Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Donazzan, Alberto (2018) Heterodyne laser interferometers for the dimensional control of large ring-lasers. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF - Versione accettata
12Mb

Abstract (inglese)

We present here the design, implementation and characterization of a heterodyne laser interferometer for sub-nanometer displacement metrology. The analyses and experimental activity reported in this thesis are part of a wider study, aimed to the realization of an external metrology truss for the stabilization of large opto-mechanical structures. The purpose is to monitor the three-dimensional shape of an array of large ring-lasers, planned for future General Relativity experiments. Reaching the required 10^-11m displacement uncertainty over 7m distances and several days integration periods is an challenging task. The proposed solution consists of a non-polarizing Mach-Zehnder configuration, featuring an optical cancelable circuit and a holey folding mirror, which makes possible to place the gauge in between the fiducial points which define the distance of interest. We present here the instrument working principle and the method for online phase reconstruction, as well as the complete hardware configuration used. The several sources of noise are investigated mathematically and, whenever possible, identified experimentally. The displacement gauge was tested up to 300min of continuous data acquisition, showing nanometer level performances down to 100mHz. Air index variations and mechanical instabilities are currently the main limiting factors at lower frequencies. The present experiment has brought into light many technical issues which will constitute precious lessons learned for the future improvements of the system.

Abstract (italiano)

Il presente lavoro riporta il progetto, l’implementazione e la caratterizzazione di un interferometro laser a eterodina per applicazioni metrologiche sub-nanometriche. Le analisi e l’attività sperimentale legate a questa tesi fanno parte di uno studio più ampio, indirizzato alla realizzazione di un sistema di metrologia esterna per l’impiego su estese strutture opto-meccaniche. L’obiettivo è il controllo della geometria tridimensionale di un insieme di grandi giroscopi laser, destinato a futuri esperimenti nell’ambito della Relatività Generale. Il massimo livello di incertezza dimensionale tollerabile corrisponde a 10^-11 m, che va raggiunto su distanze operative di 7m e mantenuto per periodi
di diversi giorni. La soluzione proposta consiste in una configurazione MachZehnder non polarizzante, che include un circuito ottico di annullamento e un peculiare specchio forato. Lo schema permette l’interrogazione della distanza di interesse tramite il posizionamento dello strumento fra i due punti fiduciari che la definiscono. Si descrivono qui il principio di funzionamento alla base del sistema, il metodo di estrapolazione della fase e tutta la strumentazione utilizzata per l’esperimento. Le diverse sorgenti di errore sono trattate analiticamente e, ove possibile, identificate sperimentalmente. Lo strumento di misura realizzato è stato testato con sessioni di acquisizione lunghe fino a 300min, mostrando prestazioni a livello del nanometro per frequenze decrescenti fino a 100mHz. Variazioni nell’indice di rifrazione dell’aria e instabilità meccaniche sono ad ora i principali fattori che limitano le prestazioni del sistema alle basse frequenze. L’esperimento ha messo in luce diverse problematiche tecniche, che costituiranno un prezioso bagaglio di esperienze, utile per il futuro avanzamento dell’attività di ricerca.

Statistiche Download
Tipo di EPrint:Tesi di dottorato
Relatore:Pelizzo, Maria Guglielmina
Correlatore:Naletto, Giampiero
Dottorato (corsi e scuole):Ciclo 30 > Corsi 30 > INGEGNERIA DELL'INFORMAZIONE
Data di deposito della tesi:21 Febbraio 2018
Anno di Pubblicazione:21 Febbraio 2018
Parole chiave (italiano / inglese):inteferometry, metrology, phase measurement, heterodyne, laser
Settori scientifico-disciplinari MIUR:Area 02 - Scienze fisiche > FIS/01 Fisica sperimentale
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Codice ID:11169
Depositato il:25 Ott 2018 16:01
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] Lorenzo Pantieri and Tommaso Gordini. L’arte di scrivere con L ATEX. 2011. Cerca con Google

[2] Georges Sagnac. “L’éther lumineux démontré par l’effet du vent relatif d’éther dans un interféromètre en rotation uniforme”. In: CR Acad. Sci. 157 (1913), pp. 708–710. Cerca con Google

[3] Guido Rizzi and Matteo Luca Ruggiero. “The relativistic Sagnac effect: two derivations”. In: Relativity in Rotating Frames. Springer, 2004, pp. 179–220. Cerca con Google

