Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Gintoli, Michele (2018) Fabrication and characterization of spiral phase masks for super-resolution. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document - Submitted Version
22Mb

Abstract (english)

Confocal microscopy, with both high lateral and axial resolution, has enabled the observation of the inner workings of cells and tissues with great detail. Strong scattering and absorption of light, though, strongly limit the depth at which samples can be imaged, and resolution is limited to a wavelength-wide area in the focal plane by diffraction. Sample penetration of hundreds of µm can be reached by nonlinear microscopy, based on the interaction between the tissue and multiple infrared photons, that undergo much less scattering and absorption. Resolutions of just tens of nanometers can also be reached with STED microscopy, an upgrade to the confocal architecture. Two-photon excitation STED (TPE-STED) microscopes have been invented in the last decade to combine the two properties, with resolution gains up to 4-5 times the diffraction-limited systems, at depths of tens of microns. Still, scattering and absorption of the depletion beam limit the observation of super-resolved features in the 100 µm regions. The aim of this thesis was the development of the first TPE-STED microscope working with excitation wavelengths in the [1000−1500] nm range and depletion wavelengths near 800 nm, capable of surpassing the depth limit of current STED microscopes. Suitable fluorophores must be used in this regime, so we tested the depletion performance of ATTO 594, ATTO 647N and mGarnet2. In parallel, we used the dual-beam nature of the platform to provide simultaneous nonlinear imaging with both degenerate and nondegenerate absorption of photons at the different wavelengths. A consistent part of the thesis work was also centered on the development of a protocol of fabrication and characterization optical elements for the manipulation of the STED beam. This was done in order to be able to freely couple every selected fluorophore with its most efficient depletion wavelength, without the need for long waiting times of commercial applications.

Abstract (italian)

La microscopia confocale, con la sua alta risoluzione laterale e assiale, ha permesso l'osservazione delle dinamiche interne delle cellule e dei tessuti in modo dettagliato. La profondità alla quale è possibile osservare i campioni, però, è fortemente limitata dalla diffusione e dall'assorbimento subiti dalla luce, inoltre la risoluzione sul piano focale è limitata ad un'area di grandezza paragonabile alla lunghezza d'onda utilizzata, a causa della diffrazione. È possibile raggiungere profondità di centinaia di µm usando la microscopia nonlineare, basata sull'interazione tra il tessuto e più fotoni infrarossi, che subiscono molto di meno gli effetti della diffusione e dell'assorbimento nel tessuto. Risoluzioni di poche decine di nanometri possono inoltre essere ottenute grazie alla microscopia STED, un miglioramento della modalità confocale. Nell'ultimo decennio, sono stati sviluppati microscopi STED con eccitazione a due fotoni (TPE-STED), in modo da combinare queste due proprietà, con risoluzioni che a profondità di decine di micron arrivano fino a valori 4-5 volte migliori dei sistemi limitati dalla diffrazione. Ciononostante, la diffusione e l'assorbimento del fascio di deplezione limitano la profondità alla quale poter ancora osservare dettagli super-risolti a non più di un centinaio di micron. Lo scopo di questa tesi è stato lo sviluppo del primo microscopio TPE-STED con eccitazione nel range [1000-1500] nm e lunghezze d'onda di deplezione vicine agli 800 nm, in modo da poter sorpassare il limite di profondità degli attuali microscopi STED. In questo regime, sono necessari fluorofori adatti, e per questo abbiamo testato la performance delle molecole ATTO 594, ATTO 647N e mGarnet2. In parallelo, abbiamo usato il sistema a due fasci della piattaforma per fornire simultaneamente imaging nonlineare con assorbimento degenere e nondegenere di fotoni a diverse lunghezze d'onda. Una parte consistente del lavoro di tesi è stato anche concentrato sullo sviluppo di un protocollo di fabbricazione e caratterizzazione di elementi ottici per la manipolazione del fascio STED. Lo sforzo è stato compiuto con l'intenzione di poter abbinare liberamente ogni fluoroforo selezionato con la lunghezza di deplezione più efficiente, senza dover attendere i lunghi tempi necessari per la richiesta di soluzioni commerciali.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Romanato, Filippo
Ph.D. course:Ciclo 29 > Corsi 29 > FISICA
Data di deposito della tesi:02 February 2018
Anno di Pubblicazione:02 February 2018
Key Words:microscopia; microscopia nonlineare; due-fotoni; super-risoluzione; STED; microfabbricazione; maschere di fase; microscopy; nonlinear microscopy; two-photon; super-resolution; STED; microfabrication; phase masks;
Settori scientifico-disciplinari MIUR:Area 02 - Scienze fisiche > FIS/03 Fisica della materia
Struttura di riferimento:Dipartimenti > Dipartimento di Fisica e Astronomia "Galileo Galilei"
Codice ID:11124
Depositato il:26 Oct 2018 08:36
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1 Abbe, E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für Mikroskopische Anatomie 9, 413-418, doi:10.1007/bf02956173 (1873). Cerca con Google

