Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Baccillieri, Maria Stella (2018) The anatomical features of right atrial cavo-tricuspid isthmus can impact radiofrequency catheter ablation in term of success rate and complications. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document - Accepted Version
6Mb

Abstract (english)

Background: Radiofrequency (RF) catheter ablation targeting the isthmus between the tricuspid annulus and the inferior vena cava (IVC) is the established treatment for typical atrial flutter (AFL) due to its high efficacy. Despite this high success rate, ablation of the cavo-tricuspid isthmus (CTI) can be extremely difficult, due to its highly variable anatomy. The aim of this study is to analyze how and why the great inter-individual variability can influence ablation procedure. Primary endpoint was to evaluate the impact of the underlying CTI anatomy on acute and long-term success rate. Secondary endpoint was to determine any ablation related complication and procedure time.
Methods: Over a period of 54 months, 337 consecutive patients underwent CTI ablation. One 5F decapolar catheter was placed within the coronary sinus (CS) and another 7F multipolar catheter was placed anterior to the crista terminalis at the right free wall close to the tricuspid annulus. CTI anatomy was classified into: (A) simple (flat) CTI, (B) complex (pouch-like recess or concave shape) CTI. Vital parameters, such as arterial blood pressure and oxygen saturation were monitored throughout the entire procedure. All procedures were performed under conscious sedation using boluses of midazolam and fentanyl. Termination ablation was decided when bidirectional block was demonstrated. Ablation was performed using 8 mm-tip catheter with a power limit of 70 W and a target temperature of 60°C. The CTI length was measured as the shortest linear distance between the lower hinge point of the tricuspid annulus and the IVC in the frontal fluoroscopic projection. Outpatient follow-up included 12-lead ECG, and Holter ECG monitoring, scheduled at months 3, 6, and 12.
We also examined 104 formalin-fixed hearts from patients who underwent routine clinical autopsy performed at the Cardiovascular Pathology Unit, University of Padua. Every heart was examined by two independent expert cardiovascular pathologists. The following features were assessed: 1. the length of the central isthmus; 2. the presence of pouch-like recesses; 3. the number of the recesses; 4. the position of the recesses. The histological analysis was performed.
Results:
Ablation: Mean age of all patients was 62.8 ± 10.6 years (range 28 – 84), male was 236 (70%). Deep recesses were found in 37 patients (10.9%) and were not related to aging, gender, left atrial size, and left ventricle ejection fraction (p = NS). Total mean CTI length was 23.3 ± 3.9 mm (range 10 – 35 mm). CTI length was shorter in type A anatomy as compared to type B (22.9 ± 3.2 vs 25.6 ± 6; p = 0.01). The primary endpoint of efficacy, proved by the bidirectional block, was achieved in 99.4% (335/337). Acute ablation failure (n = 2 patients) was associated with a CTI type B anatomy.
Regard to the secondary endpoints, complication occurred in 1 patient (0.29%) with the CTI type B anatomy: a “pop” immediately followed by cardiac tamponade required urgent pericardiocentesis. Total mean procedure time of was 51.6 ± 14.4 minutes, no difference between two groups (p= NS), but CTI bidirectional block was obtained with a significantly longer RF application time in CTI type B anatomy as compared to the type A (8.3 min vs 10.7 min, p = 0.025); that demonstrates ablation is more difficult in case of complex anatomy. During a mean follow-up period of 36.7 ± 17.2 months, 99.7% (334/335) of the patients were free of AFL recurrences. AFL recurred in 1 symptomatic patient with CTI type B anatomy. The patient underwent second ablation procedure. Conduction across the ablation line was demonstrated. Successful ablation was performed. No new recurrences have occurred until this time.
Anatomy: The mean age of the individuals was 67 ± 17 years, with a male prevalence (65%). The mean heart weight was 457 ± 102 g. The length of the central isthmus was 24 ± 4.1 mm (range 15 - 38 mm) without differences between groups (24.1 vs 23.6, p = NS), respectively. The central isthmus in the patients affected by atrial flutter was significantly longer compared to the other cardiac specimens (p < 0.01). In 10 of our cases (9.6%), a sub-Eustachian recess was present. As in the clinical series of patients undergoing ablation, the presence of recesses was not related to aging and gender. The recess was single in the majority of cases (60%) and the most frequent location was the central isthmus (60%). In the 4 cases diagnoses with atrial flutter, no recess was found in the CTI.
The highest number of recesses found in one specimen was 3. The regions with the thinnest muscular wall resulted to be the anterior and middle paraseptal and middle central.
Conclusions: Our investigation with both electrophysiological and anatomical study provides relevant information to clinical practice. Catheter ablation of typical AFL involving the CTI has been confirmed to be a safe, effective, and well-established ablation procedure. Nevertheless, the CTI anatomy impacts ablation parameters, such as RF energy application. Moreover, difficult procedure is also associated with longer length of isthmus. Recesses can complicate ablation, and knowing where they might be present is useful to avoid them. Therefore, success rate and ablation complications can be optimized by a deep knowledge of anatomy and centre experience.

Abstract (italian)