[4] K. U. Schreiber, A. Gebauer, and J.-P. R. Wells. “Closed-loop locking of an optical frequency comb to a large ring laser”. In: Optics Letters 38 (Sept. 2013), p. 3574. DOI: 10.1364þ/þOL.38.003574þ. Cerca con Google

[5] K. U. Schreiber et al. “How to Detect the Chandler and the Annual Wobble of the Earth with a Large Ring Laser Gyroscope”. In: Physical Review Letters 107 (17 Oct. 2011), p. 173904. DOI: 10.1103þ/þ PhysRevLett.107.173904þ. Cerca con Google

[6] F. Bosi et al. “Measuring gravitomagnetic effects by a multi-ring laser gyroscope”. In: Physical Review D 84 (2011), 122002(23). DOI: 10.1103þ/þPhysRevD.84.122002þ. Cerca con Google

[7] A. Di Virgilio et al. “A ring lasers array for fundamental physics”. In: Comptes Rendus Physique 15.10 (2014), pp. 866–874. DOI: 10.1016þ/þ j.crhy.2014.10.005þ. Cerca con Google

[8] B. Mashhoon, F. W. Hehl, and D. S. Theiss. “On the gravitational effects of rotating masses: The Thirring-Lense papers”. In: General Relativity and Gravitation 16.8 (1984), pp. 711–750. DOI: 10.1007þ/þBF00762913þ. Cerca con Google

[9] Chien-ming Wu, J. Lawall, and R. D. Deslattes. “Heterodyne interferometer with subatomic periodic nonlinearity”. In: Appl. Opt. 38.19 (July 1999), pp. 4089–4094. DOI: 10.1364þ/þAO.38.004089þ. Cerca con Google

[10] Ki-Nam Joo et al. “Simple heterodyne laser interferometer with subnanometer periodic errors”. In: Optics letters 34.3 (2009), pp. 386–388. Cerca con Google

[11] L. B. Ames et al. “SIM external metrology beam launcher (QP) development”. In: Proceedings of SPIE: Interferometry in Space. Vol. 4852. NASA JPL, 2003, pp. 347–354. DOI: 10.1117þ/þ12.460946þ. Cerca con Google

[12] Alberto Donazzan et al. “Characterization of nanometer displacement gauge for dimensional control of large opto-mechanical structures”. Cerca con Google

In: Opt. Express (2017, submitted). Cerca con Google

[13] Alberto Donazzan, Giampiero Naletto, and Maria G. Pelizzo. “Study of the optical crosstalk in a heterodyne displacement gauge with cancelable circuit”. In: Modeling Aspects in Optical Metrology VI. Vol. 10330. International Society for Optics and Photonics. 2017, 103300F. DOI: 10.1117þ/þ12.2270193þ. Cerca con Google

[14] Antonello Ortolan et al. “GINGER: an array of ring lasers for testing fundamental physics”. In: Proceedings of the MG14 Meeting on General Relativity. Ed. by Massimo Bianchi, Robert T. Jantzen, and Ruffini Remo. 2017. Cerca con Google

[15] Alberto Donazzan et al. “A network of heterodyne laser interferometers for monitoring and control of large ring-lasers”. In: SPIE Optical Engineering + Applications. 2016, pp. 1–8. DOI: 10.1117þ/þ12.2237638þ. Cerca con Google

[16] Alberto Donazzan et al. “External metrology system for the stabilization of large ring-lasers”. In: Metrology for Aerospace (MetroAeroSpace), 2016 IEEE. IEEE. 2016, pp. 266–270. Cerca con Google

[17] J. Belfi et al. “Very high sensitivity laser gyroscopes for general relativity tests in a ground laboratory”. In: 2016 European Frequency and Time Forum (EFTF). Apr. 2016, pp. 1–4. DOI: 10.1109þ/þEFTF.2016.7477839þ. Cerca con Google

[18] A. Ortolan et al. “The GINGER project and status of the GINGERino prototype at LNGS”. In: Proceedings, 14th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2015). Vol. 718. 2016, p. 072003. DOI: 10.1088þ/þ1742þ-þ6596þ/þ718þ/þ7þ/þ072003þ. Cerca con Google

[19] A. Di Virgilio et al. “The GINGER Project”. In: Nuclear Physics BProceedings Supplements (2016), pp. 1–8. Cerca con Google

[20] A. Di Virgilio et al. “The GINGER Project and status of the ring-laser of LNGS”. In: Proceedings of the XVI International Workshop on Neutrino Telescopes (NEUTEL2015). Palazzo Franchetti, Venice, Italy, Mar. 2015, pp. 2–6. Cerca con Google

