Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Sgorlon, Enrico (2018) Integrated and sustainable management of intensive broiler farming according to the environmental balance logic. [Ph.D. thesis]

Full text disponibile come:

PDF Document

Abstract (english)

With respect to meat production in Italy, poultry meat production is among the main ones with a production of 1.25 million tonnes, 68% of which is broiler meat (Avec, 2015). Most of the broiler meat come from standard indoor system farms and they are located in the North-East regions (Unaitalia, 2014), often concentrated in specific areas, that frequently leads to criticism due to emissions, in particular ammonia (NH3), nitrous oxide (N2O) and methane (CH4) produced and the difficulty to obtain a proper disposal of poultry manure. This is because the broiler farms in these areas are a lot and all are characterized by the absence of field where the poultry manure could be spread. The broiler standard indoor system is characterized by a standard production chain, which starts with the companies that produce the feed and closes with the companies that slaughter and prepare the finished product. However, the poultry chain has never given much importance to the co-product that inevitably forms, that is, the poultry manure. The poultry manure is a co-product, it has an excellent amounts of nitrogen and phosphorus (Chamblee and Todd, 2002). This situation leads to problems of the emissions of broiler farm and the correct management of the poultry manure and the consequent environmental impacts. For these reasons, the research follows three research lines: i) use mix of microorganisms (LW) in the broiler breeder phase (PM = poultry manure treatment, DW = drinking water treatment and CL = control or no treatments); ii) three utilization scenarios of poultry manure (direct field spread = DFS, production of organic fertilizers = POF and combustion plant = CP). The last two scenarios produce organic fertilizer, also (IFA, 2012); iii) application of a field simulation model and compare cultures with high (Hi) and low (Li) input, in particular respect nitrogen (N). The third line of research has been developed because, although not strictly related to the use of poultry manure, it concerns nitrogen (N) and its application to a crop. Since the poultry manure has a lot of nitrogen (N), it has been considered interesting to evaluate this element, considering the problems connected to it also and especially bound by the Nitrates Directive (91/676/CEE and DM 5046 of 25 February 2016). The first line, was evaluated using the methodology Life Cycle Assessment (LCA). The second with LCA and DeNitrification- DeComposition (DNDC) model approaches. Finally, the last with DNDC model.
From the first line of research (i), it can be deduced that, except the greater environmental impact of feed that are 81% of CL, 79% of PM and DW, microorganism treatments have reduced emissions from broiler breeding farm and hence, environmental impacts. The environmental impacts of the two types of treatment (PM and DW) are compared to the CL both. The Terrestrial Acidification (TA) expressed as kg SO2 eq., in PM is less than 11.057% and in DW is 4.876%. In the Particular Matter Formation (PMF) expressed as kg PM10 eq., in PM is less than 9.076 and in DW is less than 2.727. In the Eutrophication Potential (EP) expressed as kg PO4 eq., in the PM is less than 5.212 and in DW is less than 0.101. On the other hand, there have not been significant results with a lower environmental impact as regards the Climate Change (CC) expressed as kg CO2 eq. Finally, with regard to housing emissions, especially with respect to NH3, Monte Carlo analysis showed a significant reduction in emissions between the different scenarios. In PM there were less emissions of 69% and 77% in DW, respectively compared to CL.
Instead, from the second line of the research (ii), the environmental impacts of utilization scenarios of poultry manure (POF and CP) are both compared to the DFS. In Eutrophication (EP) expressed as kg PO4- eq., there is a lower environmental impact of 33% in the CP. Instead, it is higher of 16.2% in the POF, in agreement with other studies, also (González-García et al., 2014). Another important impact category to consider is the Acidification (AP) expressed as kg SO2 eq., that is higher in POF scenario of 2.5%, insteed it is less of 9.7% in CP. This becouse the N leach (nitrate), is 22.11, 20.17 and 16.43 kg N/ha/y in a time horizon of 100 years in production of POF, DFS and CP, respectivelly. The Photochemical Oxidation expressed as kg C2H4 eq., it is less of 5.2% in the POF and it is less of 28% in the CP. The Particular Matter Formation (PMF) expressed as PM10 eq., it is less of 18% in the CP. The Abiotic Depletion of Fossil Fuel (FD) expressed as MJ, it is less of 9.5% in the CP and insteed, it is higher of 5,4% in the POF. The Cumulative Energy Demand (CED) expressed as MJ, it is less of 8.1% in the POF and it is less of 4.9% in the CP. Regarding FD, and especially for the CED, values of higher environmental impact for POF, it is due to the high energy request.
Finally, from the thrid line of the research (iii), despite of its positive applications, the use of active light crop canopy remote sensors for in-season site-specific nitrogen (N) management, has some drawbacks. The development of algorithms to estimate in-season N rates is based on data that relates canopy spectral data to potential yield and N uptake over multiple years and locations. Furthermore, canopy sensing-based N rate algorithms use in-season estimation of canopy N status to prescribe N rate need to reach yield potential, but is does not account for crop streses between sensing and harvest. The goal of this third study was to develop and test a methodology for combining normalized difference vegetation index data (NDVI) and simulating the assess spatial variability of corn N stress and in-season N rate. Using two season data (2008-2009) of five corn fields located in the Venice lagoon watershed, spatial model calibration and simulation were conducted using the CERES – Maize model in DSSAT in conjunction with the GeoSpatial Simulaton (GeoSim) tool in the Quantum GIS software. The model was first optimized to properly predict the yield, and subsequently to match the simulated and the NDVI-derived leaf area index (LAI). Model accuracy in yield estimation was reached by soil parameters optimization and was not negatively influenced by model optimization for LAI. In order to evaluate the advantages of coupling modelling and spectral data, N stress was simulated and optimum rates able to minimize it were evaluated. The incorporation of proximal sensed-derived data into the model guaranteed to increase the accuracy of Nitrogen stress simulation, due to the relationship between NDVI, LAI and N stress. Manage an inseason site-specific fertilization aiming to minimize N stress could N efficiency not guarantee to satisfy other criteria, such as the maximum achievable yield, the economic convenience or the environmental impact of the fertilization.

Abstract (italian)