Introduzione: Il trattamento ottimale del flutter atriale (AFL) che si propaga lungo un circuito che comprende anche l’istmo cavo-tricuspidale (CTI) è l’ablazione transcatetere con radiofrequenza (RF) che si è dimostrata essere altamente efficace. Nonostante questa alta percentuale di successo l’ablazione può essere estremamente difficoltosa, a causa dell’anatomia altamente variabile del CTI. Abbiamo condotto uno studio per valutare come questa grande variabilità inter-individuale possa impattare sulla RF. L’obiettivo primario di questo studio era il successo della RF, definito come l’ottenimento del blocco bidirezionale del CTI in acuto. L’obiettivo secondario erano qualsiasi complicanza correlabile alla procedura e il tempo di procedura.
Metodi: Sono stati arruolati 337 pazienti consecutivi in un periodo di 54 mesi. Un catetere decapolare 5F era utilizzato per incannulare il seno coronarico (CS) e un secondo catetere multipolare 7F era posizionato anteriormente alla cresta terminale, nella parete libera dell’atrio destro, vicino all’anulus tricuspidale. L’anatomia del CTI era classificata in: CTI (A) semplice (superficie piatta), CTI (B) complessa (recesso tipo borsa di tabacco o superficie concava). Parametri vitali, come la misurazione della pressione arteriosa e della saturazione di ossigeno, venivano monitorizzati per tutta la procedura. I pazienti venivano sedati usando boli di midazolam e fentanyl. L’ablazione veniva terminata quando era evidente il blocco bidirezionale, usando un catetere 8 mm-tip con il limite di potenza di 70 W e un target di temperatura di 60°C. La lunghezza del CTI era misurata come la distanza lineare più corta tra il punto più basso dell’anulus tricuspidale e la vena cava inferiore, nella proiezione fluoroscopica antero-posteriore. Le visite ambulatoriali durante il follow-up erano programmate a 3, 6 e 12 mesi ed includevano un elettrocardiogramma 12- derivazioni ed un ECG di Holter.
Contemporaneamente abbiamo studiato presso l’Unità di Patologia Cardiovascolare dell’Università di Padova, 104 cuori fissati in formalina di pazienti sottoposti ad autopsia di routine. Ogni cuore è stato esaminato da due esperti patologi cardiovascolari. Sono stati valutati: 1. la lunghezza dell’istmo; 2. la presenza di recessi; 3. il numero di recessi; 4. la posizione dei recessi. E’ stata quindi eseguita l’analisi istologica.
Risultati:
Ablazione: L’età media della nostra popolazione era 62.8 ± 10.6 years (max 84; min 28), i maschi erano 236 (70%). Recessi sono stati trovati in 37 pazienti (10.9%) e il dato non era correlabile all’età, al sesso, alle dimensioni dell’atrio sx, alla frazione di eiezione (p = NS). La lunghezza media totale del CTI era 23.3 ± 3.9 mm (max 35; min 10). Il CTI era più corto nei soggetti con anatomia tipo A quando paragonati a quelli con anatomia tipo B (22.9 ± 3.2 vs 25.6±6; p = 0.01). L’end-point primario di efficacia, dimostrato dal blocco bidirezionale, è stato raggiunto nel 99.4% (335/337). L’insuccesso in acuto dell’ablazione (n = 2 pazienti) era associato ad una anatomia CTI di tipo B.
Riguardo gli obiettivi secondari, è avvenuta una complicanza in 1 paziente (0.29%) con un’anatomia del CTI di tipo B: un “pop” immediatamente seguito da tamponamento cardiaco ha richiesto una pericardiocentesi urgente. Il tempo medio totale della procedura di RF è stato 51.6 ± 14.4 minuti, nessuna differenza trovata tra i 2 gruppi (p= NS), ma il blocco bidirezionale del CTI ha richiesto un tempo di applicazione di RF significativamente più lungo nell’anatomia del CTI di tipo B quando paragonata al tipo A (8.3 min vs 10.7 min, p = 0.025), a dimostrazione che in caso di anatomia complessa, l’ablazione risulta essere più difficoltosa. Durante il periodo di follow-up medio di 36.7 ± 17.2 mesi, il 99.7% (334/335) dei pazienti era libero da recidive di AFL. Nel paziente sintomatico con recidiva di AFL documentata all’ECG di Holter 24 ore e all’ECG 12- derivazioni, è stata dimostrata una ripresa di conduzione lungo la linea di ablazione. E’ stata ripetuta l’ablazione e il paziente non ha più avuto altre recidive.
Anatomia: L'età media degli individui era 67 ± 17 anni, con una prevalenza maschile (65%). Il peso medio del cuore era 457 ± 102 g. La lunghezza dell'istmo centrale era di 24 ± 4.1 mm (range 15 - 38 mm) senza differenze tra i gruppi (24.1 vs 23.6, p = NS), rispettivamente. L'istmo centrale nei pazienti affetti da flutter atriale era significativamente più lungo rispetto agli altri campioni (p<0.01). In 10 dei nostri casi (9.6%), era presente un recesso. Come nella serie clinica di pazienti sottoposti ad ablazione, la presenza di recessi non era correlata all'invecchiamento e al sesso. Il recesso era singolo nella maggior parte dei casi (60%) e la sede più frequente era l'istmo centrale (60%). Nei 4 cuori con diagnosi pregressa di flutter atriale, nessun recesso è stato trovato. Il numero più alto di recessi trovati in un campione era 3. Le regioni con la parete muscolare più sottile sono risultati essere l'anteriore, la parasettale mediale e la medio-centrale.
Conclusioni: La nostra ricerca con studio elettrofisiologico ed anatomico ha fornito informazioni rilevanti per la pratica clinica. L'ablazione transcatetere dell'AFL tipico che coinvolge il CTI è stata confermata essere una procedura di ablazione sicura, efficace e consolidata. L'anatomia del CTI impatta sui parametri di ablazione, come l'applicazione di energia di RF. Inoltre, la procedura difficile è stata associata anche alla lunghezza maggiore dell'istmo. I recessi possono complicare l’ablazione, e sapere dove potrebbero essere presenti è utile per evitarle. Pertanto, nella nostra opinione, il tasso di successo e le complicazioni di ablazione possono essere ottimizzate da una profonda conoscenza dell'anatomia e dell'esperienza del centro.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Baccillieri, Maria Stella
Ph.D. course:Ciclo 29 > Corsi 29 > SCIENZE MEDICHE, CLINICHE E SPERIMENTALI
Data di deposito della tesi:17 June 2018
Anno di Pubblicazione:26 April 2018
Key Words:Anatomia dell'istmo cavo-tricuspidale e ablazione del flutter atriale / Cavo-tricuspid isthmus anatomy and atrial flutter ablation
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/11 Malattie dell'apparato cardiovascolare
Area 06 - Scienze mediche > MED/08 Anatomia patologica
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Cardiologiche, Toraciche e Vascolari
Istituti > Istituto di Anatomia Patologica
Codice ID:11252
Depositato il:08 Nov 2018 10:53
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Einthoven W. The telecardiogramme. Arch Internat Physiol 1906;4:132–141. Cerca con Google