[21] I. Ciufolini and J. A. Wheeler. Gravitation and Inertia. Princeton series in physics. Princeton University Press, 1995. Cerca con Google

[22] C. W. F. Everitt et al. “Gravity Probe B: Final Results of a Space Experiment to Test General Relativity”. In: Physical Review Letters 106 (22 May 2011), p. 221101. DOI: 10.1103þ/þPhysRevLett.106.221101þ. Cerca con Google

[23] I. Ciufolini and E. C. Pavlis. “A confirmation of the general relativistic prediction of the Lense-Thirring effect”. In: Nature 431 (Oct. 2004), pp. 958–960. DOI: 10.1038þ/þnature03007þ. Cerca con Google

[24] Ignazio Ciufolini et al. “Testing gravitational physics with satellite laser ranging”. In: The European Physical Journal Plus 126.8 (2011), pp. 1–19. Cerca con Google

[25] I. Ciufolini et al. “A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model. Measurement of Earth’s dragging of inertial frames”. In: European Physical Journal C 76, 120 (Mar. 2016), p. 120. DOI: 10.1140þ/þepjcþ/þs10052þ-þ016þ-þ3961þ-þ8þ. Cerca con Google

[26] Ignazio Ciufolini et al. “A new laser-ranged satellite for General Relativity and space geodesy: I. An introduction to the LARES2 space experiment”. In: The European Physical Journal Plus 132.8 (2017), p. 336. Cerca con Google

[27] F. Flechtner et al. “Current Status Of The GRACE Follow-On Mission”. In: EGU General Assembly Conference Abstracts. Vol. 19. EGU General Assembly Conference Abstracts. Apr. 2017, p. 4566. Cerca con Google

[28] Olivier Darrigol. “Georges Sagnac: A life for optics”. In: Comptes RendusPhysique 15.10 (2014), pp. 789–840. Cerca con Google

bibliography 77 Cerca con Google

[29] G. E. Stedman, R. B. Hurst, and K. U. Schreiber. “On the potential of large ring lasers”. In: Optics Communications 279 (2007), pp. 124–129. DOI: 10.1016þ/þj.optcom.2007.07.011þ. Cerca con Google

[30] T. L. Gustavson, P. Bouyer, and M. A. Kasevich. “Precision rotation measurements with an atom interferometer gyroscope”. In: Physical Review Letters 78.11 (1997), p. 2046. Cerca con Google

[31] K. U. Schreiber and J. P. R. Wells. “Invited Review Article: Large ring lasers for rotation sensing”. In: Review of Scientific Instruments 84 (2013), pp. 041101–. DOI: 10.1063þ/þ1.4798216þ. Cerca con Google

[32] M. O. Scully, M. S. Zubairy, and M. P. Haugan. “Proposed optical test of metric gravitation theories”. In: Phys. Rev. A 24 (4 Oct. 1981), pp. 2009–2016. DOI: 10.1103þ/ PhysRevA.24.2009þ. URL: https:/þ/þ link.aps.orgþ/þdoiþ/þ10.1103þ/þPhysRevA.24.2009þ. Cerca con Google

[33] G. E. Stedman. “Ring-laser tests of fundamental physics and geophysics”. In: Reports on progress in physics 60.6 (1997), p. 615. Cerca con Google

[34] Victor Vali and R. W. Shorthill. “Fiber ring interferometer”. In: Applied optics 15.5 (1976), pp. 1099–1100. Cerca con Google

[35] Warren M. Macek and D. T. M. Davis Jr. “Rotation rate sensing with traveling-wave ring lasers”. In: Applied Physics Letters 2.3 (1963), pp. 67–68. Cerca con Google

[36] W. W. Chow et al. “The ring laser gyro”. In: Reviews of Modern Physics 57.1 (1985), p. 61. Cerca con Google

[37] F. Aronowitz. “Fundamentals of the Ring Laser Gyro”. In: Optical Gyros and their Application 339 (1999). Cerca con Google

[38] Alessandro Beghi et al. “Compensation of the laser parameter fluctuations in large ring-laser gyros: a Kalman filter approach”. In: Appl. Opt. 51.31 (Nov. 2012), pp. 7518–7528. DOI: 10.1364þ/þAO.51.007518þ. Cerca con Google

[39] G. E. Stedman et al. “Harmonic analysis in a large ring laser with backscatter-induced pulling”. In: Physical Review A 51.6 (1995), p. 4944. Cerca con Google

