Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Dugaria, Simone (2018) Advanced surface and volumetric receivers to convert concentrated solar radiation. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF - Versione pubblicata
12Mb

Abstract (italiano o inglese)

This thesis is the results of the work conducted during the three years of Ph.D. at the Department of Industrial Engineering of the University of Padova.
The conversion of solar energy into heat in the medium-temperature range (between 80 °C and 250 °C) has recently encountered a renewed interest in heating and cooling applications of industrial, commercial, residential and service sectors. Concentrating solar thermal collectors at medium temperature are suitable for many commercial and industrial applications, such as industrial process heat, solar cooling and desalination of the seawater. It is expected that in the future, a significant technological development can be achieved for these collectors, provided that the conversion of solar energy becomes more efficient and cost-effective. The proper design of the receiver, which is considered the heart of any concentrating collector, is essential to the future improvement in the conversion efficiency of this technology. In this context, the present thesis investigates the application of two innovative concepts of receivers in a prototype of an asymmetrical parabolic trough concentrator installed in the Solar Energy Conversion Lab of the Industrial Engineering Department, at the University of Padova.
In Chapter 1, a study on different estimation procedures for the assessment of the direct normal irradiance, which is the solar resource utilized by solar concentrators, is presented. The study includes an indirect evaluation from measurements of global and diffuse horizontal irradiances and the use of semi-physical/empirical models. A detailed analysis of the instrumentation and of the measuring technique as well as the expression of the experimental uncertainty is provided. In Chapter 2, the optical performance of the asymmetrical parabolic trough is experimentally characterized. As a result, a statistical ray-tracing model of the concentrator for optical performance analysis in different working conditions is validated and used to optimize the design of the proposed receivers. In Chapter 3, an innovative flat aluminium absorber manufactured with the bar-and-plate technology, including an internal turbulator, is tested in the asymmetrical parabolic trough collector under single-phase and two-phase flow regimes. A numerical model to predict its performance has been developed and validated against the experimental data. In Chapter 4, this model is used to evaluate the performance of a small solar-powered ORC system by coupling the aforementioned concentrating solar system with direct vaporization of a low-GWP halogenated fluid or by using an intermediate solar circuit to heat pressurized water and evaporate the same organic working fluid in a separate heat exchanger. Finally, in Chapter 5 a new direct absorption receiver is proposed to investigate the capability of a suspension of single-wall carbon nanohorns in distilled water to absorb concentrated sunlight. The volumetric receiver has been designed through the development of a three-dimensional computational fluid dynamics model for its installation in the focus region of the asymmetrical parabolic trough. The capability of the nanofluid in collecting solar radiation when exposed to concentrated and non-concentrated solar flux are experimentally investigated thanks to the cooperation with National Council of the Research (CNR), that provided the aqueous solution. The nanofluid was tested in several conditions, with and without circulation, to investigate its stability with time.

Abstract (seconda lingua)

La presente tesi è il risultato del lavoro svolto durante i tre anni di dottorato. presso il Dipartimento di Ingegneria Industriale dell'Università degli Studi di Padova.
La conversione dell'energia solare in calore a media temperatura (tra 80 °C e 250 °C) ha recentemente riscontrato un rinnovato interesse per le applicazioni di riscaldamento e raffreddamento in settori industriali, commerciali, residenziali e dei servizi. I collettori solari termici a concentrazione per media temperatura ben si prestano per l’impiego in molte applicazioni commerciali e industriali, come per la produzione di calore di processo industriale, il solar-cooling e la desalinizzazione dell'acqua di mare. Si prevede un significativo sviluppo tecnologico per questa tipologia di collettori, a condizione che la conversione dell'energia solare diventi più efficiente ed economica. La corretta progettazione del ricevitore, considerato il cuore di ogni collettore a concentrazione, è essenziale per il futuro incremento dell'efficienza di conversione di questa tecnologia. In questo contesto, questa tesi riporta i risultati dell'applicazione di due innovativi ricevitori in un prototipo di concentratore parabolico asimmetrico installato nel Laboratorio di conversione dell'energia solare del Dipartimento di Ingegneria Industriale dell'Università degli Studi di Padova.
Nel Capitolo 1 è presentato lo studio di diverse procedure per la stima dell'irradianza normale diretta, che è la risorsa solare utilizzata dai concentratori solari. Lo studio include una valutazione indiretta da misurazioni di irradianza orizzontale globale e diffusa insieme all'uso di modelli semi-fisici/empirici. Viene fornita un'analisi dettagliata della strumentazione e del metodo di misurazione utilizzati nonché dell'espressione dell'incertezza sperimentale. Nel Capitolo 2, le prestazioni ottiche del concentratore parabolico asimmetrico sono caratterizzate sperimentalmente. Un modello statistico di ray-tracing del concentratore per l'analisi delle prestazioni ottiche in diverse condizioni di lavoro è stato convalidato ed utilizzato per ottimizzare la geometria dei ricevitori proposti. Nel Capitolo 3, un innovativo ricevitore superficiale in alluminio e prodotto con la tecnologia bar-and-plate e un turbolatore al suo interno è stato testato nel collettore parabolico asimmetrico in regime di deflusso monofase e bifase con acqua e con un fluido alogenato a basso GWP. Un modello numerico per prevedere le prestazioni di tale ricevitore è stato sviluppato e validato sulla base dei dati sperimentali acquisiti. Nel Capitolo 4, questo modello è stato impiegato per valutare le prestazioni di un impianto ORC di piccola taglia alimentato da energia solare attraverso il suddetto collettore solare a concentrazione. L’analisi ha compreso la vaporizzazione diretta di un fluido alogenato a basso GWP e l’utilizzo un circuito solare intermedio per riscaldare acqua pressurizzata ed evaporare lo stesso fluido alogenato in uno scambiatore di calore. Infine, nel Capitolo 5 è stato proposto l’impiego di un nuovo ricevitore volumetrico ad assorbimento diretto per studiare la capacità di assorbimento della radiazione solare concentrata di un nanofluido. Il nanofluido è una sospensione di nano-corni di carbonio a parete singola in acqua distillata ed è il risultato di un progetto di collaborazione con la sede di Padova del Consiglio Nazionale della Ricerca. Attraverso lo sviluppo di un modello CFD tridimensionale, il ricevitore volumetrico è stato progettato per essere installato nella regione di fuoco del concentratore parabolico asimmetrico. La capacità del nanofluido di assorbire la radiazione solare a concentrata e non concentrata è stata studiata sperimentalmente. Al fine di indagare sulla stabilità nel tempo del nanofluido, delle prove sono state condotte in diverse condizioni, con e senza circolazione.

Statistiche Download
Tipo di EPrint:Tesi di dottorato
Relatore:Del Col, Davide
Dottorato (corsi e scuole):Ciclo 30 > Corsi 30 > INGEGNERIA INDUSTRIALE
Data di deposito della tesi:16 Febbraio 2018
Anno di Pubblicazione:16 Febbraio 2018
Parole chiave (italiano / inglese):DNI, solar concentrator, solar ORC, direct absorption solar receiver
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/10 Fisica tecnica industriale
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Industriale
Codice ID:11137
Depositato il:25 Ott 2018 16:05
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] Rabl A. Optical and thermal properties of compound parabolic concentrators. Solar Energy 1976;18:497-511. Cerca con Google

[2] Al-Sulaiman FA. Exergy analysis of parabolic trough solar collectors integrated with combined steam and organic Rankine cycles. Energy Conversion and Management 2014;77:441-9. Cerca con Google

[3] Solar industrial process heat. State of the art. 2006. Cerca con Google

[4] Vannoni C,., Battisti R, Drigo S. Potential for solar heat in industrial processes.  2008. Cerca con Google

[5] Cabrera FJ, Fernández-García A, Silva RMP, Pérez-García M. Use of parabolic trough solar collectors for solar refrigeration and axial-flow’ applications. Renewable and Sustainable Energy Reviews 2013;20:103-18. Cerca con Google

[6] Fernández-García A, Zarza E, Valenzuela L, Pérez M. Parabolic-trough solar collectors and their applications. Renewable and Sustainable Energy Reviews 2010;14:1695-721. Cerca con Google

[7] Galvez J, Malato Rodriguez S. Medium temperature solar concentrators (parabolic trough collectors. ;1. Cerca con Google

[8] Blanco M, Santigosa LR. Advances in Concentrating Solar Thermal Research and Technology. 1st ed. GB: Woodhead Publishing Ltd, 2016. Cerca con Google

[9] Duffie JA, Beckman WA. Solar engineering of thermal processes. 4th Edition ed. Hoboken, New Jersey, U.S.A.: John Wiley & Sons Inc., 2014. Cerca con Google

[10] Myers DR. Comparison of direct normal irradiance derived from silicon and thermopile global hemispherical radiation detectors. Proceedings of SPIE Aug 18, 2010;7773. Cerca con Google