2. Lewis T. Observations upon a curious and not uncommon form of extreme acceleration of the Cerca con Google

auricle: atrial flutter. Heart 1913;4:171–178. Cerca con Google

3. Lewis T, Drury AN, Iliesc TT. A demonstration of circus movement in clinical flutter of the auricles. Heart 1921;8:341. Cerca con Google

4. Puech P, Latour H, Grolleau R. Le flutter et seslimites. Arch Mal Coeur 1970;61:116–124. Cerca con Google

5. Waldo AL, MacLean WAH, Karp RB, et al. Entrainment and interruption of atrial flutter with atrial pacing: studies in man following open heart surgery. Circulation 1977;56:737–744. Cerca con Google

6. Allessie MA. Lammers W, Bonke FIM, et al. Intra-atrial reentry as a mechanism for atrial flutter by acetylcholine and rapid pacing in the dog. Circulation 1984;70:123-131. Cerca con Google

7. Boineau JP. Atrial flutter: a synthesis of concepts. Circulation 1985;72:249-257. Cerca con Google

8. Disertori M, Inama G, Vergara C, et al. Evidence of a reentry circuit in the common type of atrial flutter in man. Circulation 1983;67:434-440. Cerca con Google

9. Frame LH, Page RL, Hoffman BF. Atrial reentry around an anatomic barrier with a partially refractory excitable gap. A canine model of atrial flutter, Circ Res 1986; 58:495-511. Cerca con Google

10. Olshansky B, Okumura K, Hess PG, et al. Demonstration of an area of slow conduction in human atrial flutter. J Am Coll Cardiol 1990;16:1639-1648. Cerca con Google

11. Cosio FG, López-Gil M, Goicolea A, et al. Radiofrequency ablation of the inferior vena cava- tricuspid valve isthmus in common atrial flutter. Am J Cardiol 1993;71(8):705–709. Cerca con Google

12. FischerB,HaissaguerreM,GarriguesS,etal.Radiofrequencycatheterablationofcommonatrial flutter in 80 patients. Journal of the American College of Cardiology. 1995;25:1365–1372. Cerca con Google

13. Saoudi N, Cosio F, Waldo A, et al. Classification of atrial flutter and regular atrial tachycardia according to electrophysiologic mechanism and anatomic bases: a statement from a joint expert group from the Working Group of Arrhythmias of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. J Cardiovasc Electrophysiol 2001;12:852–66. Cerca con Google

14. Cauchemez B, Haissaguerre M, Fischer B, et al. Electrophysiological effects of catheter ablation of inferior vena cava-tricuspid annulus isthmus in common atrial flutter. Circulation 1996; 93:284– 294. Cerca con Google

15. Tai CT and Chen SA. Cavotricuspid Isthmus: Anatomy, Electrophysiology, and Long-Term Outcome of Radiofrequency Ablation. PACE 2009; 32:1591–1595. Cerca con Google

16. Cabrera JA, Sanchez-Quintana D, Farre J, et al. The inferior right atrial isthmus: Further architectural insights for current and coming ablation technologies. J Cardiovasc Electrophysiol 2005;16:402–408. Cerca con Google

17. Waki K, Saito T, Becker AE. Right atrial flutter isthmus revisited: Normal anatomy favors nonuniform anisotropic conduction. J Cardiovasc Electrophysiol 2000;11:90–94. Cerca con Google

18. Cabrera JA, Sanchez-Quintana D, Ho SY, et al. The Architecture of the Atrial Musculature Between the Orifice of the Inferior Caval Vein and the Tricuspid Valve: The Anatomy ofthe Isthmus. J Cardiovasc Electrophysiol 1998; 9:1186-1195. Cerca con Google

19. Cabrera JA, Sanchez-Quintana D, Ho SY, et al. Angiographic anatomy of the inferior right atrial isthmus in pts with and without history of common atrial flutter. Circulation 1999;99(23): 3017–3023. Cerca con Google

20. Saremi F, Pourzand L, Krishnan S, et al. Right atrial cavotricuspid isthmus: Anatomic characterization with multi-detector row CT. Radiology 2008;247:658–668. Cerca con Google

21. Lim KT, Murray C, Liu H, et al. Preablation magnetic resonance imaging of the cavotricuspid isthmus. Europace 2007;9:149–153. Cerca con Google

22. Scaglione M, Caponi D, Di Donna P, et al. Typical atrial flutter ablation outcome: Correlation with isthmus anatomy using intracardiac echo 3D re-construction. Europace 2004;6:407–417. Cerca con Google

23. ChangSL,TaiCT,LinYJ,etal.Theelectroanatomiccharacteristicsofthecavotricuspidisthmus: Implications for the catheter ablation of atrial flutter. J Cardiovasc Electrophysiol 2007; 18:18–22. Cerca con Google

24. Balaji S, Johnson TB, Sade RM, et al. Management of atrial flutter after the Fontan procedure. J Am Coll Cardiol 1994;23:1209-1215. Cerca con Google

25. Flack NJ, Zosmer N, Bennett PR, et al. Amiodarone given by three routes to terminate fetal atrial flutter associated with severe hydrops. Obstet. Gynecol. 1993;82 (4 Pt. 2, Suppl.):714-716. Cerca con Google

26. Chang, JS, Chen VC, Tsai CH, et al. Successful conversion of fetal atrial flutter with digoxin: Report of one case. Acta Paediatr Sin 1994;35:229-234. Cerca con Google

27. Wellens HJ. Contemporary management of atrial flutter. Circulation 2002;106 (6):649-652. Cerca con Google

28. Naccarelli GV, Varker H, Lin J, et al. Increasing Prevalence of Atrial Fibrillation and Flutter in the United States. Am J Cardiol 2009; 104:1534–1539. Cerca con Google

29. Wellens HJ. Contemporary management of atrial flutter. Circulation 2002;106:649–652. Cerca con Google

30. ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS.The Task Force for the management of atrial fibrillation of the European Society of Cardiology (ESC). Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Endorsed by the European Stroke Organization (ESO). European Heart Journal 2016;37:2893–2962. Cerca con Google