Per quanto riguarda la produzione di carne in Italia, la produzione di carne avicola è tra le principali con una produzione di 1,25 milioni di tonnellate, del quale il 68% sono polli da carne o broiler (Avec, 2015). La maggior parte della carne di broiler proviene da allevamenti intensivi e si trovano nelle regioni del Nord-Est (Unaitalia, 2014), spesso concentrate in aree specifiche, che frequentemente portano a criticismi dovuti alle emissioni, in particolare all'ammoniaca (NH3), all’ossido di diazoto (N2O) e al metano (CH4) prodotti e la difficoltà di ottenere un corretto smaltimento della lettiera. Questo perché gli allevamenti di polli da carne in queste aree sono molto numerosi e tutti sono caratterizzati dall'assenza di terreno in cui la lettiera potrebbe essere sparsa. L’allevamento intensivo del broiler è caratterizzato da una catena standard di produzione, che inizia con le aziende che producono il mangime e si chiude con le aziende che macellano e preparano il prodotto finito. Tuttavia, la catena di produzione non ha mai dato molta importanza al co-prodotto che inevitabilmente si produce, cioè la lettiera. La lettiera è un co-prodotto con una quantità eccellente di azoto e fosforo (Chamblee e Todd, 2002). Questa situazione porta a problemi dovuti alle emissioni prodotte negli allevamenti e alla corretta gestione della lettiera e di conseguenza agli impatti ambientali. Per questi motivi, la ricerca si sviluppa in tre linee: i) l’utilizzo di un pool di microrganismi (LW) nella fase di allevamento (PM = trattamento della lettiera, DW = trattamento dell'acqua di abbeveraggio e CL = controllo o nessun trattamento); ii) tre scenari di utilizzo della lettiera (spargimento diretto in campo = DFS, produzione di fertilizzanti organici = POF e impianto di combustione = CP). Gli ultimi due scenari producono anche fertilizzanti organici (IFA, 2012); iii) applicazione di un modello di simulazione sul campo e confronto di colture con elevato (Hi) e basso (Li) input, in particolare rispetto all'azoto (N). La terza linea di ricerca è stata sviluppata perché, sebbene non strettamente correlata all'utilizzo della lettiera, riguarda l'azoto (N) e la sua applicazione in campo. Poiché la lettiera ha molto azoto (N), si è stato considerato interessante valutare questo elemento, considerando i problemi ad essi connessi anche ed in particolarmente rispetto alla direttiva sui nitrati (91/676/CEE e DM 5046 del 25 febbraio 2016). La prima linea di ricerca, è stata valutata utilizzando la metodologia Life Cycle Assessment (LCA). Il seconda linea di ricerca con approccio metodologico LCA e DeNitrification- DeComposition (DNDC). Infine, l'ultima linea di ricerca con il modello DNDC.
Dalla prima linea di ricerca (i), si può dedurre che, ad eccezione del maggiore impatto ambientale dei mangimi che sono l'81% nel CL, il 79% nel PM e nel DW, i trattamenti con i microrganismi hanno ridotto le emissioni nell’allevamento dei broiler e quindi, gli ambientale impatti. Gli impatti ambientali dei due tipi di trattamento (PM e DW) sono stati entrambi confrontati con il CL. L'acidificazione terrestre (TA) espressa in kg di SO2 eq., nel PM è inferiore dell'11,057% e nel DW del 4,876% rispettivamente. Nella formazione del particolato (PMF) espressa come kg PM10 eq., nel PM è inferiore a 9.076 e nel DW è inferiore a 2.727. L’eutrofizzazione potenziale (EP) espressa come kg PO4 eq., nel PM è inferiore a 5.212 e nel DW è inferiore a 0.101. Non ci sono stati risultati significativi riguardo ad un minore impatto ambientale per quanto concerne il cambiamento climatico (CC) espresso in kg di CO2 eq. Infine, per quanto riguarda le emissioni dagli allevamenti, in particolare rispetto all'NH3, l'analisi Monte Carlo ha mostrato una significativa riduzione delle emissioni tra i diversi scenari. Nel PM ci sono state meno emissioni del 69% e nel DW meno emissioni del 77%, rispettivamente rispetto al CL.
Invece, riguardo la seconda linea di ricerca (ii), gli impatti ambientali dei diversi scenari di utilizzo ella lettiera (POF e CP) sono stati entrambi confrontati con il DFS. L’eutrofizzazione potenziale (EP) espressa in kg PO4- eq., ha mostrato un impatto ambientale inferiore del 33% nel CP. Invece, è superiore al 16,2% nel POF, in accordo con altri studi (González-García et al., 2014). Un'altra importante categoria di impatto ambientale considerata è l'acidificazione (AP) espressa in kg di SO2 eq., che è maggiore nel POF del 2,5%, mentre è inferiore al 9,7% in CP. Questo perché l’N lisciviato (nitrato) è 22.11, 20.17 e 16.43 kg N/ha/y in un orizzonte temporale di 100 anni nei rispettivi scenari POF, DFS e CP. L'ossidazione fotochimica espressa in kg C2H4eq., è inferiore al 5,2% nel POF ed è inferiore al 28% nel CP. La formazione di particolato (PMF) espressa come PM10 eq. è inferiore al 18% nel CP. L’esaurimento abiotico del combustibile fossile (FD) espresso come MJ, è inferiore al 9,5% nel CP ed invece è superiore al 5,4% nel POF. La domanda cumulativa di energia (CED) espressa come MJ, è inferiore all'8,1% nel POF e al 4,9% nel CP, rispettivamente. Per quanto riguarda il FD, e in particolare per il CED, i valori di maggiore di impatto ambientale per lo scenario POF, è dovuta ad una maggiore richiesta di alta energia.
Infine, per quanto concerne la terza linea di ricerca (iii), nonostante le sue applicazioni positive, l'uso di sensori remoti per la gestione dell'azoto (N) dipendente dall’andamento della stagione e da siti specifici per colture erbacee, presentano alcuni inconvenienti. Lo sviluppo di algoritmi per stimare le quantità di N durante la stagione si basa su dati che mettono in relazione i dati spettrali della chioma con la resa potenziale e l'assorbimento di N in più anni e luoghi. Inoltre, gli algoritmi dell’andamento dell’N usano la stima stagionale dell’N nella pianta per definire quanto N bisogna raggiungere per massimizzare il rendimento, ma non tiene in considerazione lo stress delle colture tra il rilevamento e il raccolto. L'obiettivo di questo terzo studio era di sviluppare e testare una metodologia per combinare i dati dell'indice di vegetazione normalizzata (NDVI) e simulare la variabilità spaziale di valutazione dello stress e del tasso di N nel mais durante la stagione. Utilizzando dati stagionali (2008-2009) di cinque campi di mais situati nella zona lagunare di Venezia, la calibrazione e la simulazione del modello spaziale sono state condotte utilizzando il modello CERES-Maize in DSSAT, in combinazione con lo strumento GeoSpatial Simulaton (GeoSim) del software Quantum GIS. Il modello è stato inizialmente ottimizzato per prevedere correttamente la resa e successivamente per abbinare il dato simulato con l'indice di area fogliare derivante da NDVI (LAI). L'accuratezza del modello nella stima della resa è stata raggiunta ottimizzando i parametri del suolo e non è stata influenzata negativamente ottimizzando il modello che considera il LAI. Per valutare eventuali vantaggi della modellazione accoppiata e dei dati spettrali, sono stati simulati gli stress N e sono stati valutati i tassi ottimali in grado di minimizzarli. L'incorporazione di dati prossimali derivanti dai sensori nel modello ha garantito un aumento dell'accuratezza della simulazione dello stress di azoto, dovuta alla relazione tra NDVI, LAI e stress N. Gestire una concimazione sito specifica e che varia durante la stagione al fine di ridurre al minimo lo stress N potrebbe non garantire il soddisfacimento di altri criteri, come la massima resa ottenibile, la convenienza economica o l'impatto ambientale della fertilizzazione.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Guercini, Stefano
Supervisor:Marra, Mario
Ph.D. course:Ciclo 29 > Corsi 29 > TERRITORIO, AMBIENTE, RISORSE E SALUTE
Data di deposito della tesi:25 May 2018
Anno di Pubblicazione:19 January 2018
Key Words:DNDC, microorganisms, emissions, ammonia, environmental impact, broiler, litter, Life Cycle Assessment, organic fertiliser, renewable energy, microorganismi, emissioni, ammoniaca, impatto ambientale, broiler, lettiera, Valutazione del Ciclo di Vita, fertilizzante organico, produzione di energia
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/10 Costruzioni rurali e territorio agroforestale
Struttura di riferimento:Dipartimenti > Dipartimento Territorio e Sistemi Agro-Forestali
Codice ID:11238
Depositato il:25 Oct 2018 16:58
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

• Ahmed, Sonia Tabasum. Effects of Bacillus amyloliquefaciens as a probiotic strain on growth performance, cecal microflora, and fecal noxious gas emissions of broiler chickens. Poultry Science. 2014, 93.8: 1963-1971. Cerca con Google

• Alama, Eduardo Z. Evaluation of Effective Microorganism (EM) as Foul Odor Elimination in Pig and Poultry Farm, Growth Stimulant in Broilers, and as an Organic Fertilizer. In: 4th Conference on Effective Microorganism (EM) Proceedings. 1995, p. 109-118. Cerca con Google

• Al-Kanani, T., E. Akochi, A.F. MacKenzie, I. Alli, and S. Barrington. Organic and inorganic amendments to reduce ammonia volatilization losses from liquid hog manure. J. Environ. 1992, Qual. 21:709–715. Cerca con Google

• Amon, Marko. A farm-scale study on the use of clinoptilolite zeolite and De-Odorase® for reducing odour and ammonia emissions from broiler houses. Bioresource technology. 1997, 61.3: 229-237 Cerca con Google

• Appleby, P.N., Thorogood, M., Mann, J.I., Key, T.J. The Oxford Vegetarian Study: an overview. American Journal of Clinical Nutrition 70 (suppl. 3). 1999, 525S–531S. Cerca con Google

• Avec. Available: www.avec-poultry.eu/annual-reports-overview/annual-report. 2013, (Login July 2014). Vai! Cerca con Google

• Avec. Available: www.avec-poultry.eu/annual-reports-overview/annual-report. 2015, (Login October 2015). Vai! Cerca con Google

• Aviagen. Available: www.aviagen.com. 2014, (Login July 2014). Vai! Cerca con Google

• Basso, B., Ritchie J. T., Pierce, F.J. , Braga, R.P. and Jones, R.P. Spatial validation of crop models for precision agriculture. 2001, Agr. Cerca con Google