[11] Padovan A, Del Col D. Measurement and modeling of solar irradiance components on horizontal and tilted planes. Solar Energy 2010;84:2068-84. Cerca con Google

[12] Dugaria S, Padovan A, Sabatelli V, Del Col D. Assessment of estimation methods of DNI resource in solar concentrating systems. Solar Energy 2015;121:103-15. Cerca con Google

[13] Gueymard CA, Myers DR. Evaluation of conventional and high-performance routine solar radiation measurements for improved solar resource, climatological trends, and radiative modeling. Solar Energy 2009;83:171-85. Cerca con Google

[14] Kotti MC, Argiriou AA, Kazantzidis A. Estimation of direct normal irradiance from measured global and corrected diffuse horizontal irradiance. Energy 2014;70:382-92. Cerca con Google

[15] Vick BD, Myers DR, Boyson WE. Using direct normal irradiance models and utility electrical loading to assess benefit of a concentrating solar power plant. Solar Energy 2012;86:3519. Cerca con Google

[16] Mohammed J, Yandt M, Wilkins M, Muron A, Hall TJ, Haysom JE et al. Collection and storage of direct spectral irradiance and DNI datasets with high temporal resolution for CPV energy yield assessments. PVSC 2013:2320-5. Cerca con Google

[17] Cogliani E, Ricchiazzi P, Maccari A. Generation of operational maps of global solar irradiation on horizontal plan and of direct normal irradiation from Meteosat imagery by using SOLARMET. Solar Energy 2008;82:556-62. Cerca con Google

[18] Viana TS, Rüther R, Martins FR, Pereira EB. Assessing the potential of concentrating solar photovoltaic generation in Brazil with satellite-derived direct normal irradiation. Solar Energy 2011;85:486-95. Cerca con Google

[19] Amillo A, Huld T, Müller R. A New Database of Global and Direct Solar Radiation Using the Eastern Meteosat Satellite, Models and Validation. Remote Sensing 2014;6:8165-89. Cerca con Google

[20] Polo J, Antonanzas-Torres F, Vindel JM, Ramirez L. Sensitivity of satellite-based methods for deriving solar radiation to different choice of aerosol input and models. Renewable Energy 2014;68:785-92. Cerca con Google

[21] Bachour D, Perez-Astudillo D. Deriving solar direct normal irradiance using lidar-ceilometer. Solar Energy 2014;110:316-24. Cerca con Google

[22] Gueymard CA. Impact of on-site atmospheric water vapor estimation methods on the accuracy of local solar irradiance predictions. Solar Energy 2014;101:74-82. Cerca con Google

[23] Remund J, Müller SC. Uncertainty of meteonorm long term DNI means and future trends. Proceedings of 17th SolarPACES Conference 2011. Cerca con Google

[24] Bertrand C, Vanderveken G, Journee M. Evaluation of decomposition models of various complexity to estimate the direct solar irradiance over Belgium. Renewable Energy 2015;74:618-26. Cerca con Google

[25] Muneer T. Solar radiation and daylight models. 2nd ed. ed. Oxford: Elsevier Butterworth Heinemann, 2004. Cerca con Google

[26] Erbs DG, Klein SA, Duffie JA. Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation. Solar Energy 1982;28:293-302. Cerca con Google

[27] Maxwell EL. A quasi-physical model for converting hourly global horizontal to direct normal insolation. 1987. Cerca con Google

[28] Perez R, Seals R, Zelenka A, Ineichen P. Climatic evaluation of models that predict hourly direct irradiance from hourly global irradiance: Prospects for performance improvements. Solar Energy 1990;44:99-108. Cerca con Google

[29] Skartveit A, Olseth JA, Tuft ME. An hourly diffuse fraction model with correction for variability and surface albedo. Solar Energy 1998;63:173-83. Cerca con Google

[30] Perez RR, Ineichen P, Maxwell EL, Seals RD, Zelenka A. Dynamic global-to-direct irradiance conversion models. ASHRAE Transactions 1992;98:354-69. Cerca con Google

[31] Orgill JF, Hollands KGT. Correlation equation for hourly diffuse radiation on a horizontal surface. Solar Energy 1977;19:357-9. Cerca con Google

[32] Kasten F. A simple parameterization of two pyrheliometric formulae for determining the linke turbidity factor. Meteorolgische Rundschau 1980;33:123-7. Cerca con Google

[33] Dugaria S, Padovan A, Sabatelli V, Del Col D. Assessment of estimation methods of DNI resource in solar concentrating systems. Solar Energy 2015;121:103-15. Cerca con Google

[34] LeBaron BA, Michalsky JJ, Perez R. A simple procedure for correcting shadowband data for all sky conditions. Solar Energy 1990;44:249-56. Cerca con Google

[35] International Organization for Standardization. ISO 9060:1990 Solar energy - specification and classification of instruments for measuring hemispherical solar and direct solar radiation. Genève: ISO, 1990. Cerca con Google

[36] International Organization for Standardization. ISO 9847:1992 Solar energy -- Calibration of field pyranometers by comparison to a reference pyranometer. 1992. Cerca con Google

[37] International Organization for Standardization. ISO/IEC Guide 98-3:2008 Uncertainty of measurement -- Part 3: Guide to the expression of uncertainty in measurement (GUM:1995). Geneve, Switzerland, 2008. Cerca con Google

[38] Reda I. Method to Calculate Uncertainties in Measuring Shortwave Solar Irradiance Using Thermopile and Semiconductor Solar Radiomenters. National Renewable Energy Laboratory 2011. Cerca con Google

[39] Vignola F, Long C, Reda I. Evaluation of Methods to Correct for IR Loss in Eppley PSP Diffuse Measurements. Optical Modeling and Measurements for Solar Energy Systems: Proceedings of the Conference, 26-28 August 2007, San Diego, California Jan 1, 2007. Cerca con Google

[40] Meyer R, Gueymard CA, Ineichen P. Standardizing and benchmarking of modeled DNI products. Proceedings of 17th SolarPACES Conference 2011. Cerca con Google

[41] Gueymard CA. Progress in direct irradiance modeling and validation.  Proceedings of 39th ASES National Solar Conference 2010 2011. Cerca con Google

[42] Padovan A, Del Col D. Assessment of models of direct normal irradiance in northern Italy. Proceedings of 17th SolarPACES Conference 2011. Cerca con Google

[43] Kleissl J. Solar Energy Forecasting and Resource Assessment. 1st ed. US: Academic Press, 2013. Cerca con Google

[44] Ineichen P. Validation of models that estimate the clear sky global and beam solar irradiance. Solar Energy 2016;132:332-44. Cerca con Google

[45] REN21. Renewables 2017 Global Status Report. 2017. Cerca con Google

[46] Tiwari GN, Tiwari A, Shyam. Handbook of Solar Energy : Theory, Analysis and Applications. Singapore: Springer, 2016. Cerca con Google

[47] Rabl A. Comparison of solar concentrators. Solar Energy 1976;18:93-111. Cerca con Google

[48] Hoffschmidt B, Alexopoulos S, Göttsche J, Sauerborn M, Kaufhold O. 3.06 - High Concentration Solar Collectors. In: Sayigh A, editor. Comprehensive Renewable Energy, Oxford: Elsevier; 2012, p. 165-209. Cerca con Google

[49] Dudley VE, Kolb GJ, Sioan M, Kearney D. Report SAND94-1884 - Test results: SEGS LS-2 Solar Collector. Sandia National Laboratories 1994. Cerca con Google

[50] Lupfert E, Geyer M, Schiel W, et al. Eurotrough: A new parabolic trough collector with advanced light weight structure  Proceedings of the Solar Thermal 2000 International Conference. 2000. Cerca con Google

[51] Menand G. NREL research helps deliver clean, solar electricity to thousands of homes in the southwest. CSP Today 2006. Cerca con Google

[52] Riffelmann K-, Kötter J, Nava P, et al. HELIOTROUGH – A new collector generation for parabolic trough power plants. Prooceding of SolarPACES Symposium 2009 Berlin 2009. Cerca con Google

[53] Schweitzer A, Schiel W, Abul-Ella Z, et al. ULTIMATE TROUGH – The next generation collector for parabolic trough power plants. Proceedings of SolarPACES Symposium 2010 Perpignan 2010. Cerca con Google

[54] Abengoa Solar. http://www.abengoasolar.com/ Vai! Cerca con Google

[55] Prinsloo G, Dobson R. Solar tracking. Stellenbosch, South Afruca, 2014. Cerca con Google

[56] Chong KK, Wong CW. General formula for on-axis sun-tracking system and its application in improving tracking accuracy of solar collector. Solar Energy 2009;83:298-305. Cerca con Google

[57] Daniel Cotfas, Petru Cotfas, Socrates Kaplanis, Doru Ursutiu, Cornel Samoila. SUN TRACKER SYSTEM VS FIXED SYSTEM. Bulletin of the Transilvania University of Brasov. Mathematics, Informatics, Physics. Series III 2008;1:545. Cerca con Google

