of timber joints: International practice and future direction”. Journal of structural engineering. ASCE. DOI: 10.1061/(ASCE)0733-9445(2002)128:1(48). Cerca con Google

Smith, I., Landis, E., and Gong, M. (2003). “Fracture and Fatigue in Wood”. John Wiley & Sons: Chichester, UK. Cerca con Google

Smith, T., Ludwig, F., Pampanin, S., Fragiacomo, M., Buchanan, A., Deam, B., and Palermo, A. (2007). Seismic response of hybrid-LVL coupled walls under quasi-static and pseudo-dynamic testing. In 2007 New Zealand Society for Earthquake Engineering Conference, Palmerston North, New Zealand (Vol. 8). Cerca con Google

Steinberg, E., Selle, R., and Faust, T. (2003) “Connectors for timber-lightweight concrete composite structures”. Journal of Structural Engineering. 129(11):1538-1545. Cerca con Google

Sustersic, I., Fragiacomo, M., and Dujic, B. (2011). “Influence of connection properties on the ductility and seismic resistance of multi-storey cross-lam buildings”. In Proceedings of the Meeting 44 of the Working Commission W18-Timber Structures, CIB, Alghero, Italy. Cerca con Google

Symons, D., Persaud, R., and Stanislaus, H. (2010). “Strength of inclined screw shear connections for timber and concrete composite construction”. Structural Engineer, 88(1):25-32. Cerca con Google

Taazount, M., Amziane, S., and Molard, D. (2013). “Tangential behavior of nailed composite timber-concrete floor structures”. Construction and Building Materials. DOI:10.1016/j.conbuildmat.2012.09.092. Cerca con Google

Thiel, A., “ULS and SLS design of CLT and its implementation in the CLTdesigner”, In: Harris, R., Ringhofer, A., and Schickhofer, G. (eds.), Focus solid timber solutions - European conference on cross laminated timber (CLT), 2013, The University of Bath, Bath. Cerca con Google

Thomson, A. (2010). “The structural performance of non-metallic timber connections”. Ph.D. Thesis, University of Bath, UK. Cerca con Google

Tomasi, R., & Sartori, T. (2013). Mechanical behaviour of connections between wood framed shear walls and foundations under monotonic and cyclic load. Construction and Building Materials, 44:682-690. Cerca con Google

Tomasi, R., and Sartori, T. (2013). “Mechanical behavior of connections between wood framed shear walls and foundations under monotonic and cyclic load”. Construction and Building Materials, 44:682–690. Cerca con Google

Tomasi, R., Crosatti, A., and Piazza, M. (2010). “Theoretical and experimental analysis of timber-to-timber joints connected with inclined screws”. Construction and Building Materials. DOI:10.1016/j.conbuildmat.2010.03.007. Cerca con Google

Trutalli, D. (2016). “Insight into seismic behaviour of timber shear-wall systems”. Ph.D. Thesis, University of Padova, Italy. Cerca con Google

Trutalli, D., and Pozza, L. (2017). “Seismic design of floor–wall joints of multi-storey CLT buildings to comply with regularity in elevation”. Bulletin of Earthquake Engineering, 1-19. Cerca con Google

Tsai, S.W., and Wu, E.M. (1971). “A general theory of strength for anisotropic materials”. Journal of composite materials, 5(1):58-80. Cerca con Google

Turrini, G., and Piazza, M. (1983). “Una tecnica di recupero statico del solai in Legno”. Recuperare, 5:224-237 (in italian). Cerca con Google

Uddin, N. (2013). “Developments in fiber-reinforced polymer (FRP) composites for civil engineering”. Elsevier. Amsterdam, Netherlands. Cerca con Google

Valluzzi, M. R., Garbin, E., Dalla Benetta, M., and Modena, C. (2010). “In-plane strengthening of timber floors for the seismic improvement of masonry buildings”. In Proceedings of the 11th World Conference on Timber Engineering WCTE, Riva del Garda, Italy. Cerca con Google

Van der Linden, M. (1999). “Timber concrete composite floors”. Ph.D. Thesis Delft University of Technology, Netherlands. Cerca con Google

Van der Linden, M. (1999). “Timber-concrete composite beams”. Heron, 44(3): 215-239. Cerca con Google

Website of Heco. Available online: http://www.heco.it/ Vai! Cerca con Google

Website of Leca. Available online: http://www.laterlite.com/ Vai! Cerca con Google

Website of Peter Cox. Available online: www.petercoxitalia.it/ Vai! Cerca con Google

Website of Rothoblaas. Available online: http://www.rothoblaas.com/ Vai! Cerca con Google

Website of Tecnaria. Available online: http://www.tecnaria.com/en/ Vai! Cerca con Google

Website of Wurth. Available online: http://www.wuerth.com/ Vai! Cerca con Google

www.campusplastics.com Vai! Cerca con Google

Xu, B. H., Bouchaïr, A., Taazount, M., and Vega, E. J. (2009). “Numerical and experimental analyses of multiple-dowel steel-to-timber joints in tension perpendicular to grain”. Engineering Structures, 31(10): 2357-2367. Cerca con Google

Xu, B. H., Taazount, M., Bouchaïr, A., and Racher, P. (2009). “Numerical 3D finite element modelling and experimental tests for dowel-type timber joints”. Construction and building materials, 23(9):3043-3052. Cerca con Google

Yeoh, D., Fragiacomo, M., De Franceschi, M., and Heng Boon, K. (2011) “State of the art on timber-concrete composite structures: literature review”. Journal of Structural Enginnering, 137(10):1085–1095. ASCE. Cerca con Google

Yeoh, D.E.C. (2010). “Behaviour and design of timber-concrete composite floor system”. University of Canterbury, Christchurch, New Zealand. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record