31. AHA/ACC/HRS Guideline for the Management of Pts With Atrial Fibrillation: Executive Summary. A Report of the American College of Cardiology/American Heart Association Task Cerca con Google

Force on Practice Guidelines and the Heart Rhythm Society. J Am CollCardiol 2014;64 (21):e1- e76. Cerca con Google

32. Vadmann H, Nielsen PB, Hjortshoj SP, et al. Atrial flutter and thromboembolic risk: a systematic review. Heart 2015;101:1446–1455. Cerca con Google

33. Bertaglia E, Zoppo F, Bonso A, et al. Long term follow up of radiofrequency catheter ablation of atrial flutter: clinical course and predictors of atrial fibrillation occurrence. Heart 2004;90:59–63. Cerca con Google

34. Seara JG, Roubin SR, Gude-Sampedro F, et al. Risk of atrial fibrillation, stroke, and death after radiofrequency catheter ablation of typical atrial flutter. Clin Res Cardiol 2014;103:543–552. Cerca con Google

35. Brembilla-PerrotB,GirerdN,SellalJM,etal.Riskofatrialfibrillationafteratrialflutterablation: impact of AF history, gender, and antiarrhythmic drug medication. J CardiovascElectrophysiol 2014;25:813–820. Cerca con Google

36. Crijns HJGH, Van Gelder IC, Kingma JH, et al. Atrial flutter can be terminated by a class III antiarrhythmic drug, but not by a class I C drug. Eur Heart J 1994;15:1403–1408. Cerca con Google

37. Tai CT, Chen SA, Chiang C-E, et al. Characterization of low right atrial isthmus as the slow conduction zone and pharmacological target in typical atrial flutter. Circulation 1997;96:2601– 2611. Cerca con Google

38. Cosio FG, Delpon E. New anti-arrhythmic drugs for atrial flutter and atrial fibrillation: a conceptual breakthrough at last? Circulation 2002;105:276–278. Cerca con Google

39. Roden RM. Risks and benefits of antiarrhythmic therapy. N Engl J Med 1994; 331: 785–791. Cerca con Google

40. Bronis K, Metaxa S, Koulouris S, et al: Review of a novel atrial selective antiarrhythmic agent and its place in current treatment of atrial fibrillation. Hosp Chronicles 2012;7:171–181. Cerca con Google

41. Nair M, George LK, Koshy SK. Safety and efficacy of ibutilide in cardioversion of atrial flutter and fibrillation. J Am Board Fam Med 2011;24:86–92. Cerca con Google

42. Volgman AS, Carberry PA, Stambler B, et al. Conversion efficacy and safety of intravenous ibutilide compared with intravenous procainamide in patients with atrial flutter or fibrillation. J Am Coll Cardiol 1998;31:1414–1419. Cerca con Google

43. Vos MA, Golitsyn SR, Stangl K, et al. Superiority of ibutilide (a new class III agent) over DL- sotalol in converting atrial flutter and atrial fibrillation. Heart 1998;79:568–575. Cerca con Google

44. Botteron GW, and Smith JM. Spatial and temporal inhomogeneity of adenosine's effect on atrial refractoriness in humans: Using atrial fibrillation to probe atrial refractoriness. J CardiovascElectrophysiol 1994;5:477-484. Cerca con Google

45. Shettigar UR, Toole JG, Appunn AO. Combined use of esmolol and digoxin in the acute treatment of atrial fibrillation or flutter Am Heart J 1993;126:368-374. Cerca con Google

46. Singh S, Zoble RG, Yellen L, et al. Efficacy and safety of oral dofetilide in converting to and maintaining sinus rhythm in patients with chronic atrial fibrillation or atrial flutter: the symptomatic atrial fibrillation investigative research on dofetilide (SAFIRE-D) study. Circulation 2000;101: 2385– 2390. Cerca con Google

47. Lown B, Amarasingham R, Neuman J. New method for terminating cardiac arrhythmias: use of synchronized capacitor discharge. JAMA 1962;182:548–555. Cerca con Google

48. Fuster V, Ryden LE, Cannom DS, et al. ACC/AHA/ESC Guidelines for the management of pts with atrial fibrillation: executive summary. J Am CollCardiol 2006;48:854–906. Cerca con Google

49. Reisinger J, Gstrein C, Winter T, et al. Optimization of initial energy for cardioversion of atrial tachyarrhythmias with biphasic shocks. Am J Emerg Med 2010;28:159–165. Cerca con Google

50. Pinski SL, Sgarbossa EB, Ching E, et al. Acomparison of 50-J versus 100-J shocks for direct- current cardioversion of atrial flutter. Am Heart J 1999;137:439-442. Cerca con Google

51. Tucker KJ, and Wilson C. A comparison of transesophageal atrial pacing and direct current cardioversion for the termination of atrial flutter: A prospective randomized clinical trial. Br Heart J 1993;69:530-535. Cerca con Google

52. Manolis AS, Dragazis I, Kapelakis I, et al. Transesophageal overdrive pacing: A simple and versatile tool. Hosp Chronicles 2013;8:143–145. Cerca con Google

53. Poulidakis E, Manolis AS. Transvenous temporary cardiac pacing. Rhythmos 2014;9:20–27. Cerca con Google

54. Yoshitake N, Tanoiri T, Nomoto J, et al. Patterns of interruption of atrial flutter induced by rapid atrial pacing. JpnCirc J 1990;58:181-189. Cerca con Google

55. Baeriswyl G, Zimmerman M, and Adamec R. Efficacy of rapid atrial pacing for conversion of atrial flutter in medically treated pts. ClinCardiol 1994;17:246-250. Cerca con Google

56. Cosio FG, Lopez GM, Arribas F, et al. Mechanisms of entrainment of human common flutter studied with multiple endocardial recordings. Circulation 1994;89:2117-2125. Cerca con Google

57. Cochrane AD, Siddins M, Rosenfeldt FL, et al. A comparison of amiodarone and digoxin for treatment of supraventricular arrhythmias after cardiac surgery. Eur J CardiothoracSurg 1994;8: 194- 198. Cerca con Google