[40] Davide Cuccato. “Modeling, estimation and control of ring laser gyroscopes for the accurate estimation of the earth rotation”. In: (Jan. 2015). Cerca con Google

[41] K. Ulrich Schreiber et al. “Sensing earth’s rotation with a helium–neon ring laser operating at 1.15 µm”. In: Optics Letters 40.8 (2015), pp. 1705–1708. Cerca con Google

[42] Robert B. Hurst et al. “Correction of backscatter-induced systematic errors in ring laser gyroscopes”. In: Appl. Opt. 53.31 (Nov. 2014), pp. 7610–7618. DOI: 10.1364þ/þAO.53.007610þ. Cerca con Google

[43] Richard Douglas Graham. “New concepts for operating ring laser gyroscopes”. PhD thesis. University of Canterbury, 2010. Cerca con Google

[44] Karl Ulrich Schreiber et al. “The Large Ring Laser G for Continuous Earth Rotation Monitoring”. In: Pure and applied geophysics 166.8-9 (2009), pp. 1485–1498. Cerca con Google

[45] K. U. Schreiber, A. Gebauer, and J-P R. Wells. “Long-term frequency stabilization of a 16 m 2 ring laser gyroscope”. In: Optics letters 37.11 (2012), pp. 1925–1927. Cerca con Google

[46] K. U. Schreiber, A. Gebauer, and J-P. R. Wells. “Closed-loop locking of an optical frequency comb to a large ring laser”. In: Optics letters 38.18 (2013), pp. 3574–3577. Cerca con Google

[47] Ulrich Schreiber et al. “The GEOsensor project: rotations—a new observable for seismology”. In: Observation of the Earth System from Space. Springer, 2006, pp. 427–443. Cerca con Google

[48] Angela Di Virgilio et al. “Performances of ‘G-Pisa’: a middle size gyrolaser”. In: Classical and Quantum Gravity 27.8 (2010), p. 084033. Cerca con Google

[49] J. Belfi et al. “A 1.82 m2 ring laser gyroscope for nano-rotational motion sensing”. In: Applied Physics B 106.2 (2012), pp. 271–281. DOI: 10.1007þ/þs00340þ-þ011þ-þ4721þ-þyþ. Cerca con Google

[50] Jacopo Belfi et al. “Performance of “G-Pisa” ring laser gyro at the Virgo site”. In: Journal of seismology 16.4 (2012), pp. 757–766. Cerca con Google

[51] Jacopo Belfi et al. “Horizontal rotation signals detected by “G-Pisa” ring laser for the Mw= 9.0, March 2011, Japan earthquake”. In: Journal of Seismology 16.4 (2012), pp. 767–776. Cerca con Google

[52] Davide Cuccato et al. “Controlling the non-linear intracavity dynamics of large He–Ne laser gyroscopes”. In: Metrologia 51.1 (2014), p. 97. Cerca con Google

[53] Rosa Santagata et al. “Optimization of the geometrical stability in square ring laser gyroscopes”. In: Classical and Quantum Gravity 32.5 (2015), p. 055013. Cerca con Google

[54] J Belfi et al. “Interferometric length metrology for the dimensional control of ultra-stable ring laser gyroscopes”. In: Classical and Quantum Gravity 31.22 (2014), p. 225003. Cerca con Google

[55] J. Belfi et al. “Absolute Control of the Scale Factor in GP2 Laser Gyroscope: Toward a Ground Based Detector of the Lense-Thirring Effect”. In: European Frequency and Time Forum & IEEE International Frequency Control Symposium (EFTF/IFC), 2013 Joint. 2013, pp. 795–798. DOI: 10.1109þ/þEFTFþ-þIFC.2013.6702268þ. Cerca con Google

[56] Rosa Santagata. “Sub-nanometer length metrology for ultra-stable ring laser gyroscopes”. In: (2015). URL: http:/þ/þwww.infn.itþ/þthesisþ/þ thesisþ_þdettaglio.phpþ?þtidþ=þ10057þ. Vai! Cerca con Google

[57] J. Belfi et al. “First Results of GINGERino, a deep underground ringlaser”. In: arXiv preprint arXiv:1601.02874 (2016). Cerca con Google

[58] Jacopo Belfi et al. “Deep underground rotation measurements: GINGERino ring laser gyroscope in Gran Sasso”. In: Review of Scientific Instruments 88.3 (2017), p. 034502. Cerca con Google

[59] ROMY website. URL: https:/þ/þwww.geophysik.uniþ-þ muenchen.deþ/þ ROMY/þ. Vai! Cerca con Google