[58] Ronda High-Tech S.r.l. Ronda High-Tech Reflective Panel. Technical data sheet, material characteristic and tests. 2012:23. Cerca con Google

[59] Montecchi M. Riflettanza solare dello specchio Fast Glass basato su. ENEA 2010:6. Vetro extra-chiaro Pilkington Microwhite 1.0 mm Cerca con Google

[60] Baig H, Sarmah N, Heasman KC, Mallick TK. Numerical modelling and experimental validation of a low concentrating photovoltaic system. Solar Energy Mater Solar Cells 2013;113:201-19. Cerca con Google

[61] Khanna S, Singh S, Kedare SB. Explicit expressions for temperature distribution and deflection in absorber tube of solar parabolic trough concentrator. Solar Energy 2015;114:289-302. Cerca con Google

[62] Khanna S, Singh S, Kedare SB. Effect of Angle of Incidence of Sun Rays on the Bending of Absorber Tube of Solar Parabolic Trough Concentrator. Energy Procedia 2014;48:123-9. Cerca con Google

[63] Khanna S, Kedare SB, Singh S. Analytical expression for circumferential and axial distribution of absorbed flux on a bent absorber tube of solar parabolic trough concentrator. Solar Energy 2013;92:26-40. Cerca con Google

[64] Eck M, Uhlig R, Mertins M, Häberle A, Lerchenmüller H. Thermal load of direct steam-generating absorber tubes with large diameter in horizontal linear fresnel collectors. Heat transfer engineering 2007;28:42-8. Cerca con Google

[65] Winter C-, Sizmann RL, Vant-Hull LL. Solar Power Plants : Fundamentals, Technology, Systems, Economics. 1st ed. Berlin/Heidelberg: Springer, 1991. Cerca con Google

[66] Röger M, Herrmann P, Ulmer S, Ebert M, Prahl C, Göhring F. Techniques to Measure Solar Flux Density Distribution on Large-Scale Receivers. Journal of Solar Energy Engineering 2014;136:031013. Cerca con Google

[67] Ballestrín J, Burgess G, Cumpston J. 18 - Heat flux and temperature measurement technologies for concentrating solar power (CSP). In: Lovegrove K, Stein W, editors. Concentrating Solar Power Technology: Woodhead Publishing; 2012, p. e4. Cerca con Google

[68] Ballestrin J. A non-water-cooled heat flux measurement system under concentrated solar radiation conditions. Solar Energy 2002;73:159-68. Cerca con Google

[69] Ferriere A, Rivoire B. An instrument for measuring concentrated solar-radiation: a photo-sensor interfaced with an integrating sphere. Solar Energy 2002;72:187-93. Cerca con Google

[70] Parretta A, Antonini A, Armani M, Nenna G, Flaminio G, Pellegrino M. Double-cavity radiometer for high-flux density solar radiation measurements. Appl Opt 2007;46:2166-79. Cerca con Google

[71] Fernández-Reche J, Sánchez MAM, Cañadas I, Chenlo F, Rodríguez J, Ballestrín J. Concentrating PV: An Alternative to Calorimeters for Measuring High Solar Flux Densities. J Sol Energy Eng 2008:130-4. Cerca con Google

[72] Riffelmann K, Neumann A, Ulmer S. Performance enhancement of parabolic trough collectors by solar flux measurement in the focal region. Solar Energy 2006;80:1303-13. Cerca con Google

[73] Pérez-Rábago CA, Marcos MJ, Romero M, Estrada CA. Heat transfer in a conical cavity calorimeter for measuring thermal power of a point focus concentrator. Solar Energy 2006;80:1434-42. Cerca con Google

[74] Estrada CA, Jaramillo OA, Acosta R, Arancibia-Bulnes CA. Heat transfer analysis in a calorimeter for concentrated solar radiation measurements. Solar Energy 2007;81:1306-13. Cerca con Google

[75] Jaramillo OA, Pérez-Rábago CA, Arancibia-Bulnes CA, Estrada CA. A flat-plate calorimeter for concentrated solar flux evaluation. Renewable Energy 2008;33:2322-8. Cerca con Google

[76] Ballestrín J, Monterreal R. Hybrid heat flux measurement system for solar central receiver evaluation. Energy 2004;29:915-24. Cerca con Google

[77] Ho CK, Khalsa SS. A Photographic Flux Mapping Method for Concentrating Solar Collectors and Receivers. Journal of Solar Energy Engineering 2012;134:041004. Cerca con Google

[78] Lüpfert E, Riffelmann K, Price H, Burkholder F, Moss T. Experimental Analysis of Overall Thermal Properties of Parabolic Trough Receivers. Journal of Solar Energy Engineering 2008;130:21007. Cerca con Google

[79] Xiao J, Wei X, Lu Z, Yu W, Wu H. A review of available methods for surface shape measurement of solar concentrator in solar thermal power applications. Renewable and Sustainable Energy Reviews 2012;16:2539-44. Cerca con Google

[80] Schiricke B, Pitz-Paal R, Lüpfert E, Pottler K, Pfänder M, Riffelmann K et al. Experimental Verification of Optical Modeling of Parabolic Trough Collectors by Flux Measurement. Journal of Solar Energy Engineering 2009;131:011004. Cerca con Google

[81] Bortolato M., Dugaria S., Del Col D. Concentrated flux measurement apparatus for an asymmetrical parabolic trough solar concentrator. in ISES SWC 2015 Conference Proceedings 2016. Cerca con Google

[82] Lovegrove K, Stein W. Concentrating Solar Power Technology : Principles, Developments and Applications. Cambridge: Woodhead Publishing, 2012. Cerca con Google

[83] Hager JM, Simmons S, Smith D, Onishi S, Langley LW, Diller TE. Experimental Performance of a Heat Flux Microsensor. Journal of Engineering for Gas Turbines and Power 1991;113:246-50. Cerca con Google

[84] Song X, Huan K, Dong W, Wang J, Zang Y, Shi X. Research on infrared radiation characteristics of Pyromark1200 high-temperature coating. 2014. Cerca con Google

[85] Ballestrı́n J, Ulmer S, Morales A, Barnes A, Langley LW, Rodrı́guez M. Systematic error in the measurement of very high solar irradiance. Solar Energy Mater Solar Cells 2003;80:375-81. Cerca con Google

[86] Vatell Corporation. HFM-6, HFM-7 & HFM-8 Operator’s manual – Version 1.0 . 2015. Cerca con Google

[87] National Renewable Energy Laboratory. SolTrace. 2012. Cerca con Google

[88] Neumann A, Witzke A, Jones SA, Schmitt G. Representative Terrestrial Solar Brightness Profiles. Journal of Solar Energy Engineering 2002;124:198-204. Cerca con Google

[89] Bortolato M, Dugaria S, Del Col D. Experimental study of a parabolic trough solar collector with flat bar-and-plate absorber during direct steam generation. Energy 2016;116, Part 1:1039-50. Cerca con Google

[90] Montes MJ, Rubbia C, Abbas R, Martínez-Val JM. A comparative analysis of configurations of linear Fresnel collectors for concentrating solar power. Energy 2014;73:192-203. Cerca con Google

[91] Zhu G, Wendelin T, Wagner MJ, Kutscher C. History, current state, and future of linear Fresnel concentrating solar collectors. Solar Energy 2014;103:639-52. Cerca con Google

[92] Pye J, Morrison GL, Behnia M. Transient Modelling of Cavity Receiver Heat Transfer for the Compact Linear Fresnel Reflector. Jun 14, 2003. Cerca con Google

[93] Reynolds DJ, Jance MJ, Behnia M, Morrison GL. An experimental and computational study of the heat loss characteristics of a trapezoidal cavity absorber. Solar Energy 2004;76:229-34. Cerca con Google

[94] Wang P, Liu DY, Xu C. Numerical study of heat transfer enhancement in the receiver tube of direct steam generation with parabolic trough by inserting metal foams. Appl Energy 2013;102:449-60. Cerca con Google

[95] Muñoz J, Abánades A. Analysis of internal helically finned tubes for parabolic trough design by CFD tools. Applied Energy 2011;88:4139-49. Cerca con Google

[96] Cheng ZD, He YL, Cui FQ. Numerical study of heat transfer enhancement by unilateral longitudinal vortex generators inside parabolic trough solar receivers. International Journal of Heat and Mass Transfer 2012;55:5631-41. Cerca con Google

[97] Ghadirijafarbeigloo S, Zamzamian AH, Yaghoubi M. 3-D Numerical Simulation of Heat Transfer and Turbulent Flow in a Receiver Tube of Solar Parabolic Trough Concentrator with Louvered Twisted-tape Inserts. Energy Procedia 2014;49:373-80. Cerca con Google

[98] Mwesigye A, Bello-Ochende T, Meyer JP. Heat transfer and thermodynamic performance of a parabolic trough receiver with centrally placed perforated plate inserts. Applied Energy 2014;136:989-1003. Cerca con Google