2 Anisha Thayil, K. N. et al. Starch-based backwards SHG for in situ MEFISTO pulse characterization in multiphoton microscopy. J Microsc 230, 70-75, doi:10.1111/j.1365-2818.2008.01956.x (2008). Cerca con Google

3 Barad, Y., Eisenberg, H., Horowitz, M. & Silberberg, Y. Nonlinear scanning laser microscopy by third harmonic generation. Applied Physics Letters 70, 922-924, doi:10.1063/1.118442 (1997). Cerca con Google

4 Bethge, P., Chereau, R., Avignone, E., Marsicano, G. & Nagerl, U. V. Two-photon excitation STED microscopy in two colors in acute brain slices. Biophys J 104, 778-785, doi:10.1016/j.bpj.2012.12.054 (2013). Cerca con Google

5 Betzig, E. Proposed method for molecular optical imaging. Opt Lett 20, 237-239 (1995). Cerca con Google

6 Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642--1645 (2006). Cerca con Google

7 Bianchini, P., Harke, B., Galiani, S., Vicidomini, G. & Diaspro, A. Single-wavelength two-photon excitation-stimulated emission depletion (SW2PE-STED) superresolution imaging. Proc Natl Acad Sci U S A 109, 6390-6393, doi:10.1073/pnas.1119129109 (2012). Cerca con Google

8 Blab, G. A., Lommerse, P. H. M., Cognet, L., Harms, G. S. & Schmidt, T. Two-photon excitation action cross-sections of the autofluorescent proteins. Chemical Physics Letters 350, 71-77, doi:10.1016/s0009-2614(01)01282-9 (2001). Cerca con Google

9 Blom, H. & Widengren, J. Stimulated Emission Depletion Microscopy. Chem Rev 117, 7377-7427, doi:10.1021/acs.chemrev.6b00653 (2017). Cerca con Google

10 Born & Wolf. Principles Of Optics. (Cambridge University Press, 1970). Cerca con Google

11 Bossi, M., Fölling, J., Dyba, M., Westphal, V. & Hell, S. W. Breaking the diffraction resolution barrier in far-field microscopy by molecular optical bistability. New journal of physics 8, 275 (2006). Cerca con Google

12 Boyd, R. W. Nonlinear Optics. Nonlinear Optics (Third Edition), doi:10.1142/3046 (2008). Cerca con Google

13 Brodie, I. & Muray, J. J. The physics of micro/nano-fabrication. (1992). Cerca con Google

14 Brown Jr, R. M., Millard, A. C. & Campagnola, P. J. Macromolecular structure of cellulose studied by second-harmonic generation imaging microscopy. Optics letters 28, 2207--2209 (2003). Cerca con Google

15 Castaldi, A. et al. MicroRNA-133 modulates the beta1-adrenergic receptor transduction cascade. Circ Res 115, 273-283, doi:10.1161/CIRCRESAHA.115.303252 (2014). Cerca con Google

16 Cord, B. et al. Limiting factors in sub-10 nm scanning-electron-beam lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 27, 2616, doi:10.1116/1.3253603 (2009). Cerca con Google

17 Cui, Z. Nanofabrication: Principles, Capabilities and Limits. (Springer, 2008). Cerca con Google

18 Debarre, D. et al. Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat. Methods 3, 47--53 (2006). Cerca con Google

19 Denicke, S., Quentmeier, S., Ehlers, J. E. & Gericke, K. H. Applications of the time-resolved two-colour two-photon excitation of UV fluorophores using femtosecond laser pulses. Physica Scripta 80, 048105, doi:10.1088/0031-8949/80/04/048105 (2009). Cerca con Google