[60] H. Igel et al. “ROMY: A 4-component large ring laser for geophysics”. In: AGU Fall Meeting Abstracts. Dec. 2016. Cerca con Google

[61] André Gebauer et al. “Design and construction of a large 4C ring laser: ROMY”. In: EGU General Assembly Conference Abstracts. Vol. 19. 2017, p. 10170. Cerca con Google

[62] Karl Ulrich Schreiber et al. “Integration and initial operation of the multi-component large ring laser structure ROMY”. In: EGU General Assembly Conference Abstracts. Vol. 19. 2017, p. 5628. Cerca con Google

[63] IERS Annual Report 2014. Tech. rep. Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie: International Earth Rotation and Reference Systems Service, Central Bureau, 2015. Cerca con Google

[64] Angelo Tartaglia et al. “Testing general relativity by means of ring lasers”. In: The European Physical Journal Plus 132.2 (2017), p. 73. Cerca con Google

[65] Angela D. V. Di Virgilio et al. “GINGER: A feasibility study”. In: The European Physical Journal Plus 132.4 (2017), p. 157. Cerca con Google

[66] P. G. Halverson et al. “Progress towards picometer accuracy laser metrology for the space interferometry mission”. In: Proceedings of ICSO 2000, 4th International Conference on Space Optics. NASA JPL, 2000, pp. 417–428. Cerca con Google

[67] P. G. Halverson et al. “Progress towards picometer accuracy laser metrology for the Space Interferometry Mission - Update for ICSO 2004”. In: Proceedings of ICSO 2004, 5th International Conference on Space Optics. NASA JPL, 2004, pp. 515–522. Cerca con Google

[68] B. Nemati. “SIM PlanetQuest: Status and Recent Progress”. In: Proceedings of SPIE: Advances in Stellar Interferometry. Vol. 6268. NASA JPL, 2006. DOI: 10.1117þ/þ12.665678þ. Cerca con Google

[69] J. E. Logan et al. “Automatic alignment of a displacement-measuring heterodyne interferometer”. In: Applied Optics 41 (2002), pp. 4314– 4317. DOI: 10.1364þ/þAO.41.004314þ. Cerca con Google

[70] John Lawall and Ernest Kessler. “Michelson interferometry with 10 pm accuracy”. In: Review of Scientific Instruments 71.7 (2000), pp. 2669– 2676. DOI: 10.1063þ/þ1.1150715þ. Cerca con Google

[71] Gary M. Kuan. “Metrology optical power budgeting in SIM using statistical analysis techniques”. In: Optical and Infrared Interferometry. Vol. 7013. Proc. SPIE. July 2008, p. 70134V. DOI: 10.1117þ/þ12.790459þ. Cerca con Google

[72] John N. Dukes and Gary B. Gordon. “A two-hundred-foot yardstick with graduations every microinch”. In: Hewlett-Packard Journal 21.2 (1970), pp. 2–8. Cerca con Google

[73] C. R. Steinmetz. “Sub-micron position measurement and control on precision machine tools with laser interferometry”. In: Precision Engineering 12.1 (1990), pp. 12–24. Cerca con Google

[74] B Shirinzadeh et al. “Laser interferometry-based guidance methodology for high precision positioning of mechanisms and robots”. In: Robotics and Computer-Integrated Manufacturing 26.1 (2010), pp. 74–82. Cerca con Google

[75] Richard K Leach et al. “The European nanometrology landscape”. In: Nanotechnology 22.6 (2011), p. 062001. Cerca con Google

[76] Harald Bosse and Günter Wilkening. “Developments at PTB in nanometrology for support of the semiconductor industry”. In: Measurement Science and Technology 16.11 (2005), p. 2155. Cerca con Google

[77] Marco Pisani et al. “Comparison of the performance of the next generation of optical interferometers”. In: Metrologia 49.4 (2012), p. 455. Cerca con Google

[78] F. Zhao. “Development of high precision laser heterodyne metrology gauges”. In: Proceedings of SPIE: Advanced Sensor Systems and Applications II. Vol. 5634. NASA JPL, 2005. DOI: 10.1117þ/þ12.569844þ. Cerca con Google

[79] Samuel A Leveque et al. “Toward nanometer accuracy laser metrology for phase-referenced interferometry with the VLTI”. In: Proceedings of SPIE. Vol. 4838. 2003, pp. 983–994. Cerca con Google

[80] Matthew J Dudik et al. “Development of a precision cryogenic dilatometer for James Webb Space Telescope materials testing”. In: Proc. SPIE 5179 (2003), pp. 5179–10. DOI: 10.1117þ/þ12.506482þ. Cerca con Google