[99] Mwesigye A, Bello-Ochende T, Meyer JP. Multi-objective and thermodynamic optimisation of a parabolic trough receiver with perforated plate inserts. Applied Thermal Engineering 2015;77:42-56. Cerca con Google

[100] Reddy KS, Ravi Kumar K, Ajay CS. Experimental investigation of porous disc enhanced receiver for solar parabolic trough collector. Renewable Energy 2015;77:308-19. Cerca con Google

[101] Rojas ME, de Andrés MC, González L. Designing capillary systems to enhance heat transfer in LS3 parabolic trough collectors for direct steam generation (DSG). Solar Energy 2008;82:53-60. Cerca con Google

[102] Almanza R, Jiménez G, Lentz A, Valdés A, Soria A. DSG Under Two-Phase and Stratified Flow in a Steel Receiver of a Parabolic Trough Collector. Journal of Solar Energy Engineering 2002;124:140. Cerca con Google

[103] Almanza R, Lentz A, Jiménez G. Receiver behavior in direct steam generation with parabolic troughs. Solar Energy 1997;61:275-8. Cerca con Google

[104] Flores V, Almanza R. Direct steam generation in parabolic trough concentrators with bimetallic receivers. Energy 2004;29:645-51. Cerca con Google

[105] Aldali Y, Muneer T, Henderson D. Solar absorber tube analysis: thermal simulation using CFD. International Journal of Low-Carbon Technologies 2013;8:14-9. Cerca con Google

[106] Lambda Research Corporation. TracePro. https://www.lambdares.com/tracepro/ Vai! Cerca con Google

[107] National Renewable Energy Laboratory, (NREL). SolTrace version 2012.7.9 www.nrel.gov/csp/soltrace. 2012. Vai! Cerca con Google

[108] Manglik RM, Bergles AE. Heat transfer and pressure drop correlations for the rectangular offset strip fin compact heat exchanger. Experimental Thermal and Fluid Science 1995;10:171-80. Cerca con Google

[109] Lemmon EW, Huber ML, McLinden MO. NIST Standard ReferenceDatabase 23: Reference Fluid Thermodynamic and Transport Properties - REFPROP. 9.0. 2010. Cerca con Google

[110] Comitè Europeen de Normalisation, (CEN). Solar energy - Solar thermal collectors - Test methods (ISO 9806:2013). 2013. Cerca con Google

[111] Xu L, Wang Z, Li X, Yuan G, Sun F, Lei D et al. A comparison of three test methods for determining the thermal performance of parabolic trough solar collectors. Solar Energy 2014;99:11-27. Cerca con Google

[112] ANSI/ASHRAE Standard 93-2010 (RA 2014). Methods of testing to determine the thermal performance of solar collectors 2014. Cerca con Google

[113] Sardeshpande VR, Chandak AG, Pillai IR. Procedure for thermal performance evaluation of steam generating point-focus solar concentrators. Solar Energy 2011;85:1390-8. Cerca con Google

[114] Bouvier J, Michaux G, Salagnac P, Nepveu F, Rochier D, Kientz T. Experimental characterisation of a solar parabolic trough collector used in a micro-CHP (micro-cogeneration) system with direct steam generation. Energy 2015;83:474-85. Cerca con Google

[115] Juhasz JR, Simoni LD. A review of potential working fluids for low temperature organic rankine cycles in waste heat recovery. Proceedings of 3rd International Seminar on ORC Power Systems 2015:Paper 177. Cerca con Google

[116] Meeker D. Mirage. Steady - State Finite Element Heat Conduction Solver  - User’s Manual. 2005. Cerca con Google

[117] Forristall R. Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver. 2003. Cerca con Google

[118] Özışık MN. Radiative transfer and interactions with conduction and convection. United States, 1973. Cerca con Google

[119] Rohsenow WM. Handbook of heat transfer. 3. ed. ed. New York [u.a.]: McGraw-Hill, 1998. Cerca con Google

[120] Sparrow EM, Abraham JP, Tong JCK. Archival correlations for average heat transfer coefficients for non-circular and circular cylinders and for spheres in cross-flow. International Journal of Heat and Mass Transfer 2004;47:5285-96. Cerca con Google

[121] Liu Z, Winterton RHS. A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation. International Journal of Heat and Mass Transfer 1991;34:2759-66. Cerca con Google

[122] Cooper MG. Heat Flow Rates in Saturated Nucleate Pool Boiling-A Wide-Ranging Examination Using Reduced Properties. In: Anonymous Advances in Heat Transfer: Elsevier B.V; 1984, p. 157-239. Cerca con Google

[123] Dittus FW, Boelter LMK. Heat transfer in automobile radiators of the tubular type. International Communications in Heat and Mass Transfer 1985;12:3-22. Cerca con Google

[124] Friedel L. Improved friction pressure drop correlations for horizontal and vertical two-phase pipe flow. Proceedings of European Two Phase Flow Group Meeting 1979. Cerca con Google

[125] Incropera FP, De Witt DP. Introduction to heat transfer. 4. ed. ed. New York [u.a.]: Wiley, 2002. Cerca con Google

[126] Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flows. International Chemical Engineering 1976;16:359-68. Cerca con Google

[127] Angelino G, Gaia M, Macchi E. A review of Italian activity in the field of organicRankine cycles. VDI Berichte - Proceedings of the International VDI Seminar 1984:465-82. Cerca con Google

[128] Gaia M. (Keynote lecture) 30 years of ORC development. ORC 2011 - 1st International Seminar on ORC Power Systems M. Gaia. 30 years of ORC development. 2011. Keynote lecture at the ORC2011 - 1st International Seminar on ORC Power Systems - Delft (NL), September 22-23. Availableonline: www.kcorc.org/en/literature/orc2011-proceedings. Vai! Cerca con Google

[129] Chen H, Goswami DY, Stefanakos EK. A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renewable and Sustainable Energy Reviews 2010;14:3059-67. Cerca con Google

[130] Saleh B, Koglbauer G, Wendland M, Fischer J. Working fluids for low-temperature organic Rankine cycles. Energy 2007;32:1210-21. Cerca con Google

[131] He C, Liu C, Gao H, Xie H, Li Y, Wu S et al. The optimal evaporation temperature and working fluids for subcritical organic Rankine cycle. Energy 2012;38:136-43. Cerca con Google

[132] Macchi E, Perdichizzi A. Efficiency prediction for axial-flow turbines operating with non conventional fluids. Journal of Energy power 1981;103:718-24. Cerca con Google

[133] Lakew AA, Bolland O. Working fluids for low-temperature heat source. Applied Thermal Engineering 2010;30:1262-8. Cerca con Google

[134] Kontomaris K. Organic Rankine Cycle System Analysis for Low GWP Working Fluids. Proceeding of 15th International Refrigeration and Air Conditioning Conference 2014. Cerca con Google

[135] Regulation (EU) No 517/2014 of the European Parliament and of the Council of 16 April 2014 on fluorinated greenhouse gases and repealing Regulation (EC) No 842/2006 Text with EEA relevance. 2014. Cerca con Google

[136] ASHRAE publishes 2010 editions of refrigerant safety standards. Frozen Food Digest 2010;26:18. Cerca con Google

[137] Datla BV, Brasz J. Organic Rankine Cycle System Analysis for Proceedings of International Refrigeration and Air Conditioning Conference 2012. Cerca con Google

Low GWP Working Fluids. Cerca con Google

[138] Cataldo F, Mastrullo R, Mauro AW, Vanoli GP. Fluid selection of Organic Rankine Cycle for low-temperature waste heat recovery based on thermal optimization. Energy 2014;72:159-67. Cerca con Google

[139] Orosz M, Mueller A, Quoilin S, Hemond H. Small Scale Solar ORC system for distributed power. 2009. Cerca con Google

[140] Rayegan R, Tao YX. A procedure to select working fluids for Solar Organic Rankine Cycles (ORCs). Renewable Energy 2011;36:659-70. Cerca con Google

[141] LI D, ZHANG S, WANG G. Selection of organic Rankine cycle working fluids in the low-temperature waste heat utilization. Journal of Hydrodynamics, Ser. B 2015;27:458-64. Cerca con Google

[142] Peris B, Navarro-Esbri J, Moles F, Gonzalez, Mota-Babiloni A. Experimental characterization of an ORC (organic Rankine cycle) for power and CHP (combined heat and power) applications from low grade heat sources. Energy 2015;82:269-76. Cerca con Google

[143] Molés F, Navarro-Esbrí J, Peris B, Mota-Babiloni A, Barragán-Cervera Á, Kontomaris K(. Low GWP alternatives to HFC-245fa in Organic Rankine Cycles for low temperature heat recovery: HCFO-1233zd-E and HFO-1336mzz-Z. Applied Thermal Engineering 2014;71:204-12. Cerca con Google