20 Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73-76, doi:10.1126/science.2321027 (1990). Cerca con Google

21 Di Francia, G. T. Super-gain antennas and optical resolving power. Il Nuovo Cimento 9, 426-438, doi:10.1007/bf02903413 (1952). Cerca con Google

22 Ding, J. B., Takasaki, K. T. & Sabatini, B. L. Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy. Neuron 63, 429-437, doi:10.1016/j.neuron.2009.07.011 (2009). Cerca con Google

23 Donnert, G. et al. Macromolecular-scale resolution in biological fluorescence microscopy. Proc Natl Acad Sci U S A 103, 11440-11445, doi:10.1073/pnas.0604965103 (2006). Cerca con Google

24 Drobizhev, M., Makarov, N. S., Tillo, S. E., Hughes, T. E. & Rebane, A. Two-photon absorption properties of fluorescent proteins. Nat Methods 8, 393-399, doi:10.1038/nmeth.1596 (2011). Cerca con Google

25 Drobizhev, M., Tillo, S., Makarov, N. S., Hughes, T. E. & Rebane, A. Absolute two-photon absorption spectra and two-photon brightness of orange and red fluorescent proteins. J Phys Chem B 113, 855-859, doi:10.1021/jp8087379 (2009). Cerca con Google

26 Fadini, G. P. et al. NETosis Delays Diabetic Wound Healing in Mice and Humans. Diabetes 65, 1061-1071, doi:10.2337/db15-0863 (2016). Cerca con Google

27 Fadini, G. P. et al. A perspective on NETosis in diabetes and cardiometabolic disorders. Nutr Metab Cardiovasc Dis 26, 1-8, doi:10.1016/j.numecd.2015.11.008 (2016). Cerca con Google

28 Filippi, A. et al. Multiphoton Label-Free ex-vivo imaging using a custom-built dual-wavelength microscope with chromatic aberrations compensation. (2017). Cerca con Google

29 Galiani, S. et al. Strategies to maximize the performance of a STED microscope. Opt Express 20, 7362-7374, doi:10.1364/OE.20.007362 (2012). Cerca con Google

30 Godin, A. G., Lounis, B. & Cognet, L. Super-resolution microscopy approaches for live cell imaging. Biophys J 107, 1777-1784, doi:10.1016/j.bpj.2014.08.028 (2014). Cerca con Google

31 Goeppert-Mayer, M. Ueber elementarakte mit zwei quantenspruengen. Annalen der Physik 9, 273--294 (1931). Cerca con Google

32 Gordon, M. P., Ha, T. & Selvin, P. R. Single-molecule high-resolution imaging with photobleaching. Proc Natl Acad Sci U S A 101, 6462-6465, doi:10.1073/pnas.0401638101 (2004). Cerca con Google

33 Göttfert, F. et al. Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20 nm resolution. Biophysical journal 105, L01--L03 (2013). Cerca con Google

34 Gould, T. J., Burke, D., Bewersdorf, J. & Booth, M. J. Adaptive optics enables 3D STED microscopy in aberrating specimens. Opt Express 20, 20998-21009, doi:10.1364/OE.20.020998 (2012). Cerca con Google

35 Harke, B. et al. Resolution scaling in STED microscopy. Opt Express 16, 4154-4162, doi:10.1364/OE.16.004154 (2008). Cerca con Google

36 Heilemann, M. et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl 47, 6172-6176, doi:10.1002/anie.200802376 (2008). Cerca con Google

37 Heinzelmann, H. & Pohl, D. W. Scanning near-field optical microscopy. Applied Physics A Solids and Surfaces 59, 89-101, doi:10.1007/bf00332200 (1994). Cerca con Google

38 Hell, S. W. et al. Three-photon excitation in fluorescence microscopy. J Biomed Opt 1, 71-74, doi:10.1117/12.229062 (1996). Cerca con Google

39 Hell, S. W. & Kroug, M. Ground-state-depletion fluorescence microscopy: A concept for breaking the diffraction resolution limit. Applied Physics B 60, 495--497 (1995). Cerca con Google