[81] Vinzenz Wand. “Interferometry at low frequencies: Optical phase measurement for LISA and LISA Pathfinder”. PhD thesis. Gottfried Cerca con Google

Wilhelm Leibniz Universität Hannover, 2007. Cerca con Google

[82] BS Sheard et al. “Intersatellite laser ranging instrument for the GRACE follow-on mission”. In: Journal of Geodesy (2012), pp. 1–13. Cerca con Google

[83] Norman Bobroff. “Recent advances in displacement measuring interferometry”. In: Measurement Science and Technology 4.9 (1993), p. 907. Cerca con Google

[84] Andrew J. Fleming. “A review of nanometer resolution position sensors: Operation and performance”. In: Sensors and Actuators A: Physical 190 (2013), pp. 106–126. Cerca con Google

[85] M. Hirano. “Optical Heterodyne Measurement Method”. In: Handbook of Optical Metrology. Ed. by Toru Yoshizawa. CRC Press, 2009. DOI: 10.1201þ/þ9781420019513.ch10þ. Cerca con Google

[86] Jonathan D. Ellis and Society of Photo-optical Cerca con Google

instrumentation Engineers. Field Guide to Displacement Measuring Interferometry. Vol. FG30. SPIE Press, 2014. Cerca con Google

[87] Bryan K. A. Ngoi and Krishnan Venkatakrishnan. “Techniques to eliminate error induced due to acousto-optic modulator vibration in heterodyne interferometry”. In: Optical Engineering 38.12 (1999), pp. 2050– 2054. Cerca con Google

[88] James A. Smith and Christian P. Burger. “Digital phase demodulation in heterodyne sensors”. In: Optical Engineering 34.9 (1995), pp. 2793– 2801. DOI: 10.1117þ/þ12.212980þ. Cerca con Google

[89] P. Köchert et al. “Phase measurement of various commercial heterodyne He–Ne-laser interferometers with stability in the picometer regime”. In: Measurement Science and Technology 23.7 (2012), p. 074005. Cerca con Google

[90] Simple Phase Meter Operates to 10MHz (HA5024, HFA3102). AN9637.1. Intersil Corporation. Oct. 2004. Cerca con Google

[91] Peter G. Halverson and Frank M. Loya. “Signal processing for order 10 pm accuracy displacement metrology in real-world scientific applications”. In: 5th International Conference on Space Optics. Vol. 554. 2004, pp. 571–577. Cerca con Google

[92] Andrew J. Stevenson et al. “Quantum-noise-limited interferometric phase measurements”. In: Applied optics 32.19 (1993), pp. 3481–3493. Cerca con Google

[93] P. L. Richards. “Bolometers for infrared and millimeter waves”. In: Journal of Applied Physics 76.1 (Aug. 1994), pp. 1–24. DOI: 10.1063þ/þ 1.357128þ. Cerca con Google

[94] D. G. Manolakis and J. G. Proakis. Digital Signal Processing: Principles, Algorithms, and Applications. 3rd. Prentice Hall, 1996. Cerca con Google

[95] Paul Smith. Little Known Characteristics of Phase Noise. AN-741 Application Note. Analog Devices. 2004. Cerca con Google

[96] T. L. Schmitz, D. Chu, and L. III Houck. “First-order periodic error correction: validation for constant and non-constant velocities with variable error magnitudes”. In: Measurement Science and Technology 17.12 (2006), p. 3195. DOI: 10.1088þ/þ0957þ-þ0233þ/þ17þ/þ12þ/þ001þ. Cerca con Google

[97] Haijin Fu et al. “Simple method for reducing the first-order optical nonlinearity in a heterodyne laser interferometer”. In: Applied optics 54.20 (2015), pp. 6321–6326. Cerca con Google

[98] Oliver P. Lay and Serge Dubovitsky. “Polarization compensation: a passive approach to a reducing heterodyne interferometer nonlinearity”. In: Opt. Lett. 27.10 (May 2002), pp. 797–799. DOI: 10.1364þ/þ OL.27.000797þ. Cerca con Google

[99] S. J. A. G. Cosijns, Han Haitjema, and P. H. J. Schellekens. “Modeling and verifying non-linearities in heterodyne displacement interferometry”. In: Precision Engineering 26.4 (2002), pp. 448–455. DOI: 10.1016þ/þS0141þ-þ6359(02þ)þ00150þ-þ2þ. Cerca con Google