Syst. 68(2):97-112. Cerca con Google

• Bastianoni, S., Boggia, A., Castellini, C., Di Stefano, C., Niccolucci, V., Novelli, E., Paolotti, L., Pizzigallo, A. Measuring environmental sustainability of intensive poultry rearing system. In: Lichtfouse, E., Navarrete, M., Debaeke, P. (Eds.), Genetic Engineering, Biofertilisation, Soil Quality and Organic Farming, 4. Springer, pp. 277e309. Sustainable Agriculture Reviews. 2010, ISBN 978-90-481- 8740-9. Cerca con Google

• Batchelor, W. D., Basso, B. and Paz, J. O. Examples of strategies to analyze spatial and temporal yield variability using crop models. Cerca con Google

2002, European Journal of Agronomy 18:141-158. Cerca con Google

• Baumgartner, D.U., de Baan, L., Nemeck, T.. European Grain Legumese Environment-Friendly Animal Feed: Life Cycle Assessment of Pork, Chicken Meat, Egg and Milk Production. Grain legumes Integrated Project Report, Agroscope Reckenholz-Tänikon Research Station ART, Zürich, 2008. Cerca con Google

• Beauchemin, K.A., H.H. Janzen, S.M. Little, T.A. McAllister and S.M. McGinn. Life cycle assessment of greenhouse gas emissions from beef production in western Canada: a case study. 2010, Agric. Syst. 103, 371-379. Cerca con Google

• Bengtsson J., Angelstam P., Elmquvist T., Emanuelsson U., Forbes C., Ihse M. et al.. Reserves, resilience and dynamic landscapes, 2003, Ambio, 32: 389–396. Cerca con Google

• Bengtsson, J., Seddon, J.. Cradle to retailer or quick service restaurant gate life cycle assessment of chicken products in Australia. J. Clean. 2013, Prod. 41, 291e300. Cerca con Google

• Block Agri-footprint BV.. Agri-Footprint – Part 1 – Methodology and basic principles – Version D1.0. Gouda, the Netherlands. 2014 Cerca con Google

• Block Agri-footprint BV. Agri-Footprint – Part 2 – Description of data – Version D1.0. Gouda, the Netherlands. 2014 Cerca con Google

• Boggia, A., L. Paolotti, and C. Castellini. Environmental impact evaluation of conventional, organic and organic-plus poultry production systems using life cycle assessment. 2010, World’s Poult. Sci. J. 66, 95 e 114. Cerca con Google

• BorsamercidiModena.http://www.borsamercimodena.it/Listino.asp?tip=1&nomegr=OVINI,+CAPRINI,+VOLATILI++VIVI,++UOVA++ Vai! Cerca con Google

E++CONIGLI&idgr=11. 2017 Cerca con Google

• Bouwman A.F. and van Vuuren D.P. Global assessment of acidification and eutrophication of natural ecosystems. RIVM report 402001012. Bilthoven, the Netherlands National Institute of Public Health and the Environment (RIVM). 1999, p. 51. Cerca con Google

• Brunetti M., Maugeri M., Monti F., Nanni T. Temperature and precipitation variability in Italy in the last two centuries from homogenised instrumental time series. 2005 Cerca con Google

• BSI. PAS 2050-1: 2012 Assessment of life cycle greenhouse gas emissions from horticultural products. BSI. Cerca con Google

• BSI.. Environmental management: Life cycle assessment - Principles and framework. Accessed Oct. 18, 2011. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=37456. 2006 Vai! Cerca con Google

• Cancila E. Indagine sul livello di consapevolezza: progetto LIFE 08 INF/IT/312 PROMISE. 2010 Cerca con Google

• Carlile, F.S. Ammonia in poultry house: A literature review. 1984, World’s Poult. Sci. J. 40, 99–113. Cerca con Google

• Carlson, T. N. and Ripley, D. A. On the Relation between NDVI, Fractional Vegetation Cover, and Leaf Area Index. Remote. 1997 , Sensing of Environent 62:241-256. Cerca con Google

• Carlsson-Kanyama, A. Climate change and dietary choices — how can emissions of greenhouse gases from food consumption be reduced? 1998, Food Policy 23, 277293Biology 20, 1595–1603. Cerca con Google

• Carpenter S.R., Caraco N.F., Correll D.L., Howarth R.W., Sharpley A.N.,Smith V.H. Nonpoint pollution of surface waters with phosphorus and nitrogen.. 1998, Ecol. Appl. 8(3): 559- 568. Cerca con Google

• Castanheira, E.G., Dias, A.C., Arroja, L., Amaro, R. The environmental perfor-mance of milkproductiononatypicalPortuguesedairyfarm. Cerca con Google

2010, Agric.Syst.103,498-507. Cerca con Google

• Castrignanò, A., Katerji, N., Karam, F., Mastrorilli, M. and Hamdy, A. A modified version of CERES-Maize model for predicting crop response to salinity stress. 1998, Ecological Modelling 111:107-120. Cerca con Google

• Cedeberg, C. and M. Stadig. System expansion and allocation in life cycle assessment of milk and beef production. 2003, Int. J. Life Cycle Assess. 8, 350-356. Cerca con Google

• Centraal veevoederbureau. 2010, Grondstoffenlijst CVB. Cerca con Google

• Cerolini S.. Avicoltura, Allevamento del pollo da carne. In: I. Romboli, M. MarzoniFecia di Cossato, A. Schiavone, L. Zaniboni, S. Cerolini (eds.). 2008, Avicoltura e Coniglicoltura. Le Point VeterinaireItalie, Milano, Italy. pp. 279-295. Cerca con Google

• Cerolini S.. Avicoltura, Avicoltura intensiva e statistiche di produzione. In: I. Romboli, M. MarzoniFecia di Cossato, A. Schiavone, L. Zaniboni, S. Cerolini (eds.). 2008, Avicoltura e Coniglicoltura. Le Point VeterinaireItalie, Milano, Italy. pp. 13-23. Cerca con Google

• Chiang, S. H.; Hsieh, W. M. Effect of direct-fed microorganisms on broiler growth performance and litter ammonia level. Asian-Aust. J. Anim. Sci. 1995, 8.2: 159-162. Cerca con Google

• Choudhury, J. K., Ahmed, N. U., Sherwood B., Idso, B. V., Reginato, R. J., and Daughtry, J. S. T.. Relations between Evaporation Coefficients and Vegetation Indices Studied by Model Simulations. 1994, Remote Sensing of Environment 50:1-17. Cerca con Google

• Ciolos D., Eur. Comm. Agric. Rural Dev.. EuropeanUnionhttp://europa.eu/rapid/press-release_SPEECH-12-480_en.htm(accessed March 2013). 2012 Vai! Cerca con Google

• Cobb-Vantress. Available: www.cobb-vantress.com. 2014, (Login July 2014). Vai! Cerca con Google

• Coldiretti. Dossier Zootecnia. 2003 Cerca con Google

• Collins W.A. and Qualset C.O.. Biodiversity in Agroecosystems. CRC Press, Boca Raton, USA. 1999 Cerca con Google

• Cotterill, O.J., and Winter, A.R. Some nitrogen studies on built-up litter. 1953, Poult. Sci. 12, 365–366. Cerca con Google

• Da Silva J.V.P., S. Soares and R. De Alvareng. Cradle to gate study of two differing Brazilian poultry production systems. In: 6th International Conference on LCA in the Agri-Food Sector. Zurich. 2008. Cerca con Google

• Da Silva, V.P.J., Cherubini, E., Soares, S.R. Comparison of two production scenarios of chickens consumed in France. In: Corson, M.S., van der Werf, H.M.G. (Eds.), Proceedings of the 8th International Conference on Life Cycle Assessment in the Agri-Food Sector (LCA Food 2012), 1e4 October 2012. INRA, Rennes, France, pp. 542e547. Saint Malo, France. Cerca con Google

• Davis J, Sonesson U. Life cycle assessment of integrated food chains—a Swedish case study of two chicken meals. Int J Life Cycle Ass. Cerca con Google

2008, 13:574-84. Cerca con Google

• Deaton, J. W., F. N. Reece, and B. D. Lott. Effect of atmospheric ammonia on pullets at point of lay. 1984, Poult. Sci. 63:384–385. Cerca con Google