40 Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19, 780-782 (1994). Cerca con Google

41 Hense, A. et al. Monomeric Garnet, a far-red fluorescent protein for live-cell STED imaging. Sci Rep 5, 18006, doi:10.1038/srep18006 (2015). Cerca con Google

42 Hess, S. T., Girirajan, T. P. & Mason, M. D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91, 4258-4272, doi:10.1529/biophysj.106.091116 (2006). Cerca con Google

43 Hofmann, M., Eggeling, C., Jakobs, S. & Hell, S. W. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proceedings of the National Academy of Sciences of the United States of America 102, 17565--17569 (2005). Cerca con Google

44 Horton, N. G. et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat Photonics 7, doi:10.1038/nphoton.2012.336 (2013). Cerca con Google

45 Kobat, D., Horton, N. G. & Xu, C. In vivo two-photon microscopy to 1.6-mm depth in mouse cortex. J Biomed Opt 16, 106014, doi:10.1117/1.3646209 (2011). Cerca con Google

46 Kolmakov, K. et al. Polar red-emitting rhodamine dyes with reactive groups: synthesis, photophysical properties, and two-color STED nanoscopy applications. Chemistry 20, 146-157, doi:10.1002/chem.201303433 (2014). Cerca con Google

47 Lakowicz, J. R., Gryczynski, I., Malak, H. & Gryczynski, Z. Two-color two-photon excitation of fluorescence. Photochem Photobiol 64, 632-635, doi:10.1111/j.1751-1097.1996.tb03116.x (1996). Cerca con Google

48 Li, Q., Wang, Y., Chen, D. & Wu, S. S. 2PE-STED microscopy with a single Ti:sapphire laser for reduced illumination. PLoS One 9, e88464, doi:10.1371/journal.pone.0088464 (2014). Cerca con Google

49 Lim, H. et al. Label-free imaging of Schwann cell myelination by third harmonic generation microscopy. Proc Natl Acad Sci U S A 111, 18025-18030, doi:10.1073/pnas.1417820111 (2014). Cerca con Google

50 Lukosz, W. Optical Systems with Resolving Powers Exceeding the Classical Limit II. Journal of the Optical Society of America 57, 932, doi:10.1364/josa.57.000932 (1967). Cerca con Google

51 Mahou, P. et al. Multicolor two-photon tissue imaging by wavelength mixing. Nat Methods 9, 815-818, doi:10.1038/nmeth.2098 (2012). Cerca con Google

52 Maiti, S., Shear, J. B., Williams, R. M., Zipfel, W. R. & Webb, W. W. Measuring serotonin distribution in live cells with three-photon excitation. Science 275, 530-532, doi:10.1126/science.275.5299.530 (1997). Cerca con Google

53 Massari, M., Ruffato, G., Gintoli, M., Ricci, F. & Romanato, F. Fabrication and characterization of high-quality spiral phase plates for optical applications. Applied Optics 54, 4077, doi:10.1364/ao.54.004077 (2015). Cerca con Google

54 Matela, G. et al. A far-red emitting fluorescent marker protein, mGarnet2, for microscopy and STED nanoscopy. Chem Commun (Camb) 53, 979-982, doi:10.1039/c6cc09081h (2017). Cerca con Google

55 Minsky, M. (1961). Cerca con Google

56 Moerner, W. E. & Kador, L. Optical detection and spectroscopy of single molecules in a solid. Phys Rev Lett 62, 2535-2538, doi:10.1103/PhysRevLett.62.2535 (1989). Cerca con Google

57 Moneron, G. & Hell, S. W. Two-photon excitation STED microscopy. Opt Express 17, 14567-14573 (2009). Cerca con Google

58 Nadiarnykh, O., Lacomb, R. B., Campagnola, P. J. & Mohler, W. A. Coherent and incoherent SHG in fibrillar cellulose matrices. Opt Express 15, 3348-3360, doi:10.1364/OE.15.003348 (2007). Cerca con Google

59 Neil, M., Ju\vskaitis, R. & Wilson, T. Real time 3D fluorescence microscopy by two beam interference illumination. Optics communications 153, 1--4 (1998). Cerca con Google