[144] Molés F, Navarro-Esbrí J, Peris B, Mota-Babiloni A, Barragán-Cervera Á, Kontomaris K(. Low GWP alternatives to HFC-245fa in Organic Rankine Cycles for low temperature heat recovery: HCFO-1233zd-E and HFO-1336mzz-Z. Applied Thermal Engineering 2014;71:204-12. Cerca con Google

[145] Datla BV, Brasz J. Comparing R1233zd and R245fa for low temperature ORC applications. Proceeding of international refrigeration and air conditioning conference 2014. Cerca con Google

[146] Eyerer S, Wieland C, Vandersickel A, Spliethoff H. Experimental study of an ORC (Organic Rankine Cycle) and analysis of R1233zd-E as a drop-in replacement for R245fa for low temperature heat utilization. Energy 2016;103:660-71. Cerca con Google

[147] Molés F, Navarro-Esbrí J, Peris B, Mota-Babiloni A. Experimental evaluation of HCFO-1233zd-E as HFC-245fa replacement in an Organic Rankine Cycle system for low temperature heat sources. Applied Thermal Engineering 2016;98:954-61. Cerca con Google

[148] Guillaume L, Legros A, Desideri A, Lemort V. Performance of a radial-inflow turbine integrated in an ORC system and designed for a WHR on truck application: An experimental comparison between R245fa and R1233zd. Applied Energy 2017;186:408-22. Cerca con Google

[149] Weiss AP. Volumetric expander versus turbine - which is the better choice for small ORC plants. Proceeding of 3rd International Seminar on ORC Power Systems. Cerca con Google

[150] Branchini L, De Pascale A, Peretto A. Systematic comparison of ORC configurations by means of comprehensive performance indexes. Applied Thermal Engineering 2013;61:129-40. Cerca con Google

[151] Glavatskaya Y, Podevin P, Lemort V, Shonda O, Descombes G. Reciprocating Expander for an Exhaust Heat Recovery Rankine Cycle for a Passenger Car Application. Energies 2012;5:1751-65. Cerca con Google

[152] Lemort V, Guillaume L, Legros A, Declaye S, Quoilin S. A comparison of piston, screw and scroll expanders for small scale Rankine cycle systems. Apr 2013. Cerca con Google

[153] Astolfi M. Techno-economic Optimization of Low Temperature CSP Systems Based on ORC with Screw Expanders. Energy Procedia 2015;69:1100-12. Cerca con Google

[154] Bao J, Zhao L. A review of working fluid and expander selections for organic Rankine cycle. Renewable and Sustainable Energy Reviews 2013;24:325-42. Cerca con Google

[155] Badr O, O'Callaghan PW, Hussein M, Probert SD. Multi-vane expanders as prime movers for low-grade energy organic Rankine-cycle engines. Applied Energy 1984;16:129-46. Cerca con Google

[156] Badr O, Naik S, O'Callaghan PW, Probert SD. Expansion machine for a low power-output steam Rankine-cycle engine. Applied Energy 1991;39:93-116. Cerca con Google

[157] Kane M, Larrain D, Favrat D, Allani Y. Small hybrid solar power system. Energy 2003;28:1427-43. Cerca con Google

[158] Lemort V. Contribution to the Characterization of Scroll Machines in Compressor and Expander Modes. 2008. Cerca con Google

[159] Quoilin S, Declaye S, Lemort V. Expansion Machine and fluid selection for the Organic Rankine Cycle. Jul 2010. Cerca con Google

[160] Singh R, Srinivasan J. Modified refrigerant compressor as a reciprocating engine for solar thermal power generation. International Journal of Energy Research 1988;12:69-74. Cerca con Google

[161] Dunbar MK. Altering the volumetric expansion ratio of a Lysholm helical screw expander. 1984. Cerca con Google

[162] Stošić N. Review Article: Screw Compressors in Refrigeration and Air Conditioning. HVAC&R Research 2004;10:233-63. Cerca con Google

[163] Leibowitz H, Smith IK, Stošic N. Cost effective small scale ORC Systems for power recovery from low grade heat sources. Proceedings of IMECE2006 ASME International Mechanical Engineering Congress and Exposition. Cerca con Google

[164] Heliex Power. http://www.heliexpower.com/ Vai! Cerca con Google

[165] ElectraTherm. https://electratherm.com/ Vai! Cerca con Google

[166] Quoilin S, Lemort V, Lebrun J. Experimental study and modeling of an Organic Rankine Cycle using scroll expander. Applied Energy 2010;87:1260-8. Cerca con Google

[167] Eneftech Innovation SA. http://www.eneftech.com/ Vai! Cerca con Google

[168] Eck M, Zarza E, Eickhoff M, Rheinländer J, Valenzuela L. Applied research concerning the direct steam generation in parabolic troughs. Solar Energy 2003;74:341-51. Cerca con Google

[169] Delgado-Torres AM, García-Rodríguez L. Comparison of solar technologies for driving a desalination system by means of an organic Rankine cycle. Desalination 2007;216:276-91. Cerca con Google

[170] Baral S, Kim D, Yun E, Kim KC. Experimental and Thermoeconomic Analysis of Small-Scale Solar Organic Rankine Cycle (SORC) System. Entropy 2015;17:2039-61. Cerca con Google

[171] NREL – CSP. https://www.nrel.gov/csp/ Vai! Cerca con Google

[172] Vélez F, Segovia J, Martín C, Antolín G, Chejne F, Quijano A. A technical, economical and market review of Organic Rankine Cycles for the conversion of low-grade heat for power generation. Renewable and Sustainable Energy Reviews 2012;16:4175-89. Cerca con Google

[173] Pikra G, Salim A, Prawara B, Purwanto AJ, Admono T, Eddy Z. Development of Small Scale Concentrated Solar Power Plant Using Organic Rankine Cycle for Isolated Region in Indonesia. Energy Procedia 2013;32:122-8. Cerca con Google

[174] Enrico Bocci, Mauro Villarini, Luca Bove, Stefano Esposto, Valerio Gasperini. Modeling Small Scale Solar-powered ORC Unit for Standalone Application. Mathematical Problems in Engineering 2012;2012:1-10. Cerca con Google

[175] Lemort V, Quoilin S, Cuevas C, Lebrun J. Testing and modeling a scroll expander integrated into an Organic Rankine Cycle. Applied Thermal Engineering 2009;29:3094-102. Cerca con Google

[176] Quoilin S, Orosz M, Hemond H, Lemort V. Performance and design optimization of a low-cost solar organic Rankine cycle for remote power generation. Solar Energy 2011;85:955-66. Cerca con Google

[177] Quoilin S, Lemort V, Lebrun J. Experimental study and modeling of an Organic Rankine Cycle using scroll expander. Applied Energy 2010;87:1260-8. Cerca con Google

[178] SAITOH T, YAMADA N, WAKASHIMA S. Solar Rankine Cycle System Using Scroll Expander. Journal of Environment and Engineering 2007;2:708-19. Cerca con Google

[179] Wang XD, Wang JL, Zhao XZ, Zhao L, Zhang WZ, Wu W. Performance evaluation of a low-temperature solar Rankine cycle system utilizing R245fa. Solar Energy 2010;84:353-64. Cerca con Google

[180] Wang XD, Wang JL, Zhao L. Experimental investigation on the low-temperature solar Rankine cycle system using R245fa. Energy Conversion and Management 2011;52:946-52. Cerca con Google

[181] Wang JL, Wang XD, Zhao L. An experimental study on the recuperative low temperature solar Rankine cycle using R245fa. Applied Energy 2012;94:34-40. Cerca con Google

[182] Helvaci HU, Khan ZA. Experimental study of thermodynamic assessment of a small scale solar thermal system. Energy Conversion and Management 2016;117:567-76. Cerca con Google

[183] Delgado-Torres AM, García-Rodríguez L. Analysis and optimization of the low-temperature solar organic Rankine cycle (ORC). Energy Conversion and Management 2010;51:2846-56. Cerca con Google

[184] Delgado-Torres AM, García-Rodríguez L. Design recommendations for solar organic Rankine cycle (ORC)–powered reverse osmosis (RO) desalination. Renewable and Sustainable Energy Reviews 2012;16:44-53. Cerca con Google

[185] Clemente S, Micheli D, Reini M, Taccani R. Energy efficiency analysis of Organic Rankine Cycles with scroll expanders for cogenerative applications. Applied Energy 2012;97:792-801. Cerca con Google

[186] Mago PJ, Chamra LM, Srinivasan K, Somayaji C. An examination of regenerative organic Rankine cycles using dry fluids. Applied Thermal Engineering 2008;28:998-1007. Cerca con Google

[187] Martin H. A theoretical approach to predict the performance of chevron-type plate heat exchangers. Chemical Engineering & Processing: Process Intensification 1996;35:301-10. Cerca con Google

[188] Amalfi RL, Vakili-Farahani F, Thome JR. Flow boiling and frictional pressure gradients in plate heat exchangers. Part 1: Review and experimental database. International Journal of Refrigeration 2016;61:166-84. Cerca con Google