• DeJonge, K. C., Kaleita, A. L. and Thorp, K. L. Simulating the effects of spatially variable irrigation on corn yields, costs, and revenue in Iowa. 2007. Agric. Water Manage. 92 : 99 – 109. Cerca con Google

• Dente, A., Satalino, F. M. and Rinaldi, M. Assimilation of leaf area index derived from ASAR and MERIS data into CERES-Wheat model to map wheat yield. 2008, Remote Sens. Environ. 112: 1395–1407. Cerca con Google

• Dewes, T.. Effect of pH. temperature, amount of litter and storage density on ammonia emissions from stable manure. 1996, J. Agric. Sci. Cerca con Google

127:501-509. Cerca con Google

• Djekic I, J. Miocinovic, I. Tomasevic, N. Smigic and N. Tomic. Environmental life-cycle assessment of various dairy products. 1998, J Clean Prod. 68:64-72. Cerca con Google

• Do, J. C.; Choi, I. H.; Nahm, K. H. Effects of chemically amended litter on broiler performances, atmospheric ammonia concentration, and phosphorus solubility in litter. Poultry science. 2005, 84.5: 679-686. Cerca con Google

• Dones, R., Bauer, C., Bolliger, R., Burger, B., Faist Emmenegger, M., Frischknecht, R.,Heck, T., Jungbluth, N., Röder, A., Tuchschmid, M.. Life Cycle Inventories of Energy Systems: Results for Current Systems in Switzerland and Other UCTE Countries. Paul Scherrer Institut Villigen, Swiss Centre for Life Cycle Inventories, Dübendorf, Switzerland. Ecoinvent Report No. 5. 2007 Cerca con Google

• Dorigo, W. A., Zurita-Milla, R., de Wit, A.J.W., Brazile, J., Singh, R. and Schaepman, M.E. A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling. 2007, Int. J. Appl. Earth Obs. Geoinf., 9 (2): 165–193. Cerca con Google

• Eide Mh. Life cycle assessment (LCA) of industrial milk production. 2002, Int J Life Cycle Ass. 7:115-26. Cerca con Google

• Endo, Tsuyoshi; Nakano, Masuo. Influence of a probiotic on productivity, meat components, lipid metabolism, caecal flora and metabolites, and raising environment in broiler production. Nihon Chikusan Gakkaiho. 1999, 70.4: 207-218. Cerca con Google

• European Commission. Integrated Pollution Prevention and Control (IPPC). Reference Document on Best Available Techniques for Intensive Rearing of Poultry and Pigs. 2003 Cerca con Google

• European Commission. The Meat Sector in the European Union. http://ec.europa.eu/agriculture/publi/fact/meat/2004_en.pdf (accessed June 2013). 2004 Vai! Cerca con Google

• European Commission,. The Meat Sector in the EuropeanUnion.http://ec.europa.eu/agriculture/publi/fact/meat/2004_en.pdf(accessed June 2013). 2004 Vai! Cerca con Google

• European Commission. Integrated Pollution Prevention and Control (IPPC). Reference Document on Best Available Techniques for Intensive Rearing of Poultry and Pigs. 2003 Cerca con Google

• Eurostat, Regions of the European Union. A statistical portrait. 2009 Cerca con Google

• Fang, H., Liang, S. and Hoogemboom, G. Integration of MODIS LAI and vegetation index products with the CSM–CERES–Maize model for corn yield estimation. 2011, International Journal of Remote Sensing 32: 1039, 1065. Cerca con Google

• FAO. World Agriculture: Towards 2015/2030. FAO, Rome, Italy. 2002. Cerca con Google

• FAO. Livestock’s long shadows. 2006 Cerca con Google

• FAO. Responding to the livestock revolution – the case for livestock public policies. Livestock Policy Brief 01. Livestock Information, Sector Analysis and Policy Branch, animal Production and Health Division, Food and Agriculture Organization of the United Nations, Rome. 2006 Cerca con Google

• FAO. FAOstat trade statistics. Retrieved from faostat.fao.org/. 2013 Cerca con Google

• FAOSTAT. Electronic Database of the Food and Agriculture Organization. http://faostat.fao.org/. 2009 Vai! Cerca con Google

• Fiala N. Meeting the demand: An estimation of potential future greenhouse gas emissions from meat production. 2008, Ecol Econ. Cerca con Google

67:412-19. Cerca con Google

• Flachowsky, G.. Efficiency of energy and nutrient use in the production of edible protein of animal origin. 2002, J. Appl. Anim. Res. 22 (1), 1–24. Cerca con Google

• Fletcher D.L.. Further processing of poultry. In: G.C. Mead (ed.) PoultryMeat Processing and Quality. 2004, CRC Press, Florida. pp. 108- 134. Cerca con Google

• Frischknecht R., Jungbluth N., et al. Implementation of Life Cycle Assessment Methods. Final report ecoinvent 2000, Swiss Centre for LCI. Duebendorf, CH, www.ecoinvent.ch. 2003) Vai! Cerca con Google

• Gibson, G. R., and M. B. Roberfroid. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. 1995, J. Nutr. 125:1401–1412. Cerca con Google

• Gibson, G. R., and R. Fuller. Aspects of in vitro and in vivo research approachesdirected toward identifying probiotics and prebiotics for human use. 2000, J. Nutr. 130:391S–395S. Cerca con Google

• Gil De Los Santos, J. R.; Storch, O. B.; Gil-Turnes, C. Bacillus cereus var. toyoii and Saccharomyces boulardii increased feed efficiency in broilers infected with Salmonella enteritidis. British poultry science. 2005, 46.4: 494-497. Cerca con Google

• Gitelson, A. A., Viña, A., Arkebauer, T. J., Rundquist, D. C., Keydan, G.and Leavitt, B. Remote estimation of leaf area index and green leaf biomass in maize canopies. 2003, Geophysical Research Letters, 30, 1248. Cerca con Google

• Giuliacci M. and Corazzon P. (a cura di). Manuale di meteorologia. 2005, Edizioni Alpha Test Cerca con Google

• Godwin, R. J., Wood, G.A., Taylor, J. C., Knight, S. M. and Welsh, J .P. Precision farming of cereal crops: a review of a six year experiment to develop management guidelines. 2003, Biosystem Engineering 84:375-391. Cerca con Google

• Gonzalez-Garcia S., Gomez-Fernandez Z., Claudia Dias A., Feijoo G., Moreira T., Arrojia L.. Life Cycle Assessment of broiler chicken production: a Portuguese case study. 2013, Journal of Cleaner Production 74 Cerca con Google

• Goovaerts, P. Geostatistics for Natural Resources Evaluation. Oxford University Press, New York. 1997. Cerca con Google

• Goovaerts, P. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. 2000, Journal of Hydrology 228: 113–129. Cerca con Google

• Grandl F, Alig M, Mieleitner J, Nemecek T, Gaillard G. Environmental impacts of different pork and chicken meat production systems in Switzerland and selected import sources. In: 8th International Conference on LCA in the Agri-Food Sector, INRA, Saint-Malo, France. 2012, p. 554-59. Cerca con Google

• Grubbs, R.B. Bacteria supplimentation what it can and can’t do. Paper presented at the 9th Eng. Foundation Conf. in Environ. Eng. in the Food Processing Ind., Pacific Grove, CA. 27 Feb. 1979, ASCE, Reston, VA. Cerca con Google

• Guinée, J.B., Gorrée, M., Heijungs, R., Huppes, G., Kleijn, R., de Koning, A., van Oers, L., Wegener Sleeswijk, A., Suh, S., Udo de Haes, H.A., de Bruijn, H., van Duin, R., Huijbregts, M.A.J., Lindeijer, E., Roorda, A.A.H., van der Ven, B.L., Weidema, B.P. (Eds.). 2002, Handbook on Life Cycle Assessment; Operational Guide to the ISO Standards.InstituteforEnvironmentalSciences, Leiden, The Netherlands. Cerca con Google

• Guinée, J.B., Gorrée, M., Heijungs, R., Huppes, G., Kleijn, R., de Koning, A., van Oers, L., Wegener, A., Suh, S., Udo de Haes, H.A.. Cerca con Google

2001, Life Cycle Assessment: an Operational Guide to the ISO Standards. Centre of Environmental Science, Leiden, The Netherlands. Cerca con Google

• Gusils, C., S. N. Gonzales, and G. Oliver. Some probiotic properties of chicken lactobacilli. Can. 1999, J. Microbiol. 45:981– 987. Cerca con Google