60 Oheim, M., Beaurepaire, E., Chaigneau, E., Mertz, J. & Charpak, S. Two-photon microscopy in brain tissue: parameters influencing the imaging depth. J Neurosci Methods 111, 29-37 (2001). Cerca con Google

61 Orrit, M. & Bernard, J. Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys Rev Lett 65, 2716-2719, doi:10.1103/PhysRevLett.65.2716 (1990). Cerca con Google

62 Patton, B. R. et al. Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics. Optics express 24, 8862--8876 (2016). Cerca con Google

63 Periasamy, A. et al. Comparison of two-photon imaging depths with 775 nm excitation and 1300 nm excitation. 7183, 71832D, doi:10.1117/12.810506 (2009). Cerca con Google

64 Piston, D. W. Imaging living cells and tissues by two-photon excitation microscopy. Trends Cell Biol 9, 66-69, doi:10.1016/S0962-8924(98)01432-9 (1999). Cerca con Google

65 Pohl, D. W. Scanning near-field optical microscopy (SNOM). Adv. Opt. Electron. Microsc. 12, 243--312 (1991). Cerca con Google

66 Quentmeier, S., Denicke, S., Ehlers, J. E., Niesner, R. A. & Gericke, K. H. Two-color two-photon excitation using femtosecond laser pulses. J Phys Chem B 112, 5768-5773, doi:10.1021/jp7113994 (2008). Cerca con Google

67 Quentmeier, S., Denicke, S. & Gericke, K. H. Two-color two-photon fluorescence laser scanning microscopy. J Fluoresc 19, 1037-1043, doi:10.1007/s10895-009-0503-x (2009). Cerca con Google

68 Quentmeier, S., Quentmeier, C. C., Walla, P. J. & Gericke, K. H. Two-color two-photon excitation of intrinsic protein fluorescence: label-free observation of proteolytic digestion of bovine serum albumin. Chemphyschem 10, 1607-1613, doi:10.1002/cphc.200800586 (2009). Cerca con Google

69 Ricci, F. Experimental Study of Phase Singularities in Optical Beams Carrying Orbital Angular Momentum, (2012). Cerca con Google

70 Rigler, R. & Widengren, J. Ultrasensitive detection of single molecules by fluorescence correlation spectroscopy. (1990). Cerca con Google

71 Rittweger, E., Han, K. Y., Irvine, S. E., Eggeling, C. & Hell, S. W. STED microscopy reveals crystal colour centres with nanometric resolution. Nature Photonics 3, 144-147, doi:10.1038/nphoton.2009.2 (2009). Cerca con Google

72 Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3, 793-795, doi:10.1038/nmeth929 (2006). Cerca con Google

73 Sako, Y. et al. Comparison of two-photon excitation laser scanning microscopy with UV-confocal laser scanning microscopy in three-dimensional calcium imaging using the fluorescence indicator Indo-1. Journal of Microscopy 185, 9-20, doi:10.1046/j.1365-2818.1997.1480707.x (1997). Cerca con Google

74 Saleh, B. E. A. & Teich, M. C. Fundamentals of photonics. Vol. 24 (Wiley Interscience, 1992). Cerca con Google

75 Scheul, T., D'Amico, C., Wang, I. & Vial, J. C. Two-photon excitation and stimulated emission depletion by a single wavelength. Opt Express 19, 18036-18048, doi:10.1364/OE.19.018036 (2011). Cerca con Google

76 Schrader, M. et al. Monitoring the excited state of a fluorophore in a microscope by stimulated emission. Bioimaging 3, 147--153, doi:10.1002/1361-6374(199512)3:4<147::AID-BIO1>3.0.CO;2-H (1995). Cerca con Google

77 Shera, E. B., Seitzinger, N. K., Davis, L. M., Keller, R. A. & Soper, S. A. Detection of single fluorescent molecules. Chemical Physics Letters 174, 553--557 (1990). Cerca con Google

78 Squier, J., Muller, M., Brakenhoff, G. & Wilson, K. R. Third harmonic generation microscopy. Opt Express 3, 315-324 (1998). Cerca con Google