[189] Amalfi RL, Vakili-Farahani F, Thome JR. Flow boiling and frictional pressure gradients in plate heat exchangers. Part 2: Comparison of literature methods to database and new prediction methods. International Journal of Refrigeration 2016;61:185-203. Cerca con Google

[190] Longo GA, Zilio C, Righetti G. Condensation of the low GWP refrigerant HFC152a inside a Brazed Plate Heat Exchanger. Experimental Thermal and Fluid Science 2015;68:509-15. Cerca con Google

[191] Webb RL. Convective Condensation of Superheated Vapor. Journal of Heat Transfer 1998;120:418. Cerca con Google

[192] Ng KC, Bong TY, Lim TB. A thermodynamic model for the analysis of screw expander performance. Heat Recovery Systems and CHP 1990;10:119-33. Cerca con Google

[193] Ng KC, Lim TB, Bong TY. Analysis of screw-expander performance. Journal of process mechanical engineering 1988. Cerca con Google

[194] Bamgbopa MO, Uzgoren E. Quasi-dynamic model for an organic Rankine cycle. Energy Conversion & Management 2013;72:117-24. Cerca con Google

[195] Mayekawa Manufacturing Co. Cerca con Google

[196] Quoilin S, Orosz M, Hemond H, Lemort V. Performance and design optimization of a low-cost solar organic Rankine cycle for remote power generation. Solar Energy 2011;85:955-66. Cerca con Google

[197] Ibarra M, Rovira A, Alarcón-Padilla DC, Zaragoza G, Blanco J. Performance of a 5 kWe Solar-only Organic Rankine Unit Coupled to a Reverse Osmosis Plant. Energy Procedia 2014;49:2251-60. Cerca con Google

[198] Jeter SM. Maximum conversion efficiency for the utilization of direct solar radiation. Solar Energy 1981;26:231-6. Cerca con Google

[199] Spanner DC. Introduction to thermodynamics. , 1964. Cerca con Google

[200] Petela R. Exergy of undiluted thermal radiation. Solar Energy 2003;74:469-88. Cerca con Google

[201] Bejan A. Advanced engineering thermodynamics. 3. ed. ed. Hoboken, NJ: Wiley, 2006. Cerca con Google

[202] Tchanche BF, Papadakis G, Lambrinos G, Frangoudakis A. Fluid selection for a low-temperature solar organic Rankine cycle. Applied Thermal Engineering 2009;29:2468-76. Cerca con Google

[203] Barse KA, Mann MD. Maximizing ORC performance with optimal match of working fluid with system design. Applied Thermal Engineering 2016;100:11-9. Cerca con Google

[204] Javadi FS, Saidur R, Kamalisarvestani M. Investigating performance improvement of solar collectors by using nanofluids. Renewable and Sustainable Energy Reviews 2013;28:232-45. Cerca con Google

[205] Del Col D, Padovan A, Bortolato M, Dai Prè M, Zambolin E. Thermal performance of flat plate solar collectors with sheet-and-tube and roll-bond absorbers. Energy 2013;58:258-69. Cerca con Google

[206] Taylor RA, Phelan PE, Otanicar TP, Walker CA, Nguyen M, Trimble S et al. Applicability of nanofluids in high flux solar collectors. Journal of Renewable and Sustainable Energy 2011;3:15. Cerca con Google

[207] Arai N, Itaya Y, Hasatani M. Development of a “volume heat-trap” type solar collector using a fine-particle semitransparent liquid suspension (FPSS) as a heat vehicle and heat storage medium Unsteady, one-dimensional heat transfer in a horizontal FPSS layer heated by thermal radiation. Solar Energy 1984;32:49-56. Cerca con Google

[208] Minardi JE, Chuang HN. Performance of a “black” liquid flat-plate solar collector. Solar Energy 1975;17:179-83. Cerca con Google

[209] Celata GP, D’Annibale F, Mariani A, Sau S, Serra E, Bubbico R et al. Experimental results of nanofluids flow effects on metal surfaces. Chem Eng Res Design 2014;92:1616-28. Cerca con Google

[210] Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. ASME FED 1995;231:99-103. Cerca con Google

[211] Buongiorno J. Convective Transport in Nanofluids. Journal of Heat Transfer 2005;128:240-50. Cerca con Google

[212] Taylor R, Coulombe S, Otanicar T, Phelan P, Gunawan A, Lv W et al. Small particles, big impacts: A review of the diverse applications of nanofluids. J Appl Phys 2013;113:011301. Cerca con Google

[213] Lomascolo M, Colangelo G, Milanese M, de Risi A. Review of heat transfer in nanofluids: Conductive, convective and radiative experimental results. Renewable and Sustainable Energy Reviews 2015;43:1182-98. Cerca con Google

[214] Kakaç S, Pramuanjaroenkij A. Single-phase and two-phase treatments of convective heat transfer enhancement with nanofluids – A state-of-the-art review. International Journal of Thermal Sciences 2016;100:75-97. Cerca con Google

[215] Witharana S, Chen H, Ding Y. Stability of nanofluids in quiescent and shear flow fields. Nanoscale Research Letters 2011;6:231. Cerca con Google

[216] Chen H, Witharana S, Jin Y, Kim C, Ding Y. Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology. Particuology 2009;7:151-7. Cerca con Google

[217] Mohamad AA. Myth about nano-fluid heat transfer enhancement. International Journal of Heat and Mass Transfer 2015;86:397-403. Cerca con Google

[218] Otanicar TP, Phelan PE, Golden JS. Optical properties of liquids for direct absorption solar thermal energy systems. Solar Energy 2009;83:969-77. Cerca con Google

[219] Leong KY, Ong HC, Amer NH, Norazrina MJ, Risby MS, Ku Ahmad KZ. An overview on current application of nanofluids in solar thermal collector and its challenges. Renewable and Sustainable Energy Reviews 2016;53:1092-105. Cerca con Google

[220] Gorji TB, Ranjbar AA. A review on optical properties and application of nanofluids in direct absorption solar collectors (DASCs). Renewable and Sustainable Energy Reviews 2017;72:10-32. Cerca con Google

[221] Sajid Hossain M, Saidur R, Mohd Sabri MF, Said Z, Hassani S. Spotlight on available optical properties and models of nanofluids: A review. Renewable and Sustainable Energy Reviews 2015;43:750-62. Cerca con Google

[222] Otanicar TP, Phelan PE, Prasher RS, Rosengarten G, Taylor RA. Nanofluid-based direct absorption solar collector. Journal of Renewable and Sustainable Energy 2010;2:033102. Cerca con Google

[223] Noguez C. Optical properties of isolated and supported metal nanoparticles. Optical Materials 2005;27:1204-11. Cerca con Google

[224] Taylor R, Phelan P, Otanicar T, Adrian R, Prasher R. Nanofluid optical property characterization: towards efficient direct absorption solar collectors. Nanoscale Res Lett 2011;6:1-11. Cerca con Google

[225] Saidur R, Leong KY, Mohammad HA. A review on applications and challenges of nanofluids. Renewable and Sustainable Energy Reviews 2011;15:1646-68. Cerca con Google

[226] Gan Y, Qiao L. Radiation-enhanced evaporation of ethanol fuel containing suspended metal nanoparticles. International Journal of Heat and Mass Transfer 2012;55:5777-82. Cerca con Google

[227] He Q, Wang S, Zeng S, Zheng Z. Experimental investigation on photothermal properties of nanofluids for direct absorption solar thermal energy systems. Energy Conversion and Management 2013;73:150-7. Cerca con Google

[228] Zhu Q, Cui Y, Mu L, Tang L. Characterization of Thermal Radiative Properties of Nanofluids for Selective Absorption of Solar Radiation. Int J Thermophys 2013;34:2307-21. Cerca con Google

[229] Zhang L, Liu J, He G, Ye Z, Fang X, Zhang Z. Radiative properties of ionic liquid-based nanofluids for medium-to-high-temperature direct absorption solar collectors. Solar Energy Materials and Solar Cells 2014;130:521-8. Cerca con Google

[230] Sajid MH, Said Z, Saidur R, Adikan FRM, Sabri MFM, Rahim NA. A time variant investigation on optical properties of water based Al2O3 nanofluid. International Communications in Heat and Mass Transfer 2014;50:108-16. Cerca con Google

[231] Said Z, Saidur R, Rahim NA. Optical properties of metal oxides based nanofluids. International Communications in Heat and Mass Transfer 2014;59:46-54. Cerca con Google

[232] Milanese M, Colangelo G, Cretì A, Lomascolo M, Iacobazzi F, de Risi A. Optical absorption measurements of oxide nanoparticles for application as nanofluid in direct absorption solar power systems – Part I: Water-based nanofluids behavior. Solar Energy Materials and Solar Cells 2016;147:315-20. Cerca con Google