• Havenstein G.B., Ferket P.R., Qureshi M.A.. Growth, livability, and feedconversion on 1957 versus 2001 broilerswhenfedrepresentative 1957 and 2001 broilerdiets. 2003, Poultry Science 82: 15001508. Cerca con Google

• He J., Jones J. W., Graham W. D., Dukers M. D. Influence of likelihood function choice for estimating crop model parameters using the generalized likelihood uncertainty estimation method. 2010, Agricultural Systems 103: 256–264 Cerca con Google

• Heege, H.J., Reush, S. and Thiessen, E. Prospects and results for optical systems for site-specific on-the-go control of nitrogen-top- dressing in Germany. 2008, Precision Agric 9: 115 – 131. Cerca con Google

• HERNÀNDEZ P., GONDRET F.. Rabbitmeatquality. In: L. Maertens, P. Coudert(eds.) RecentAdvances in RabbitSciences. 2006, ILVO, Melle Belgium. pp. 269-290. Cerca con Google

• Hodges, T., Botner, D., Sakamoto, C. and Hayshaung, J. Using the CERES-Maize model to estimate production for the U.S. Corn Belt. Cerca con Google

1987, Agricultural and Forest Metereology 40:293-303. Cerca con Google

• Homidan, A. AL; Robertson, J. F.; Petchey, A. M. Review of the effect of ammonia and dust concentrations on broiler performance. Cerca con Google

World's Poultry Science Journal. 2003, 59.3: 340-349. Cerca con Google

• Hong, N., White, J. G., Weisz, R., Crozier, C. R., Gumpertz, M. L. and Cassel, D. K. Remote sensing-informed variable-rate nitrogen management of wheat and corn: agronomic and groundwater outcomes. 2006, Agronomy Journal 98:327338. Cerca con Google

• Hongmin D., J. Mangino, T.A. McAllister, J.L. Hatfield, D.E. Johnson, K.R. Lassey, M. Aparecida de Lima, and A. Romanovskaya. Cerca con Google

2006. IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use. Chapter 10: Emissions from Livestock and Manure Management. Cerca con Google

• Hooda P.S., Truesdale V.W., Edwards A.C., Withers P.J.A., Aitken M.N., Miller A., Rendell A.R.. Manuring and fertilization effects on phosphorus accumulation in soils and potential environmental implications. 2001, Adv Environ Res 5:13-21 Cerca con Google

• Hoogenboom, G., Jones, J. W., Wilkens, P. W., Porter, C. H., Boote, K. J., Hunt, L. A., Singh, U., Lizaso, J. L., White, J. W., Uryasev, O., Royce, F. S., Ogoshi, R., Gijsman, A. J., Tsuji, G. Y., and Koo, J. 2012, Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.5 [CD-ROM]. University of Hawaii, Honolulu, Hawaii. Cerca con Google

• Hospido, A., M.T. Moreira and G. Feijoo. Simplified life cycle assessment of Galician milk production. 2003, Int. Diary J. 13, 783-796. Cerca con Google

• http://eplca.jrc.ec.europa.eu/ELCD3/datasetdetail/process.xhtml?uuid=ce82b33c-ea98-4ba2-b7cd-1838deff792d. Electricity Vai! Cerca con Google

• http://lca.jrc.ec.europa.eu/lcainfohub/datasets/elcd/processes/db009013-338f-11dd-bd11-0800200c9a66.xml. Drinking water Vai! Cerca con Google

• Huff, w.E., G.W. Malone, and G.W. Chaloupka. Effect of litter treatment on broiler performance and certain litter quality parameters. Cerca con Google

1984, Poult. Sci. 63:2167-2171. Cerca con Google

• Ines, A.V. M., Das. N.N., Hansen, J.W. and Njoku. E.J. Assimilation of remotely sensed soil moisture and vegetation with a crop simulation model for maize yield prediction. 2013, Remote Sens. Environ. 138: 149–164. Cerca con Google

• IPCC. Climate Change 2007. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. 2007a. Cerca con Google

• IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use. Chapter 10: Emissions from Livestock and Manure Management. Hongmin Dong, Joe Mangino, Tim A. McAllister, Jerry L. Hatfield, Donald E. Johnson, Keith Cerca con Google

R. Lassey, Magda Aparecida de Lima, and Anna Romanovskaya. 2006. Cerca con Google

• IPCC. IPCC Third Assessment Report: Climate Change. 2001 Cerca con Google

• IPCC. Integrated Pollution Prevention and Control, Best Available Techniques for Intensive Rearing of Cattle. 2007 Cerca con Google

• ISO. ISO 14025. Environmental labels and declarations – Type III environmental declarations – Principles and procedures. International Organization for Standardisation. Geneva. 2006a. Cerca con Google

• ISO. ISO 14040. Environmental management. Life cycle assessment – Principle and Framework. International Organization for Standardization. Geneva. 2006b. Cerca con Google

• ISO. ISO 14044. Environmental management. Life cycle assessment – Requirements and Guidelines. International Organization for Standardization. Geneva. 2006c. Cerca con Google

• ISO. ISO 14064-1. Greenhouse gases. Part 1: Specification with guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals. International Organization for Standardization. Geneva. 2006d. Cerca con Google

• ISO 14040:2006. Environmental management — Life cycle assessment — Principles and framework, in ISO, Geneva, Switzerland. Cerca con Google

• ISO. Environmental management: Life Cycle Assessment. Principles and framework. (ISO 14040-2006), International Organisation for Standardisation, Geneva, Switzerland. 2006a Cerca con Google

• ISO. Life cycle assessment -- Requirements and guidelines., International Organisation for Standardisation., Geneva, Switzerland. 2006b Cerca con Google

• ISTATd: Tavola AMR13 - Bestiame macellato a carni rosse - (Gennaio - Dicembre) - Anno 2012. Cerca con Google

• Jackson D.L. and Jackson L.J.. The Farm as Natural Habitat. Reconnecting Food Systems with Ecosystems. Island Press, Washington, DC, USA. 2002 Cerca con Google

• Jacobson, L., J. Lorimor, J. Bicudo, and D. Schmidt. Emission control strategies for building sources. Lesson 41 in Livestock and Poultry Environmental Stewardship Curriculum. MidWest Plan Service. Iowa State University, Ames, IA. 2001. Cerca con Google

• James D.W., Kotuby-Amacher J, Anderson GL, Huber DA. Phosphorus mobility in calcareous soils under heavy manuring. 1996, J Environ Qual 25: 770 –775 Cerca con Google

• Jin, L.Z.,Y.W.Ho,N.Abdulla,andS.Jalaludin. Digestive and bacterial enzyme activities in broilers fed diets supplemented with Lactobacillus cultures. 2000, Poult. Sci. 79:886–891. Cerca con Google

• Johnston, N.L., C.L. Quarles, D.J. Faberberg, and D.D. Caveny. Evaluation of yucca saponin on performance and ammonia suppression. Cerca con Google

1981, Poult. Sci. 60:2289. Cerca con Google

• Jones, C.A. and Kiniry, J.R. CERES-Maize: A simulation model of maize growth and development. Texas A&M University Press, College Station, Texas, USA. 1986 Cerca con Google

• Jones, D. D. and Barnes, E. M. Fuzzy composite programming to combine remote sensing and crop models for decision support in Cerca con Google

precision crop management. 2000, Agricultural Systems 65:137-158. Cerca con Google

• K. von Bobrutzki, C. Ammon, W. Berg, M. Fiedler. Quantification of nitrogen balance components in a commercial broiler barn. Czech J. Anim. Sci., 58. 2013 (12): 566–577. Cerca con Google

• Karunakaran, D. Microbial additives to reduce ammonia emission from poultry houses. 2012, In: Proceedings of the Mitigating Air Cerca con Google

• Katajajuuri J.M., J. Grönroos and K. Usva. Environmental impacts and related options for improving the chicken meat supply chain. Cerca con Google

2008, In: 6th International Conference on LCA in the Agri-Food Sector. Zurich. Cerca con Google

• Katajajuuri JM, Grönroos J, Usva K. Environmental impacts and related options for improving the chicken meat supply chain. In: 6th International Conference on LCA in the Agri-Food Sector. Zurich, 2008. Cerca con Google