58. Crijns, HJ, Van Gelder IC, Lie KI. Benefits and risks of antiarrhythmic drug therapy after DC electrical cardioversion of atrial fibrillation or flutter. Eur Heart J 1994;15 (Suppl. A):17-21. Cerca con Google

59. Till JA, Baxendall M, Benetar A. Acceleration of the ventricular response to atrial flutter by amiodarone in an infant with Wolff-Parkinson-White syndrome. Br Heart J 1993:70:84-87. Cerca con Google

60. Kalman J, Fitzpatrick A, Epstein L, et al. Intracardiac echo identifies the crista terminalis and Eustachian ridge as barriers during Type I atrial flutter in man. PACE 1995;18:857. Cerca con Google

61. Schilling RJ, Peters NS, Goldberger J, et al. Characterization of the anatomy and conduction velocities of the human right atrial flutter circuit determined by noncontact mapping. Journal of the American College of Cardiology 2001;38:385–393. Cerca con Google

62. Shah DC, Jais P, Haissaguerre M, et al. Three-dimensional Mapping of the Common Atrial Flutter Circuit in the Right Atrium. Circulation 1997;96:3904–3912. Cerca con Google

63. Nakagawa H, Lazzara R, Khastgir T, et al. Role of the tricuspid annulus and the eustachian valve/ridge on atrial flutter. Relevance to catheter ablation of the septal isthmus and a new technique for rapid identification of ablation success. Circulation 1996;94(3):407-424. Cerca con Google

64. Waldo AL. Atrial flutter: new directions in management and mechanism. Circulation 1990; 81:1142-1143. Cerca con Google

65. Schoels W, Offner B, Brachmann J, et al. Circus movement atrial flutter in the canine sterile pericarditis model: Relation of characteristics of the surface electrocardiogram and conduction properties of the reentrant pathway. J Am Coll Cardiol 1994;23:799-808. Cerca con Google

66. Ortiz J, Nozaki A, Shimizu A, et al. Mechanism of interruption of atrial flutter by moricizine: Electrophysiological and multiplexing studies in the canine sterile pericarditis model of atrial flutter. Circulation 1994;89:2860-2869. Cerca con Google

67. Lammers WJEP, Ravelli F, Disertori M, et al. Variations in human atrial flutter cycle length induced by ventricular beats: Evidence of a reentrant circuit with a partially excitable gap. J Cardiovasc Electrophysiol 1991;2:375-387. Cerca con Google

68. Ravelli F, Disertori M, Cozzi F, et al. Ventricular beats induce variations in cycle length of rapid (type II) atrial flutter in humans: Evidence of leading circle reentry. Circulation 1994;89: 2107-2116. Cerca con Google

69. Ortiz J, Niwano S, Abe H, et al.: Mapping the conversion of atrial flutter to atrial fibrillation and atrial fibrillation to atrial flutter. Insights into mechanisms. Circ Res 1994;74:882-894. Cerca con Google

70. Pinto JM, Graziano JN, Boyden TA. Endocardial mapping of reentry around an anatomical barrier in the canine right atrium: Observations during the action of the class IC agent, flecainide. J Cardiovasc Electrophysiol 1993;4:672-685. Cerca con Google

71. Shimizu A, Nozaki A, Rudy Y, et al. Characterization of double potentials in a functionally determined reentrant circuit: Multiplexing studies during interruption of atrial flutter in the canine pericarditis model. J Am Coll Cardiol 1993;22:2022-2032. Cerca con Google

72. Scholes W, Kuebler W, Yang H, et al. A unified functional/anatomic substrate for circus movement atrial flutter: Activation and refractory patterns in the canine right atrial enlargement model. J Am Coll Cardiol 1993;21:738-741. Cerca con Google

73. Waxman MB, Yao L, Cameron DA, et al.: Effects of posture, Valsalva maneuver and respiration on atrial flutter rate: An effect mediated through cardiac volume. J Am Coll Cardiol 1991;17:1545- 1552. Cerca con Google

74. Waldo, AL. Atrial flutter: Mechanisms, clinical features, and management. In Zipes DP, and Jalife J. (eds.): Cardiac Electrophysiology: From Cell to Bedside. 2nd ed. Philadelphia, W. B. Saunders Company,1994,p. 666. Cerca con Google

75. Kalbfleisch SJ, el-Atassi R, Calkins H, et al. Association between atrioventricular node reentrant tachycardia and inducible atrial flutter. J Am CollCardiol 1993;22:80-84. Cerca con Google

76. Interian A Jr, Cox MM, Jimenez RA, et al. A shared pathway in atrioventricular nodal reentrant tachycardia and atrial flutter: Implications for pathophysiology and therapy. Am J Cardiol 1993;71:297-303. Cerca con Google

77. Feld GK, Mollerus M, Birgersdotter-Green U, et al. Conduction velocity in the tricuspid valve- inferior vena cava isthmus is slower in patients with type I atrial flutter compared to those without a history of atrial flutter. J Cardiovasc Electrophysiol 1997;8:1338–1348. Cerca con Google

78. Olgin JE, Kalman JM, Saxon LA, et al. Mechanism of initiation of atrial flutter in humans: Site of unidirectional block and direction of rotation. J Am Coll Cardiol 1997;29:376–384. Cerca con Google

79. Waxman MB, Kirsh JA, Yao L, et al. Slowing of the atrial flutter rate during 1:1 atrioventricular conduction in humans and dogs: An effect mediated through atrial pressure and volume. J CardiovascElectrophysiol 1992;3:544-557. Cerca con Google

80. Lesh, MD, Van Hare GF, Epstein LM, et al. Radiofrequency catheter ablation of atrial arrhythmias: Results and mechanisms. Circulation 1994;89:1074-1089. Cerca con Google

81. Epstein LM, Chiesa N, Wong MN, et al. Radiofrequency catheter ablation in the treatment of supraventricular tachycardia in the elderly. J Am CollCardiol 1994;23:1356-1362. Cerca con Google

82. Toboul T, Saoudi N, Atallah G, et al. Catheter ablation for atrial flutter: Current concepts and results. J CardiovascElectrophysiol 1992;3:641-652. Cerca con Google

83. Calkins H, Leon AR, Deam AG, et al.: Catheter ablation of atrial flutter using radiofrequency energy. Am J Cardiol 1994;73:353-356. Cerca con Google