[233] Karami M, Akhavan-Behabadi MA, Raisee Dehkordi M, Delfani S. Thermo-optical properties of copper oxide nanofluids for direct absorption of solar radiation. Solar Energy Materials and Solar Cells 2016;144:136-42. Cerca con Google

[234] Song D, Wang Y, Jing D, Geng J. Investigation and prediction of optical properties of alumina nanofluids with different aggregation properties. International Journal of Heat and Mass Transfer 2016;96:430-7. Cerca con Google

[235] Han D, Meng Z, Wu D, Zhang C, Zhu H. Thermal properties of carbon black aqueous nanofluids for solar absorption. Nanoscale Research Letters 2011;6:457. Cerca con Google

[236] Poinern GEJ, Brundavanam S, Shah M, Laava I, Fawcett D. Photothermal response of CVD synthesized carbon (nano)spheres/aqueous nanofluids for potential application in direct solar absorption collectors: a preliminary investigation. Nanotechnology, science and applications 2012;5:49-59. Cerca con Google

[237] Lee S, Jang SP. Extinction coefficient of aqueous nanofluids containing multi-walled carbon nanotubes. International Journal of Heat and Mass Transfer 2013;67:930-5. Cerca con Google

[238] Meng Z, Wu D, Wang L, Zhu H, Li Q. Carbon nanotube glycol nanofluids: Photo-thermal properties, thermal conductivities and rheological behavior. Particuology 2012;10:614-8. Cerca con Google

[239] He Y, Wang S, Ma J, Tian F, Ren Y. Experimental Study on the Light-Heat Conversion Characteristics of Nanofluids. Nanoscience and Nanotechnology Letters 2011;3:494-6. Cerca con Google

[240] Karami M, Akhavan Bahabadi MA, Delfani S, Ghozatloo A. A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector. Solar Energy Materials and Solar Cells 2014;121:114-8. Cerca con Google

[241] Hordy N, Rabilloud D, Meunier J, Coulombe S. High temperature and long-term stability of carbon nanotube nanofluids for direct absorption solar thermal collectors. Solar Energy 2014;105:82-90. Cerca con Google

[242] Liu J, Ye Z, Zhang L, Fang X, Zhang Z. A combined numerical and experimental study on graphene/ionic liquid nanofluid based direct absorption solar collector. Solar Energy Mater Solar Cells 2015;136:177-86. Cerca con Google

[243] Xuan Y, Duan H, Li Q. Enhancement of solar energy absorption using a plasmonic nanofluid based on TiO2/Ag composite nanoparticles. RSC Advances 2014;4:16206. Cerca con Google

[244] Wu Y, Zhou L, Du X, Yang Y. Optical and thermal radiative properties of plasmonic nanofluids containing core–shell composite nanoparticles for efficient photothermal conversion. International Journal of Heat and Mass Transfer 2015;82:545-54. Cerca con Google

[245] Menbari A, Alemrajabi AA, Rezaei A. Heat transfer analysis and the effect of CuO/Water nanofluid on direct absorption concentrating solar collector. Appl Therm Eng 2016;104:176-83. Cerca con Google

[246] Menbari A, Alemrajabi AA. Analytical modeling and experimental investigation on optical properties of new class of nanofluids (Al2O3-CuO binary nanofluids) for direct absorption solar thermal energy. Optical Materials 2016;52:116-25. Cerca con Google

[247] Yudasaka M, Iijima S, Crespi VH. Single-Wall Carbon Nanohorns and Nanocones. In: Jorio A, Dresselhaus G, Dresselhaus MS, editors. Carbon Nanotubes. Topics in Applied Physics (vol 111), Berlin, Heidelberg: Springer; 2001. Cerca con Google

[248] Kasuya D, Yudasaka M, Takahashi K, Kokai F, Iijima S. Selective Production of Single-Wall Carbon Nanohorn Aggregates and Their Formation Mechanism. J Phys Chem B 2002;106:4947-51. Cerca con Google

[249] Carbonium Srl. http://www.carbonium.it/ Vai! Cerca con Google

[250] Karousis N, Suarez-Martinez I, Ewels CP, Tagmatarchis N. Structure, Properties, Functionalization, and Applications of Carbon Nanohorns. Chem Rev 2016;116:4850-83. Cerca con Google

[251] Zhang Z, Han S, Wang C, Li J, Xu G. Single-Walled Carbon Nanohorns for Energy Applications. Nanomaterials 2015;5. Cerca con Google

[252] Sani E, Barison S, Pagura C, Mercatelli L, Sansoni P, Fontani D et al. Carbon nanohorns-based nanofluids as direct sunlight absorbers. Opt Express 2010;18:5179-87. Cerca con Google

[253] Sani E, Mercatelli L, Barison S, Pagura C, Agresti F, Colla L et al. Potential of carbon nanohorn-based suspensions for solar thermal collectors. Solar Energy Mater Solar Cells 2011;95:2994-3000. Cerca con Google

[254] Mercatelli L, Sani E, Giannini A, Di Ninni P, Martelli F, Zaccanti G. Carbon nanohorn-based nanofluids: characterization of the spectral scattering albedo. Nanoscale Research Letters 2012;7:96. Cerca con Google

[255] Mercatelli L, Sani E, Fontani D, Zaccanti G, Martelli F, Di Ninni P. Scattering and absorption properties of carbon nanohorn-based nanofluids for solar energy applications. Journal of the European Optical Society - Rapid publications 2011;6. Cerca con Google

[256] Moradi A, Sani E, Simonetti M, Francini F, Chiavazzo E, Asinari P. Carbonnanohorn based nanofluids for a direct absorption solar collector for civil application. Journal of Nanoscience and Nanotechnologies 15 2015:3488-95. Cerca con Google

[257] Fedele L, Colla L, Bobbo S, Barison S, Agresti F. Experimental stability analysis of different water-based nanofluids. Nanoscale Research Letters 2011;6:300. Cerca con Google

[258] Bobbo S, Fedele L, Benetti A, Colla L, Fabrizio M, Pagura C et al. Viscosity of water based SWCNH and TiO2 nanofluids. Experimental Thermal and Fluid Science 2012;36:65-71. Cerca con Google

[259] Mahian O, Kianifar A, Kalogirou SA, Pop I, Wongwises S. A review of the applications of nanofluids in solar energy. International Journal of Heat and Mass Transfer 2013;57:582-94. Cerca con Google

[260] Verma SK, Tiwari AK. Progress of nanofluid application in solar collectors: A review. Energy Conversion and Management 2015;100:324-46. Cerca con Google

[261] Sarsam WS, Kazi SN, Badarudin A. A review of studies on using nanofluids in flat-plate solar collectors. Solar Energy 2015;122:1245-65. Cerca con Google

[262] Muhammad MJ, Muhammad IA, Che Sidik NA, Muhammad Yazid, Muhammad Noor Afiq Witri. Thermal performance enhancement of flat-plate and evacuated tube solar collectors using nanofluid: A review. International Communications in Heat and Mass Transfer;76:6-15. Cerca con Google

[263] Bozorgan N, Shafahi M. Performance evaluation of nanofluids in solar energy: a review of the recent literature. Micro and Nano Syst Lett 2015;3:1-15. Cerca con Google

[264] Abdin Z, Alim MA, Saidur R, Islam MR, Rashmi W, Mekhilef S et al. Solar energy harvesting with the application of nanotechnology. Renewable and Sustainable Energy Reviews 2013;26:837-52. Cerca con Google

[265] Nagarajan PK, Subramani J, Suyambazhahan S, Sathyamurthy R. Nanofluids for Solar Collector Applications: A Review. Energy Procedia 2014;61:2416-34. Cerca con Google

[266] Hussein AK. Applications of nanotechnology in renewable energies—A comprehensive overview and understanding. Renewable and Sustainable Energy Reviews 2015;42:460-76. Cerca con Google

[267] Tyagi H, Phelan P, Prasher R. Predicted Efficiency of a Low-Temperature Nanofluid-Based Direct Absorption Solar Collector. Journal of Solar Energy Engineering 2009;131:41004. Cerca con Google

[268] Khullar V, Tyagi H. Enhancing optical efficiency of a linear parabolic solar collector through nanofluids. AIP Conference Proceedings1391 2011:353-5. Cerca con Google

[269] Khullar V, Tyagi H, Phelan P, Otanicar T, Singh H, Taylor R. Solar Energy Harvesting Using Nanofluids-Based Concentrating Solar Collector. Journal of Nanotechnology in Engineering and Medicine (Transactions of the ASME) 2012;3:1-9. Cerca con Google

[270] Veeraragavan A, Lenert A, Yilbas B, Al-Dini S, Wang EN. Analytical model for the design of volumetric solar flow receivers. International Journal of Heat and Mass Transfer 2012;55:556-64. Cerca con Google

[271] Ladjevardi SM, Asnaghi A, Izadkhast PS, Kashani AH. Applicability of graphite nanofluids in direct solar energy absorption. Solar Energy 2013;94:327-34. Cerca con Google