[100] Liping Yan et al. “Analysis and verification of the nonlinear error resulting from the misalignment of a polarizing beam splitter in a Cerca con Google

heterodyne interferometer”. In: Measurement Science and Technology 26.8 (2015), p. 085006. Cerca con Google

[101] Yekta Gursel. “Laser metrology gauges for OSI”. In: Proc. SPIE. Vol. 1947. 1993, pp. 188–197. DOI: 10.1117þ/þ12.155740þ. Cerca con Google

[102] Peter G. Halverson et al. “Techniques for the reduction of cyclic errors in laser metrology gauges for the space interferometry mission”. In: ASPE 2001 Conference. 2001. Cerca con Google

[103] Mitsuru Tanaka, Tohru Yamagami, and Kan Nakayama. “Linear interpolation of periodic error in a heterodyne laser interferometer at subnanometer levels (dimension measurement)”. In: IEEE Transactions on Instrumentation and Measurement 38.2 (1989), pp. 552–554. Cerca con Google

[104] Tony Schmitz and John Beckwith. “Acousto-optic displacement measuring interferometer: a new heterodyne interferometer with Ångstromlevel periodic error”. In: Journal of modern optics 49.13 (2002), pp. 2105– Cerca con Google

2114. Cerca con Google

[105] Daniel A. Shaddock. “Digitally enhanced heterodyne interferometry”. In: Opt. Lett. 32.22 (Nov. 2007), pp. 3355–3357. DOI: 10.1364þ /þ OL.32.003355þ. Cerca con Google

[106] Jeremias Seppä et al. “A method for linearization of a laser interferometer down to the picometre level with a capacitive sensor”. In: Measurement Science and Technology 22.9 (2011), p. 094027. Cerca con Google

[107] Marco Pisani, Giovanni Mana, and Anna M. Nobili. “Design of an interferometric displacement sensor with picometer resolution for the Galileo-Galilei mission”. In: Metrology for Aerospace (MetroAeroSpace), 2015 IEEE. IEEE. 2015, pp. 591–595. Cerca con Google

[108] L. L. Ames, R. M. Bell, and K. Dutta. Beam masking to reduce cyclic error in beam launcher of interferometer. US Patent 6,922,249. July 2005. Cerca con Google

[109] Kalyan Dutta, Robert S. Benson, and M. Shao. “Performance modeling of optical metrology systems”. In: Proceedings of SPIE. Vol. 4852. 2003, pp. 839–848. Cerca con Google

[110] Xu Wang. “The mask designs for Space Interferometer Mission (SIM)”. In: vol. 7013. 2008, pp. 701352–11. DOI: 10.1117þ/þ12.787256þ. Cerca con Google

[111] Hong Tang and Feng Zhao. “Estimation of cyclic error due to scattering in the internal OPD metrology of the Space Interferometry Mission”. In: vol. 5776. 2005, pp. 94–101. DOI: 10.1117þ/þ12.611645þ. Cerca con Google

[112] C.-m. Wu. “Periodic nonlinearity resulting from ghost reflections in heterodyne interferometry”. In: Optics Communications 215 (Jan. 2003), Cerca con Google

pp. 17–23. DOI: 10.1016þ/þS0030þ-þ4018(02þ)þ02203þ-þ4þ. Cerca con Google

[113] Giovanni Cavagnero, Giovanni Mana, and Enrico Massa. “Effect of recycled light in two-beam interferometry”. In: Review of scientific instruments 76.5 (2005), p. 053106. Cerca con Google

[114] Gerhard Heinzel et al. “Interferometry for the LISA technology package LTP: an update”. In: Journal of Physics: Conference Series. Vol. 32. 1. IOP Publishing. 2006, p. 132. Cerca con Google

[115] Peter G. Halverson and Robert E. Spero. “Signal processing and testing of displacement metrology gauges with picometre-scale cyclic nonlinearity”. In: Journal of Optics A: Pure and Applied Optics 4.6 (2002), S304. Cerca con Google

[116] Shahram Mohammad Nejad and Saeed Olyaee. “Accuracy improvement by nonlinearity reduction in two-frequency laser heterodyne interferometer”. In: Electronics, Circuits and Systems, 2006. ICECS’06. Cerca con Google

13th IEEE International Conference on. IEEE. 2006, pp. 914–917. Cerca con Google

[117] Nile M. Oldham et al. “Electronic limitations in phase meters for heterodyne interferometry”. In: Precision engineering 15.3 (1993), pp. 173–179. Cerca con Google