84. Isber N, Restivo M, Gough WB, et al. Circus movement atrial flutter in the canine sterile pericarditis model: Cryothermal termination from the epicardial site of the slow zone of the reentrant circuit. Circulation 1993;87:1649-1660. Cerca con Google

85. Feld GK, Fleck RP, Chen PS, et al. Radiofrequency catheter ablation for the treatment of human type I atrial flutter: Identification of a critical zone in the reentrant circuit by endocardial mapping techniques. Circulation 1992;86:1233-1240. Cerca con Google

86. Scheinman MM, Morady F, Hess DS, et al. Catheter-induced ablation of the atrioventricular junction to control refractory supraventricular arrhythmias. JAMA 1982;248:851–855. Cerca con Google

87. Scheinman MM, Huang S. The 1998 NASPE prospective catheter ablation registry. Pacing and clinical electrophysiology. Pacing ClinElectrophysiol 2000;23:1020–1028. Cerca con Google

88. Guidelines for Clinical Intracardiac Electrophysiological and Catheter Ablation Procedures. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. (Committee on Clinical Intracardiac Electrophysiologic and Catheter Ablation Procedures). Developed in collaboration with the North American Society of Pacing and Electrophysiology. Circulation 1995;92:673–691. Cerca con Google

89. Saoudi N, Atalla HG, Kirkorian G, et al. Catheter ablation of the atrial myocardium in human type I atrial flutter. Circulation 1990;81:762-771. Cerca con Google

90. Cosedis Nielsen J, Johannessen A, Raatikainen P, et al. Radiofrequency ablation as initial therapy in paroxysmal atrial fibrillation. N Engl J Med 2012;367:1587-1595. Cerca con Google

91. Wilber DJ, Pappone C, Neuzil P, et al. ThermoCool AF Trial Investigators. Comparison of antiarrhythmic drug therapy and radiofrequency catheter ablation in pts with paroxysmal atrial fibrillation: a randomized controlled trial. JAMA 2010;303:333–340. Cerca con Google

92. Arbelo E, Brugada J, Hindricks G, et al. Atrial Fibrillation Ablation Pilot Study Investigators. The atrial fibrillation ablation pilot study: a European Survey on Methodology and results of catheter ablation for atrial fibrillation conducted by the European Heart Rhythm Association. Eur Heart J 2014;35:1466–1478. Cerca con Google

93. Calkins H, Reynolds MR, Spector P, et al. Treatment of atrial fibrillation with antiarrhythmic drugs or radiofrequency ablation: two systematic literature reviews and meta-analyses. CircArrhythmElectrophysiol 2009;2:349–361. Cerca con Google

94. Bandini A, Golia P, Caroli E, et al. Atrial fibrillation after typical atrial flutter ablation: a long- term follow-up. J Cardiovasc Med (Hagerstown) 2011;12:110–115. Cerca con Google

95. Dewland TA, Glidden DV, Marcus GM. Healthcare utilization and clinical out- comes after catheter ablation of atrial flutter. PLoS One 2014;9:e100509. Cerca con Google

96. Wazni O, Marrouche NF, Martin DO, et al. Randomized study comparing combined pulmonary vein-left atrial junction disconnection and cavotricuspid isthmus ablation versus pulmonary vein- left atrial junction disconnection alone in pts presenting with typical atrial flutter and atrial fibrillation. Circulation 2003;108(20):2479–2483. Cerca con Google

97. Zipes DP, Di Marco JP, Gillette PC, et al. AHA/ACC guidelines for clinical intracardiac electrophysiologic procedures. Circulation 1995;92:673-691. Cerca con Google

98. Calkins H, Brugada J, Packer DL, et al. HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for personnel, policy, procedures and follow-up. Heart Rhythm 2007;4:816–861. Cerca con Google

99. Bun SS, Latcu DG, Marchlinski F, et al. Atrial flutter: more than just one of a kind. Eur Heart J 2015;36:2356–2363. Cerca con Google

100. Calkins H, Hindricks G, Cappato R, et al. HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm October 2017;14(10):e275-e444. Cerca con Google

101. Klein GJ, Guiraudon GM, Sharma AD, et al. Demonstration of macroreentry and feasibility of operative therapy in the common type of atrial flutter. Am J Cardiol 1986;57:587–591. Cerca con Google

102. Saoudi N, Derumeaux G, Cribier A, et al. The role of catheter ablation techniques in the treatment of classic (type 1) atrial flutter. Pacing Clin Electrophysiol 1991;14(11 Pt 2):2022 -2027. Cerca con Google

103. Poty H, Saoudi N, Aziz AA, et al. Radiofrequency catheter ablation of type 1 atrial flutter. Prediction of late success by electrophysiological criteria. Circulation 1995;92:1389-1392. Cerca con Google

104. Poty H, Saoudi N, Nair M, et al. Radiofrequency catheter ablation of atrial flutter. Further insights into the various types of isthmus block: application to ablation during sinus rhythm. Circulation 1996;94:3204–3213. Cerca con Google

105. Shah DC, Haissaguerre M, Jais P, et al. Atrial flutter: contemporary electrophysiology and catheter ablation. Pacing Clin Electrophysiol 1999;22:344–359. Cerca con Google

106. Tada H, Oral H, Sticherling C, et al. Double potentials along the ablation line as a guide to radiofrequency ablation of typical atrial flutter. J Am Coll Cardiol 2001;38:750–755. Cerca con Google

107. Feld G, Wharton M, Plumb V, et al. EPT- 1000 XP Cardiac Ablation System Investigators. Radiofrequency catheter ablation of type 1 atrial flutter using large-tip 8 or 10 mm electrode catheter and high-output radiofrequency energy genera- tor: Results of a multicenter safety and efficacy study. J Am Coll Cardiol 2004;43:1466–1472. Cerca con Google

108. Costa AD, Cucherat M, Pichon N, et al. Comparison of the efficacy of cooled tip and 8 mm-tip catheters for radiofrequency catheter ablation of the cavotricuspid isthmus: A meta-analysis. Pacing Clin Electrophysiol 2005;28:1081–1087. Cerca con Google