79 Strupler, M. et al. Second harmonic imaging and scoring of collagen in fibrotic tissues. Opt Express 15, 4054-4065, doi:10.1364/OE.15.004054 (2007). Cerca con Google

80 Takasaki, K. T., Ding, J. B. & Sabatini, B. L. Live-cell superresolution imaging by pulsed STED two-photon excitation microscopy. Biophys J 104, 770-777, doi:10.1016/j.bpj.2012.12.053 (2013). Cerca con Google

81 Tonnesen, J. & Nagerl, U. V. Two-color STED imaging of synapses in living brain slices. Methods Mol Biol 950, 65-80, doi:10.1007/978-1-62703-137-0_5 (2013). Cerca con Google

82 Tsai, M. R., Chiu, Y. W., Lo, M. T. & Sun, C. K. Second-harmonic generation imaging of collagen fibers in myocardium for atrial fibrillation diagnosis. J Biomed Opt 15, 026002, doi:10.1117/1.3365943 (2010). Cerca con Google

83 Tsang, T. Y. F. Optical third-harmonic generation at interfaces. Phys Rev A 52, 4116--4125 (1995). Cerca con Google

84 Unal, N. et al. Easy to adapt electron beam proximity effect correction parameter calibration based on visual inspection of a “Best Dose Sensor”. Microelectronic Engineering 88, 2158-2162, doi:10.1016/j.mee.2011.02.066 (2011). Cerca con Google

85 Van Oijen, A., Köhler, J., Schmidt, J., Müller, M. & Brakenhoff, G. 3-Dimensional super-resolution by spectrally selective imaging. Chemical Physics Letters 292, 183--187 (1998). Cerca con Google

86 Vicidomini, G., Moneron, G., Eggeling, C., Rittweger, E. & Hell, S. W. STED with wavelengths closer to the emission maximum. Opt Express 20, 5225-5236, doi:10.1364/OE.20.005225 (2012). Cerca con Google

87 Wacker, S. A. et al. RITA, a novel modulator of Notch signalling, acts via nuclear export of RBP-J. EMBO J 30, 43-56, doi:10.1038/emboj.2010.289 (2011). Cerca con Google

88 Wildanger, D., Medda, R., Kastrup, L. & Hell, S. W. A compact STED microscope providing 3D nanoscale resolution. J Microsc 236, 35-43, doi:10.1111/j.1365-2818.2009.03188.x (2009). Cerca con Google

89 Williams, R. M., Zipfel, W. R. & Webb, W. W. Interpreting second-harmonic generation images of collagen I fibrils. Biophys J 88, 1377-1386, doi:10.1529/biophysj.104.047308 (2005). Cerca con Google

90 Willig, K. I. & Nagerl, U. V. Stimulated emission depletion (STED) imaging of dendritic spines in living hippocampal slices. Cold Spring Harb Protoc 2012, doi:10.1101/pdb.prot069260 (2012). Cerca con Google

91 Wokosin, D. L., Centonze, V. E., Crittenden, S. & White, J. Three-photon excitation fluorescence imaging of biological specimens using an all-solid-state laser. Bioimaging 4, 208--214, doi:10.1002/1361-6374(199609)4:3<208::AID-BIO11>3.0.CO;2-J (1996). Cerca con Google

92 Wurm, C. A. et al. Novel red fluorophores with superior performance in STED microscopy. Optical Nanoscopy 1, 7 (2012). Cerca con Google

93 Xu, C., Zipfel, W., Shear, J. B., Williams, R. M. & Webb, W. W. Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proc Natl Acad Sci U S A 93, 10763-10768, doi:10.1073/pnas.93.20.10763 (1996). Cerca con Google

94 Yan, W. et al. Coherent optical adaptive technique improves the spatial resolution of STED microscopy in thick samples. Photonics Research 5, 176--181 (2017). Cerca con Google

95 Yuan, X. C., Lin, J., Bu, J. & Burge, R. E. Achromatic design for the generation of optical vortices based on radial spiral phase plates. Opt Express 16, 13599-13605 (2008). Cerca con Google

96 Zhuo, Z. Y. et al. Second harmonic generation imaging - a new method for unraveling molecular information of starch. J Struct Biol 171, 88-94, doi:10.1016/j.jsb.2010.02.020 (2010). Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record