• Katajajuuri, J.M.. Experiences and Improvement Possibilities e LCA Case Study of Broiler Chicken Production. MTT Agrifood Research Finland, Biotechnology and Food Research, Food Ecology, Jokioinen, Finland. http://www.lcm2007.org/paper/176.pdf (accessed March 2013). 2007 Vai! Cerca con Google

• Kim, W. K., and P. H. Patterson. 2004, Unpublished data. Cerca con Google

• Kist LT, El Moutaqi S, Machado ÊL. Cleaner production in the management of water use at a poultry slaughterhouse of Vale do Taquari, Brazil: a case study. J Clean Prod. 2009, 17:1200-5. Cerca con Google

• Kitai, K., and A. Arakawa. Effect of antibiotics and caprylohydrozamic acid on ammonia gas from chicken excreta. 1979, Br. Poult. Sci. Cerca con Google

20:55. Cerca con Google

• Kithome, M., J. W. Paul, and A. A. Bomke. Reducing nitrogen during simulated composting of poultry manure using adsorbents or chemical amendments. 1999, J. Environ. Qual. 28:194–201. Cerca con Google

• Klein, J., Geilenkirchen, G., Hulskotte, J., Hensema, A., Fortuin, P., & Molnar-in’t Veld, H. Methods for calculating the emissions of transport in the Netherlands April 2012. 2012a Cerca con Google

• Klein, J., Geilenkirchen, G., Hulskotte, J., Hensema, A., Fortuin, P., & Molnar-in’t Veld, H. The emissions of transport in the Netherlands. 2012b Cerca con Google

• Launay, M. and Guerif, M. Assimilating remote sensing data into a crop model to improve predictive performance for spatial applications. Cerca con Google

2005, Agriculture, Ecosystems & Environent 111:321-339 Cerca con Google

• Lefcourt, A.M., and Meisinger, J.J. Effect of adding alum or zeolite to dairy slurry on ammonia volatilization and chemical composition. Cerca con Google

2001. J. Dairy Sci. 84:1814-1821. Cerca con Google

• Leinonen I, Williams A, Wiseman J, Guy J, Kyriazakis I. Predicting the environmental impacts of chicken systems in the United Kingdom through a life cycle assessment: Broiler production systems. Poultry Sci. 2012, 91:8-25. 5. Cerca con Google

• Lesschen J.P., van den Berg M., Westhoek H.J., Witzke H.P., Oenema O.. Greenhouse gas emission profiles of European livestock sectors. 2011, Anim Feed Sci Tech,166– 167: 16– 28 Cerca con Google

• LI, H., et al. Reduction of ammonia emissions from stored laying hen manure through topical application of zeolite, Al+ Clear, Ferix-3, or poultry litter treatment. Journal of Applied Poultry Research. 2008, 17.4: 421-431. Cerca con Google

• Li, S. P.; Zhao, X. J.; Wang, J. Y. Synergy of Astragalus polysaccharides and probiotics (Lactobacillus and Bacillus cereus) on immunity and intestinal microbiota in chicks. Poultry science. 2009, 88.3: 519-525. Cerca con Google

• Li, Weijiong; NI, Yongzhen. Use of effective microorganisms to suppress malodors of poultry manure. Journal of crop production. 2001, 3.1: 215-221. Cerca con Google

• Lim, Joung-Soo, et al. A Bacterial Strain Identified as Bacillus licheniformis using Vitek 2 Effectively Reduced NH 3 Emission from Swine Manure. Journal of Animal Environmental Science. 2015, 21.3: 83-92. Cerca con Google

• Luske, B., &Block, H. Milieueffecten van dierlijke bijproducten (pp. 1-79). Gouda: Block Milieu Advies, Gouda. 2009 Cerca con Google

• Ma, B. L., Morrison M. J. and Dwyer, L. M. Canopy light reflectance and field greenness to assess nitrogen fertilization and yield of corn. Cerca con Google

1996, Agronomy Journal 88:915-920. Cerca con Google

• Ma, H., Huang, J., Zhu, D., Li, J., Su W., Zhang, C. and Fan, J. Estimating regional winter wheat yield by assimilation of time series of HJ-1 CCD NDVI into WOFOST–ACRM model with Ensemble Kalman Filter. Math. Comput. 2013, Model. 58: 753–764. Cerca con Google

• Maas, S.J.. Use of remotely-sensed information in agricultural crop growth models. 1988, Ecol. Model. 41: 247 – 268. Cerca con Google

• Mahli Y. Carbon in the atmosphere and terrestrial biosphere in the 21st century, Phil. 2002, Trans R Soc Lond A 360, 2925–2945 Cerca con Google

• Martin, K.L., Girma, K., Freeman, K.W., Teal, R.K., Tubana, B., Arnall, D.B., Chung, B., Walsh, O., Solie, J.B., Stone, M.L. and Raun., Cerca con Google

W.R. 2007, Expression of variability in corn as influenced by growth stage using optical sensor measurements. Agron. J., 99: 384–389. Cerca con Google

• Matson P.A., Parton W.J., Power A.G., Swift M.J..Agricultural intensification and ecosystem properties. 1997, Science, 277: 504–509. Cerca con Google

• Mccrory, D. F.; Hobbs, P. J. Additives to reduce ammonia and odor emissions from livestock wastes. Journal of environmental quality. Cerca con Google

2001, 30.2: 345-355. Cerca con Google

• McLaughlin A and Mineau P. The impact of agricultural practices on biodiversity. 2005, Agr Ecosyst Environ 55: 201–212 Cerca con Google

• Miao, Y., Mulla, D. J., Batchelor, D.W., Paz, J. O., Robert, P. C and Wiebers, M. Evaluating Management Zone Optimal Nitrogen Rates with a Crop Growth Model. 2006, Agron. J. 98:545–553. Cerca con Google

• Ministry of Agriculture Food and Environment of Spain. Directorate General of Livestock Products. The meat industry of poultry in numbers. Main economic indicators in 2011. http://www.magrama.gob.es (accessed March 2012). 2012 Vai! Cerca con Google

• Moore Jr, P. A., et al. Evaluation of chemical amendments to reduce ammonia volatilization from poultry litter. Poultry Science. 1996, 75.3: 315-320. Cerca con Google

• Moore, P. A., Jr., T. C. Daniel, and D. R. Edwards. Reducing phosphorus runoff and improving poultry production with alum. 1999, Poult. Sci. 78:692–698. Cerca con Google

• Moore, P.A., Jr. T.C. Daniel, D.R. Edwards, and D.M. Miller. Effect of chemical amendments on ammonia volatilization from poultry litter. 1995, J. Environ. Qual. 24:293–300. Cerca con Google

• Mulla, D. J., Bhatti, A. U., Hammond, M. W. and Benson, J. A. A comparison of winter wheat yield and quality under uniform versus spatially variable fertilizer management. 1992, Agriculture, Ecosystems & Environment 38: 01-311. Cerca con Google

• N. Pelletier. Environmental performance in the US broiler poultry sector: Life cycle energy use and greenhouse gas, ozone depleting, acidifying and eutrophying emissions. doi:10 1016/j.agsy. 2008.03.007. Cerca con Google

• NAHM, K. H. Environmental effects of chemical additives used in poultry litter and swine manure. Critical reviews in environmental science and technology. 2005, 35.5: 487-513. Cerca con Google

• Nakaue, H.S., J.K. Koelliker, and M.L. Pierson. Studies with clinoptilolite in poultry: Il. Effect of feeding broilers and the direct application of clinoptilolite (zeolite) on clean and reused broiler litter on broiler performance and house environment. 1981 , Poult. Sci. 60:1221. Cerca con Google

• Nemecek, T., Heil, A., Huguenin, O., Meier, S., Erzinger, S., Blaser, S., Dux, D.,Zimmermann, A.. Life Cycle Inventories of Agricultural ProductionSystems. Final Report Ecoinvent 2000, No. 15 Retrieved from. Agroscope FAL Reckenholz and FAT Taenikon, Swiss Centre for Life Cycle Inventories, Dübendorf, CH.www.ecoinvent.ch. 2004 Vai! Cerca con Google

• Norman, J.M., Jarvis, P.G. Photosynthesis in Sitka Spruce (Picea sitchensis (Bong.) Carr.) V. Radiation penetration theory and a test case of Broiler Chicken Production. MTT Agri food Research Finland, Biotechnology. 1975, J. Appl. Ecol. 12, 839–878 Cerca con Google