[118] K. Oka, M. Tsukada, and Y. Ohtsuka. “Real-time phase demodulator for optical heterodyne detection processes”. In: Measurement Science and Technology 2.2 (1991), p. 106. Cerca con Google

[119] David B. Schaechter et al. “Diffraction hardware testbed and model validation”. In: Proceedings of SPIE. Vol. 4852. 2003, pp. 302–313. Cerca con Google

[120] René Schödel. “Limiting aspects in length measurements by interferometry”. In: Fringe 2009. Springer, 2009, pp. 1–7. Cerca con Google

[121] A. Hirai, M. Kajima, and S. Telada. “Displacement”. In: Handbook of Optical Metrology. Ed. by Toru Yoshizawa. CRC Press, 2008. DOI: 10.1201þ/þ9781420019513.pt3þ. Cerca con Google

[122] Feng Zhao et al. “Common-path multichannel heterodyne laser interferometer for subnanometer surface metrology”. In: vol. 3740. 1999, pp. 642–645. DOI: 10.1117þ/þ12.347766þ. Cerca con Google

[123] Philip E. Ciddor. “Refractive index of air: new equations for the visible and near infrared”. In: Appl. Opt. 35.9 (Mar. 1996), pp. 1566–1573. DOI: 10.1364þ/þAO.35.001566þ. Cerca con Google

[124] B. Edlén. “The Refractive Index of Air”. In: Metrologia 2 (Apr. 1966), pp. 71–80. DOI: 10.1088þ/þ0026þ-þ1394þ/þ2þ/þ2þ/þ002þ. Cerca con Google

[125] Edson R. Peck and Kaye Reeder. “Dispersion of Air∗”. In: J. Opt. Soc. Am. 62.8 (Aug. 1972), pp. 958–962. DOI: 10.1364þ/þJOSA.62.000958þ. Cerca con Google

[126] G. Bönsch and E. Potulski. “Measurement of the refractive index of air and comparison with modified Edlén’s formulae”. In: Metrologia 35.2 (1998), p. 133. Cerca con Google

[127] W. Wagner and A. Pruß. “The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use”. In: Journal of Physical and Chemical Reference Data 31.2 (2002), pp. 387–535. DOI: 10.1063þ/þ1.1461829þ. Cerca con Google

[128] N. Bobroff. “Residual errors in laser interferometry from air turbulence and nonlinearity”. In: Applied Optics 26.13 (July 1987), pp. 2676– 2682. DOI: 10.1364þ/þAO.26.002676þ. Cerca con Google

[129] O. Svelto. Principles of Lasers. 5th ed. Springer US, 2010. DOI: 10.1007þ/þ 978þ-þ1þ-þ4419þ-þ1302þ-þ9þ. Cerca con Google

[130] Gianni Di Domenico, Stéphane Schilt, and Pierre Thomann. “Simple approach to the relation between laser frequency noise and laser Cerca con Google

line shape”. In: Appl. Opt. 49.25 (Sept. 2010), pp. 4801–4807. DOI: 10.1364þ/þAO.49.004801þ. Cerca con Google

[131] R. Paschotta, H. R. Telle, and U. Keller. “Noise of Solid-State Lasers”. In: Solid-State Lasers and Applications. Ed. by Alphan Sennaroglu. CRC Press, 2006. DOI: 10.1201þ/þ9781420005295.ch12þ. Cerca con Google

[132] Rüdiger Paschotta. “Field guide to optical fiber technology”. In: SPIE. 2010. Cerca con Google

[133] Y. Salvadé and R. Dändliker. “Limitations of interferometry due to the flicker noise of laser diodes”. In: Journal of the Optical Society of America A 17.5 (May 2000), pp. 927–932. DOI: 10.1364þ/þJOSAA.17.000927þ. Cerca con Google

[134] K. Petermann. Laser Diode Modulation and Noise. Advances in OptoElectronics. Springer Netherlands, 1988. DOI: 10.1007þ/þ978þ-þ94þ-þ009þ-þ 2907þ-þ4þ. Cerca con Google

[135] S. R. Bowman. “High-power diode-pumped solid-state lasers”. In: Optical Engineering 52.2 (2012), p. 021012. Cerca con Google

[136] ZEMAX Development Corporation. ZEMAX Optical Design Program User’s Guide. June 2009. Cerca con Google

[137] John W. Gordon and Julius O. Smith. “A Sine Generation Algorithm for VLSI Applications”. In: Proc. 1985 Int. Computer Music Conf., Vancouver. Computer Music Association. Computer Music Association, 1985. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record