109. Feld Gk, Daubert JP, Weiss R, et al. Cryoablation Atrial Flutter Efficacy Trial Investigators. Acute and long-term efficacy and safety of catheter cryoablation of the cavotricuspid isthmus fro treatment of type 1 atrial flutter. Heart Rhythm 2008;5:1009– 1014. Cerca con Google

110. Waldo AL, Feld GK. Inter-relationships of atrial fibrillation and atrial flutter: mechanisms and clinical implications. J Am CollCardiol. 2008;51:779 –786. Cerca con Google

111. Halligan SC, Gersh BJ, Brown RD, et al. The natural history of lone atrial flutter. Ann Intern Med. 2004;140:265–268. Cerca con Google

112. Moreira W, Timmermans C, Wellens HJJ, et al. Can common-type atrial flutter be a sign of an arrhythmogenic substrate in paroxysmal atrial fibrillation? Clinical and ablative consequences in pts with coexistent paroxysmal atrial fibrillation/flutter. Circulation. 2007;116:2786–2792. Cerca con Google

113. Perez FJ, Schubert CM, Parvez B, et al. Long-term outcomes after catheter ablation of cavo- tricuspid isthmus dependent atrial flutter: a meta-analysis. Circ Arrhythm Electrophysiol 2009;2(4): 393–401. Cerca con Google

114. Schmieder S, Ndrepepa G, Dong J, et al. Acute and long-term results of radiofrequency ablation of common atrial flutter and the influence of the right atrial isthmus ablation on the occurrence of atrial fibrillation. Eur Heart J 2003; 24:956–962. Cerca con Google

115. Esato M, Hindricks G, Sommer P, et al. Color-coded three-dimensional entrainment mapping for analysis and treatment of atrial macro-reentrant tachycardia. Heart Rhythm 2009;6:349–358. Cerca con Google

116. Huo Y, Schoenbauer R, Richter S, et al. Atrial Arrhythmias Following Surgical AF Ablation: Electrophysiological Findings, Ablation Strategies, and Clinical Outcome. J CardiovascElectrophysiol 2014;25:725–738. Cerca con Google

117. Spector P, Reynolds MR, Calkins H, et al. Meta-analysis of ablation of atrial flutter and supraventricular tachycardia. Am J Cardiol 2009;104:671–677. Cerca con Google

118. Crijns HJ, Van Gelder IC, Tieleman RG, et al. Long-term outcome of electrical cardioversion in pts with chronic atrial flutter. Heart 1997;77:56–61. Cerca con Google

119. American College of Cardiology Cardiovascular Technology Assessment Committee: Catheter ablation for cardiac arrhythmias: Clinical applications, personnel and facilities. J Am CollCardiol 1994;24:828-833. Cerca con Google

120. Lesh MD, Van Hare GF. Status of ablation in patient with atrial tachycardia and atrial flutter. PACE 1994;17:1026-1033. Cerca con Google

121. Scheinman MM. Patterns of catheter ablation practice in the United States: Results of the 1992 NASPE survey. North American Society of Pacing and Electrophysiology. PACE1994;17:873-875. Cerca con Google

122. Hindricks G. The Multicenter European Radiofrequency Survey (MERFS): Complications of radiofrequency catheter ablation of arrhythmias. The Multicenter European Radiofrequency Survey (MERFS) Investigators of the Working Group on Arrhythmias of the European Society of Cardiology. Eur Heart J 1993;14:1644-1653. Cerca con Google

123. Kay, GN, Epstein AE, Dailey SM, et al. Role of radiofrequency ablation in the management of supraventricular arrhythmias: Experience in 760 consecutive pts. J CardiovascElectrophysiol 1993; 4:371-389. Cerca con Google

124. Olshansky B, Wilber DJ, Hariman RJ. Atrial flutter: Update on the mechanism and treatment. PACE 1992;15:2308-2335. Cerca con Google

125. Patel NJ, Deshmukh A, Pau D, et al. Contemporary utilization and safety outcomes of catheter ablation of atrial flutter in the United States: Analysis of 89,638 procedures. Heart Rhythm 2016; 13(6):1317–1325. Cerca con Google

126. Natale A, Newby KH, Pisanó E, et al. Prospective randomized comparison of antiarrhythmic therapy versus first-line radiofrequency ablation in pts with atrial flutter. J Am Coll Cardiol 2000; 35(7):1898–1904. Cerca con Google

127. Puech P. Atrial flutter and its limits. In: Bayés A, Cosine J. Diagnosis and treatment of cardiac arrhythmias, Pergamon Press, Oxford, New York, Toronto, Sydney, Paris, Frankfurt, 1980;pp.216- 231. Cerca con Google

128. Tai CT, Chen SA, Chiang CE, et al. Long-term outcome of radiofrequency catheter ablation for typical atrial flutter: Risk prediction of recurrent arrhythmias. J Cardiovasc Electrophysiol 1998;9:115–121. Cerca con Google

129. Paydak H, Kall JG, Burke MC, e al. Atrial fibrillation after radiofrequency ablation of type I atrial flutter: Time to onset, determinants, and clinical course. Circulation 1998;98:315–322. Cerca con Google

130. Calkins H, Canby R, Weiss R, et al. Results of catheter ablation of typical atrial flutter. Am J Cardiol 2004;94:437–442. Cerca con Google

131. Ellis K, Wazni O, Marrouche N, et al. Incidence of atrial fibrillation post-cavotricuspid isthmus ablation in patients with typical atrial flutter: Left atrial size as an independent predictor of atrial fibrillation recurrence. J Cardiovasc Electrophysiol 2007;18:799–802. Cerca con Google

132. Chinitz JS, Gerstenfeld EP, Marchlinski FE, et al. Atrial fibrillation is common after ablation of isolated atrial flutter during long-term follow-up. Heart Rhythm 2007;4:1029–1033. Cerca con Google

133. Santangeli P, Di Biase L, Mohanty P, et al. Catheter ablation of atrial fibrillation in octogenarians: safety and outcomes. J CardiovascElectrophysiol 2012;23:687–693. Cerca con Google