• Omer A, Pascual U., Russell N.P.. Biodiversity conservation and productivity in intensive agricultural systems. 2007, J Agr Econ 58, (2): 308–329 Cerca con Google

• Ongley, E.D. Control of water pollution from agriculture. FAO Irrigation and rainage Paper No.55, FAO, Rome. 1996 Cerca con Google

• Ortiz-Monasterio, J. I. and Raun, W. Reduced nitrogen for improved farm income for irrigated spring wheat in the Yaqui Valley, Mexico, using sensor based nitrogen management. Journal of Agricultural Science 145:215-222. paper/176.pdf (accessed March 2013). 2007 Cerca con Google

• Pardo G, Ciruelos A, Lopez N, Gonzalez L, Ramos S, Zufia J. Environment improvement of a chicken product through life cycle assessment methodology. In: 8th Conference on LCA in the Agri-Food Sector, Saint-Malo, France. 2012, p. 86-91. Cerca con Google

• Parkhurst, C.R., P.B. Hamilton, and G.R. Baughman. The use of volatile fatty acids for the control of micro-organisms in pine sawdust litter. 1974, Poult. Sci. 53:801. Cerca con Google

• Pascual, M., M. Hugas, J. I. Badiola, J. M. Monfort, and M. Garriga. Lactobacillus salivarius CTC2197 prevents Salmonella enteritidis colonization in chickens. 1999, Appl. Environ. Microbiol. 65:4981–4986. Cerca con Google

• Patterson, J. A.; Burkholder, K. M. Application of prebiotics and probiotics in poultry production. Poultry science. 2003, 82 .4: 627-631. Cerca con Google

• Patterson, P. H. Management strategies to reduce air emissions: Emphasis—Dust and ammonia. Journal of Applied Poultry Research. Cerca con Google

2005, 14.3: 638-650. Cerca con Google

• Paz, J. O., Batchelor, W. D., Babcock, B .A., Colvin, T. S., Logsdon, S.D., Kaspar, T.C. et al.. Model-based technique to determine variable rate nitrogen for corn. 1999, Agricultural Systems 61:69-75. Cerca con Google

• Pelletier, N.. Environmental performance in the US broiler poultry sector: life cycle energy use and greenhouse gas, ozone depleting, acidifying and eutrophying emissions. 2008, Agric. Syst. 98:67-73. Cerca con Google

• Persson, T., Garcia, Y., Garcia, A., Paz, J, Jones, J. and Hoogenboom, G. Maize ethanol feedstock production and net energy value as affected by climate variability and crop management practices. 2009, Agricultural Systems 100:11-21. Cerca con Google

• Petracci M., Bianchi M., Betti M., Cavani C.. The Europeanperspective on pale, soft, exudativeconditions in poultry. 2009, Poultry Science 88: 1518-1523. Cerca con Google

• Petracci M., Mudalal S., Cavani C.. L15 Meatquality in fast growingbroilerchickens. In: Proc. XIV EuropeanPoultry Conference, 23–27 June 2014, Stavanger, Norway. 2014, pp. 221-233. Cerca con Google

• Pimentel, D., Pimentel, M.. Sustainability of meat-based and plant based diets and the environment. 2003, The American Journal of Clinical Nutrition 78, 660S–663S suppl. Cerca con Google

• PRé Consultants, 2012. http://www.pre.nl/ (Accessed May 2013). Vai! Cerca con Google

• Preismann, T., Petersen, J., Frenken, A., and Schmitz, W. Nitrogen losses from chicken manure in different housing system. In Proc. symp. 10–12 October, Bundesforschungsam-salt fur Landwirschaft, Braunschweig Volkenrode, Germany, eds. H. Dohler and H. Van der Wefhe, pp. 38.1–38.23, 1990. Cerca con Google

• Raes, D., Steduto, P., Hsiao, T. C. and Fereres, E. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: II. Main Algorithms and Software Description. 2009, Agron. J. 101:438–447. Cerca con Google

• Raun, W. R., Solie, J. B., Johnson, J. V., Stone, M. L., Mullen, R. W., Freeman, K. W., et al. Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. 2002, Agronomy Journal 94:815-820. Cerca con Google

• Raun, W. R., Solie, J. B., Stone, M. L., Martin, K. L., Freeman, K. W., Mullen, R. W. et al. Optical sensor-based algorithm for crop nitrogen fertilization. Communications in Soil Science and Plant Analysis. 2005, 36:2759-2781. Cerca con Google

• Reckmann, K., I. Traulsen, J. Krieter. Environmental Impact Assessment e methodology with special emphasis on European pork production. 2012, J. Environ. Manag. 107, 102-109. Cerca con Google

• Reece, F. N., B. J. Bates, and B. D. Lott. Ammonia control in broiler houses. 1979, Poult. Sci. 58:754–755. Cerca con Google

• Reijnders, L., Soret, S.,. Quantification of the environmental impact of different dietary protein choices. 2003, The American Journal of Clinical Nutrition 78, 664S–668S suppl. Cerca con Google

• Richardson, N.J., Shepherd, R., Elliman, N.A.. Current attitudes and future influence on meat consumption in the U.K. 1993, Appetite 21, 41–51 Cerca con Google

• Rockliffe, J. Reducing odours via yucca extract in animal feed:does it help performance too? Poultry Information, Feb. 7. 1991. Cerca con Google

• Roschewitz I. Gabriel D. Tscharntke T. Thies, C.. The effects of landscape complexity on arable weed species diversity in organic and conventional farming. 2005, J Appl Ecol 42: 873-882. Cerca con Google

• Rosenzweig, M.. Win-win Ecology. How the Earth’s species can survive in the midst of human enterprise. Oxford University Press, Oxford, UK. 2003 Cerca con Google

• Rouse, J. W., Haas, R. H., Schell, J.A., Deering, D. W.. Monitoring vegetation systems in the Great Plains with ERTS. In: Third ERTS symposium. 1973, NASA SP-3 51: 309–317. Cerca con Google

• Ruiz- Nogueira, B., Boote, K. J. and Sau, F. Calibration and use of CROPGRO-soybean model for improving soybean management under rainfed conditions. 2001, Agric. Syst. 68:151-173. Cerca con Google

• Rungnapa Tongpool, Neungruothai Phanichavalit, ChantanaYuvaniyama and Thumrongrut Mungcharoen. Improvement of the environmental performance of broiler feeds: a study via lifecycle assessment. 2012, Journal of Cleaner Production 35,16 e 24. Cerca con Google

• Santoso, U., et al. Dried Bacillus subtilis culture reduced ammonia gas release in poultry house. Asian Australasian Journal of Animal Sciences. 1999, 12: 806-809. Cerca con Google

• Santoso, U., et al. Effect of fermented product from Bacillus subtilis on feed conversion efficiency, lipid accumulation and ammonia production in broiler chicks. Asian Australasian Journal of Animal Sciences. 2001, 14.3: 333-337. Cerca con Google

• Schönfeldt H.C., Gibson N.. Changes in the nutrientquality of meat in an obesitycontext. 2008, Meat Science 80: 20-27. Cerca con Google

• Schrezenmeir, J. & De Vrese, M. Probiotics, prebiotics and symbiotics-approaching a definition. 2001, American Journal of Clinical Nutrition, 73: 361S—364S. Cerca con Google

• Schroth G., da Fonseca A.B., Harvey C.A., Gascon C., Vasconcelos H.L., Izac A.M.N.. Agroforestry and Biodiversity Conservation in Tropical Landscapes. Island Press, Washington, USA. 2004 Cerca con Google

• Seedorf, J.,and J.Hartung. Emission of airborne particulates from animal production. Pages 1–16 in 2000 Livestock Farming and the Environ. Workshop Series of Conf. Section of Sustainable Anim. Prod. www.agriculture.de/acms1/conf6/ws4dust.htm. Accessed Dec. 2004. 2000 Vai! Cerca con Google

• Seidl, M. S., Paz, J. O. and Batchelor, W. D. Integrating remotely sensed images to improve spatial crop model calibration. 2000, Paper No. 00-3039, ASAE, St Joseph, USA. Cerca con Google

• Seltzer, W., S.G. Mourn, and T.M. Goldhafi.. A method for the treatment of animal wastes to control ammonia and other odors. 1969, Poult. Sci. 48:1912-1918. Cerca con Google