[272] de Risi A, Milanese M, Laforgia D. Modelling and optimization of transparent parabolic trough collector based on gas-phase nanofluids. Renewable Energy 2013;58:134-9. Cerca con Google

[273] Luo Z, Wang C, Wei W, Xiao G, Ni M. Performance improvement of a nanofluid solar collector based on direct absorption collection (DAC) concepts. International Journal of Heat and Mass Transfer 2014;75:262-71. Cerca con Google

[274] Rahman MM, Mojumder S, Saha S, Mekhilef S, Saidur R. Effect of solid volume fraction and tilt angle in a quarter circular solar thermal collectors filled with CNT–water nanofluid. International Communications in Heat and Mass Transfer 2014;57:79-90. Cerca con Google

[275] Parvin S, Nasrin R, Alim MA. Heat transfer and entropy generation through nanofluid filled direct absorption solar collector. International Journal of Heat and Mass Transfer 2014;71:386-95. Cerca con Google

[276] Hewakuruppu YL, Taylor RA, Tyagi H, Khullar V, Otanicar T, Coulombe S et al. Limits of selectivity of direct volumetric solar absorption. Solar Energy 2015;114:206-16. Cerca con Google

[277] Cregan V, Myers TG. Modelling the efficiency of a nanofluid direct absorption solar collector. International Journal of Heat and Mass Transfer 2015;90:505-14. Cerca con Google

[278] Gorji TB, Ranjbar AA. Geometry optimization of a nanofluid-based direct absorption solar collector using response surface methodology. Solar Energy 2015;122:314-25. Cerca con Google

[279] Chen M, He Y, Zhu J, Wen D. Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors. Applied Energy 2016;181:65-74. Cerca con Google

[280] Delfani S, Karami M, Behabadi MAA. Performance characteristics of a residential-type direct absorption solar collector using MWCNT nanofluid. Renewable Energy 2016;87, Part 1:754-64. Cerca con Google

[281] Gorji TB, Ranjbar AA. A numerical and experimental investigation on the performance of a low-flux direct absorption solar collector (DASC) using graphite, magnetite and silver nanofluids. Solar Energy 2016;135:493-505. Cerca con Google

[282] Jeon J, Park S, Lee BJ. Analysis on the performance of a flat-plate volumetric solar collector using blended plasmonic nanofluid. Solar Energy 2016;132:247-56. Cerca con Google

[283] Jin H, Lin G, Bai L, Amjad M, Bandarra Filho EP, Wen D. Photothermal conversion efficiency of nanofluids: An experimental and numerical study. Solar Energy 2016;139:278-89. Cerca con Google

[284] Lee S, Choi TJ, Jang SP. Thermal efficiency comparison: Surface-based solar receivers with conventional fluids and volumetric solar receivers with nanofluids. Energy 2016;115, Part 1:404-17. Cerca con Google

[285] Li Q, Zheng C, Mesgari S, Hewkuruppu YL, Hjerrild N, Crisostomo F et al. Experimental and numerical investigation of volumetric versus surface solar absorbers for a concentrated solar thermal collector. Solar Energy 2016;136:349-64. Cerca con Google

[286] American Society for Testing and Materials, (ASTM). Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface (ASTM G173–03). 2003. Cerca con Google

[287] Lenert A, Wang EN. Optimization of nanofluid volumetric receivers for solar thermal energy conversion. Solar Energy 2012;86:253-65. Cerca con Google

[288] Chen M, He Y, Huang J, Zhu J. Synthesis and solar photo-thermal conversion of Au, Ag, and Au-Ag blended plasmonic nanoparticles. Energy Conversion and Management 2016;127:293-300. Cerca con Google

[289] Bandarra Filho EP, Mendoza OSH, Beicker CLL, Menezes A, Wen D. Experimental investigation of a silver nanoparticle-based direct absorption solar thermal system. Energy Conversion and Management 2014;84:261-7. Cerca con Google

[290] Chen M, He Y, Huang J, Zhu J. Investigation into Au nanofluids for solar photothermal conversion. Int J Heat Mass Transfer 2017;108, Part B:1894-900. Cerca con Google

[291] Xu G, Zhao S, Zhang X, Zhou X. Experimental thermal evaluation of a novel solar collector using magnetic nano-particles. Energy Conversion and Management 2016;130:252-9. Cerca con Google

[292] Wang X, He Y, Cheng G, Shi L, Liu X, Zhu J. Direct vapor generation through localized solar heating via carbon-nanotube nanofluid. Energy Conversion and Management 2016;130:176-83. Cerca con Google

[293] Ni G, Miljkovic N, Ghasemi H, Huang X, Boriskina SV, Lin C et al. Volumetric solar heating of nanofluids for direct vapor generation. Nano Energy 2015;17:290-301. Cerca con Google

[294] Jin H, Lin G, Bai L, Zeiny A, Wen D. Steam generation in a nanoparticle-based solar receiver. Nano Energy 2016;28:397-406. Cerca con Google

[295] Fu Y, Mei T, Wang G, Guo A, Dai G, Wang S et al. Investigation on enhancing effects of Au nanoparticles on solar steam generation in graphene oxide nanofluids. Appl Therm Eng 2017;114:961-8. Cerca con Google

[296] Gupta HK, Agrawal GD, Mathur J. An experimental investigation of a low temperature Al2O3-H2O nanofluid based direct absorption solar collector. Solar Energy 2015;118:390-6. Cerca con Google

[297] Karami M, Akhavan-Bahabadi MA, Delfani S, Raisee M. Experimental investigation of CuO nanofluid-based Direct Absorption Solar Collector for residential applications. Renewable and Sustainable Energy Reviews 2015;52:793-801. Cerca con Google

[298] Vakili M, Hosseinalipour SM, Delfani S, Khosrojerdi S, Karami M. Experimental investigation of graphene nanoplatelets nanofluid-based volumetric solar collector for domestic hot water systems. Solar Energy 2016;131:119-30. Cerca con Google

[299] Leong KY, Ong HC, Amer NH, Norazrina MJ, Risby MS, Ku Ahmad KZ. An overview on current application of nanofluids in solar thermal collector and its challenges. Renewable and Sustainable Energy Reviews 2016;53:1092-105. Cerca con Google

[300] Muraleedharan M, Singh H, Suresh S, Udayakumar M. Directly absorbing Therminol-Al2O3 nano heat transfer fluid for linear solar concentrating collectors. Solar Energy 2016;137:134-42. Cerca con Google

[301] Jeon J, Park S, Lee BJ. Analysis on the performance of a flat-plate volumetric solar collector using blended plasmonic nanofluid. Solar Energy 2016;132:247-56. Cerca con Google

[302] Maïga SEB, Palm SJ, Nguyen CT, Roy G, Galanis N. Heat transfer enhancement by using nanofluids in forced convection flows. International Journal of Heat and Fluid Flow 2005;26:530-46. Cerca con Google

[303] Dugaria S, Bortolato M, Del Col D. Nanofluids application in direct absorption solar collectors: review and numerical model. in Proceeding of ECOS 2016 - The 29th international conference on efficiency, cost, optimization, simulation and environmental impact of energy systems ECOS, June 19-23, Portoroz, Slovenia 2016;Paper 469. Cerca con Google

[304] ANSYS Incorporated. Ansys Fluent - Theory Guide, Release 13.0. 2010. Cerca con Google

[305] Moghimi MA, Craig KJ, Meyer JP. A novel computational approach to combine the optical and thermal modelling of Linear Fresnel Collectors using the finite volume method. Solar Energy 2015;116:407-27. Cerca con Google

[306] Modest MF. Chapter 10 - The Radiative Transfer Equation in Participating Media (RTE). In: Modest MF, editor. Radiative Heat Transfer (Third Edition), Boston: Academic Press; 2013, p. 279-302. Cerca con Google

[307] Gülhan A, Braun S. An experimental study on the efficiency of transpiration cooling in laminar and turbulent hypersonic flows. Exp Fluids 2011;50:509-25. Cerca con Google

[308] Dugaria S, Bortolato M, Del Col D. Modelling of a direct absorption solar receiver using carbon nanotube nanofluids under concentrated solar radiation. Renewable Energy 2017. Cerca con Google

[309] MAURO SCHIAVON. Device and method for production of carbon nanotubes, fullerene and their derivatives. 2006. Cerca con Google

[310] Bortolato M, Dugaria S, Agresti F, Barison S, Fedele L, Sani E et al. Investigation of a single-wall carbon nanohorn-based nanofluid in a full-scale direct absorption parabolic trough solar collector. Energy Conversion and Management 2017;150:693-703. Cerca con Google

[311] Sani E, Dell’Oro A. Optical constants of ethylene glycol over an extremely wide spectral range. Optical Materials 2014;37:36-41. Cerca con Google

[312] Hu J, Zeng H, Wang C, Li Z, Kan C, Liu Y. Interband small pi] plasmon of graphene: strong small-size and field-enhancement effects. Phys Chem Chem Phys 2014;16:23483-91. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record