134. Bohnen M, Stevenson WG, Tedrow UB, et al. Incidence and predictors of major complications from contemporary catheter ablation to treat cardiac arrhythmias. Heart Rhythm 2011;8:1661–1666. Cerca con Google

135. Brembilla-PerrotB,FilaliML,ZinziusPY,etal.Isablationofatrialflutteralwayssafe?Pacing ClinElectrophysiol 2012;35:1061–1066. Cerca con Google

136. Deshmukh A, Patel NJ, Pant S, et al. In-hospital complications associated with catheter ablation of atrial fibrillation in the United States between 2000 and 2010: analysis of 93 801 procedures. Circulation 2013;128: 2104–2112. Cerca con Google

137. Gami AS, Edwards WD, Lachman N, et al. Electrophysiological anatomy of typical atrial flutter: the posterior boundary and causes for difficulty with ablation. J Cardiovasc Electrophysiol 2010;21(2):144–149. Cerca con Google

138. Kozöwski D, Hreczecha J, Skwarek M, et al. Diameters of the cavo-sinus-tricuspid area in relation to type I atrial flutter. Folia Morphol (Warsz) 2003;62(2):133–142. Cerca con Google

139. Wang K, Ho SY, Gibson DG, et al. Architecture of atrial musculature in humans. Br Heart J 1995;73(6):559–65. Cerca con Google

140. Heidbüchel H, Willems R, Van Rensburg H, et al. Right atrial angiographic evaluation of the posterior isthmus: relevance for ablation of typical atrial flutter. Circulation 2000;101(18): 2178– 2184. Cerca con Google

141. Marcos-Alberca P , Sanchez-Quintana D, Cabrera JA, et al. T wo-dimensional echocardiographic features of the inferior right atrial isthmus: the role of vestibular thickness in catheter ablation of atrial flutter. European Heart Journal Cardiovascular Imaging 2014;15(1): 32– 40. Cerca con Google

142. Da Costa A, Mourot S, Romeyer-Bouchard C, et al. Anatomic and electrophysiological differences between chronic and paroxysmal forms of common atrial flutter and comparisonwith controls: an observational study. Pacing and Clinical Electrophysiology 2004;27(9):1202–1211. Cerca con Google

143. Anselme F, Klug D, Scanu P, et al. Randomized comparison of two targets in typicalatrial flutter ablation. Am J Cardiol 2000;85(11):1302–1307. Cerca con Google

144. Lin YJ, Tai CT, Liu TY, et al. Electrophysiological mechanisms and catheter ablation of complex atrial arrhythmias from crista terminalis. Pacing Clin Electrophysiol 2004;27 (9):1231– 1239. Cerca con Google

145. Chen JY, Lin KH, Liou YM, et al. Usefulness of pre-procedure cavotricuspid isthmus imaging by modified transthoracic echocardiography for predicting outcome of isthmus-dependent atrial flutter ablation. J Am Soc Echocardiogr 2011;24(10):1148–1155. Cerca con Google

146. Hightower JS, Taylor AG, Ursell PC, et al. The Chiari network: a rare cause of intracardiac guide wire entrapment. Journal of Vascular and Interventional Radiology 2015;26(4):604–606. Cerca con Google

147. Schernthaner C, Haidinger B, Brandt MC, et al. Influence of cavotricuspid isthmus length on total radiofrequency energy to cure right atrial flutter. Kardiol Pol 2016;74(3): 237-243. Cerca con Google

148. Da Costa A, Faure E, Thévenin J, et al. Effect of isthmus anatomy and ablation catheter on radiofrequency catheter ablation of the cavotricuspid isthmus. Circulation 2004;110(9):1030–1035. Cerca con Google

149. Klimek-Piotrowska W, Holda MK, Koziej M, et al. Clinical Anatomy of the Cavotricuspid Isthmus and Terminal Crest. Plos One 2016;1(9):1-16. Cerca con Google

150. Lee SH, Tai CT, Yu WC, et al. Effects of radiofrequency catheter ablation on quality of life in patients with atrial flutter. Am J Cardiol 1999;84:278–283. Cerca con Google

151. Anselme F, Savouré A, Cribier A, et al. Catheter ablation of typical atrial flutter: a randomized comparison of 2 methods for determining complete bi-directional isthmus block. Circulation 2001;103:1434–1439. Cerca con Google

152. Shah DC, Takahashi A, Jaïs P, et al. Local electrogram-based criteria of cavo-tricuspid isthmus block. J Cardiovasc Electrophysiol 1999;10:662–669. Cerca con Google

153. Da Costa A, Romeyer-Bouchard C, Jamon Y, et al. Radiofrequency catheter selection based on cavotricuspid angiography compared with a control group with an externally cooled-tip catheter: a randomized pilot study. J Cardiovasc Electrophysiol 2009;20:492-498. Cerca con Google

154. Da Costa A, Romeyer-Bouchard C, Dauphinot V, et al. Cavotricuspid isthmus angiography predicts atrial flutter ablation efficacy in 281 patients randomized between 8 mm- and externally irrigated-tip catheter. Eur Heart J 2006;27:1833-1840. Cerca con Google

155. Chen J, De Chillou C, Basiouny T, et al. Cavotricuspid isthmus mapping to assess bi- directional block during common atrial flutter radiofrequency ablation. Circulation 1999;100:2507– 2513. Cerca con Google

156. Klug D, Lacroix D, Marquie C, et al. Prospective evaluation of a simplified approach for common atrial flutter radio frequency ablation with only two catheters. Europace. 2001;3:208– 215. Cerca con Google

157. Matsushita T, Chun S, Liem LB, et al. Unidirectional Conduction Block at Cavotricuspid Isthmus Created by Radiofrequency Catheter Ablation in Patients With Typical Atrial Flutter. Journal of Cardiovascular Electrophysiology. 2002;13:1098–1102. Cerca con Google

158. Basso, C., Aguilera, B., Banner, J. et al. Guidelines for autopsy investigation of sudden cardiac death: 2017 update from the Association for European Cardiovascular Pathology. Virchows Arch. 2017; https://doi.org/10.1007/s00428-017-2221-0 Vai! Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record