• Simon, O., A. Jadamus, and W. Vahjen. Probiotic feed additives—effectiveness and expected modes of action. 2001, J. Anim. Feed Sci. Cerca con Google

10:51–67. Cerca con Google

• Sims, J.T., and Luka-McCafferty, N.J. On-farm evaluation of aluminum sulfate (alum) as a poultry litter amendment: Effect on litter properties. J. Environ. Qual. 31, 2066–2073, 2002. Cerca con Google

• Smith, D.R., Moore, P.A., Jr., Griffins, C.L., Daniel, T.C., Edwards, D.R., and Boothe, D.L. Effects of alum and aluminum chloride on phosphorus runoff from swine manure. J. Environ. Qual. 30, 992–998, 2001a. Cerca con Google

• Solie, J. B., Monore, A. D., Raun, W. R. and Stone, M. L. Generalized algorithm for variable-rate nitrogen application in cereal grains. Cerca con Google

2012, Agronomy Journal 104:878-387. Cerca con Google

• Sommer, S.G., and Husted, S.. The chemical, buffer system in raw and digested animal slurry. 1995, J. Agric. Sci. 124:45-53. Cerca con Google

• Steduto, P., Hsiao, T. C., Dirk, R. and Fereres, E. AquaCrop-the FAO crop model to simulate yield response to water: I. Concepts and underlysing principles. 2009, Agronom. J. 101: 426–437. Cerca con Google

• Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M., De Haan, C.. Livestock's long shadow: environmental issues and options. Cerca con Google

FAO, Rome, Italy. 2006 Cerca con Google

• Takai, H., S. Pedersen, J. O. Johnsen, J. H. M. Metz, P. W. G. Groot Koerkamp, G. H. Uenk, V. R. Phillips, M. R. Holden, R. W. Sneath, and J. L. Short. Concentrations and emissions of airborne dust in livestock buildings in Northern Europe. 1998, J. Agric. Eng. Res. 70:59–77. Cerca con Google

• Teal, R. K., Tubana, B., Girma, K., Freeman, K. W., Arnall, D. B., Walsh, O. et al. In-Season Prediction of Corn Grain Yield Potential Using Normalized Difference Vegetation Index. 2006, Agronomy Journal 98:1488-1494. Cerca con Google

• Tellez, G., V. M. Petrone, M. Excorcia, T. Y. Morishita, C. W. Cobb, and L. Villasenor. Evaluation of avian-specific probiotics andSalmonella enteritidis-,Salmonella typhimurium, andSalmonella heidelberg-specificantibodies oncecal colonization andorgan invasion of Salmonellaenteritidis in broilers. 2001, J. Food Prot. 64:287–291. Cerca con Google

• Terzich, M. The effects of sodium bisulfate on poultry house ammonia, litter pH, litter pathogens and insects, and bird performance. Pages 71–74 in Proc. 46th Western Poult. Dis. Conf., Sacramento, CA. 1997 Cerca con Google

• Thies C. and Tscharntke T.. Landscape structure and biological control in agroecosystems. 1999, Science, 285: 893–895. Cerca con Google

• Thorp, K. R. and Bronson, K. F. A model-independent open-source geospatial tool for managing point-based environmental model simulations at multiple spatial locations. 2013, Environmental Modelling & Software 50:26-35. Cerca con Google

• Thorp, K. R., Batchelor, W.D., Paz, J.O., Steward, B.L. and Caragea, P.C. Methodology to link production and environmental risks of precision nitrogen management strategies in corn. 2006, Agric. Syst. 89: 272–298. Cerca con Google

• Thorp, K. R., Hunsaker, D. J. and French, A. N. Assimilating leaf area index estimates from remote sensing into a simulation of a cropping system model. 2010, Transactions of the ASABE 53251-262. Cerca con Google

• Thorp, K. R., Hunsaker, D. J., French, A. N., Bautista, E. and Bronson, K. F. Intregrating geospatial data and cropping system simulation within a geographic information system to analyze spatial seed cotton yield, water use, and irrigation requirements. 2014, Precision Ag. 16:532-557. Cerca con Google

• Thorp, K.R., DeJonge, K.C., Kaleita, A., Batchelor, W.D and Paz, J.O. Methodology for the use of DSSAT models for precision agriculture decision support. Comput. Electron. 2008, Agric. 6 4: 276–285. (APOLLO) Cerca con Google

• Tojo Soler, C. M., Sentelhas, P. C. and Hoogenboom, G. Application of the CSM-CERES-Maize model for planting date evaluation and yield forecasting for maize grown off-season in a subtropical environment. 2007, European Journal of Agronomy 27:165-177. Cerca con Google

• Tscharntke T., Steffan-Dewenter I., Kruess A. & Thies, C.. Contribution of small habitat fragments to conservation of insect communities of grassland-cropland landscapes. 2002, Ecol Appl, 12: 354–363. Cerca con Google

• Ullman, J. L., et al. A review of literature concerning odors, ammonia, and dust from broiler production facilities: 4. Remedial management practices. Journal of applied poultry research. 2004, 13.3: 521-531. Cerca con Google

• Unaitalia: dati comparto avicolo 2013. Available http://www.unaitalia.com/UNAITALIAINFORMA/listacategorie/TabId/204/ArtMID/724/ArticleID/193/UNAITALIA- DATICOMPARTO-AVICOLO-2013-STABILI-PRODUZIONE-E-CONSUMI-COMPLESSIVI-MA-200BOOM-DEL-POLLO-IN-10- ANNI-184.aspx (Login July 2014). 2014 Vai! Cerca con Google

• Usda. National nutrient database for standard reference - Release 21. UnitedStatesDepartment of Agriculture, AgriculturalResearch Service, Washington, DC, USA. 2008 Cerca con Google

• Uslci (U.S. Life Cycle Inventory – LCI) Database. 2013 Cerca con Google

• Van Der Stelt, Bert. Chemical characterization of manure in relation to manure quality as a contribution to a reduced nitrogen emission to the environment. 2007 Cerca con Google

• Vellinga, T.V., H. Block, M. Marinussen, W. Zeist, J. Van, Boer, I.J.M. De and D. Starmans. Methodology used in feedprint: a tool quantifying greenhouse gas emissions of feed production and utilization. 2013 Cerca con Google

• Von Bobrutzki K., C. Ammon, W. Berg, and M. Fiedler. Quantification of nitrogen balance components in a commercial broiler barn. Cerca con Google

Czech 2013, J. Anim. Sci, 58:566–577. Cerca con Google

• Wang, Y., M. Huang, Q. Meng, and Y. Wang. Effects of atmospheric hydrogen sulfide concentration on growth and meat quality in broiler chickens. 2011, Poult. Sci. 90:2409–2414. Cerca con Google

• Wathes, C. M., M. R. Holden, R. W. Sneath, R. P. White, and V.R. Phillips. Concentrations and emissions rates of aerial ammonia, nitrous oxide, methane, carbon dioxide, dust, endotoxin in UK broiler and layer houses. 1997, Br. Poult. Sci. 38:14–28. Cerca con Google

• Weidema, B.P., Wesnae, M., Hermansen, J., Kristensen, I., Halberg, N.. Environmental Improvement Potentials of Meat and Dairy Products. Institute for Prospective Technological Studies, JRC European Commission, Seville, Spain. 2008 Cerca con Google

• Wiedemann, Stephen; Mcgahan, Eugene J.; POAD, Glenn. Using life cycle assessment to quantify the environmental impact of chicken meat production. RIRDC. 2012 Cerca con Google

• Wijaya, H. The usefulness of litter in broiler production. 2000, Poultry Indonesia 237:56-58. Cerca con Google

• Williams AG, Audsley E, Sandars DL Final report to Defra on project ISO205: Determining the environmental burdens and resource use in the production of agricultural and horticultural commodities. Defra, London. 2006 Cerca con Google

• Williams, A.G., E. Audsley and D.L. Sandars. Determining the Environmental Burdens and Resource Use in the Production of Agricultural and Horticultural Commodities. Main Report, Defra Research Project. Cranfield University and Defra. www.cranfield.ac.uk (accessed March 2012). 2006 Vai! Cerca con Google

• Witter, E., and H. Kirchmann. Effects of addition of calcium and magnesium salts on ammonia volatilization during manure decomposition. 1989, Plant Soil 115:53-58. Cerca con Google

• Xia, Z., Z. Wand and R. Huang. Studies on the effects of local zeolite added Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record