Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Carrara, Massimiliano - Fassio, Davide (2008) The Knowability Paradox, perfectibility of science and reductionism. In: Reduction and the Special Sciences (2008), April 10-12, 2008, Tilburg, NL. (Inedito)

Full text disponibile come:

[img]
Anteprima
Documento PDF
108Kb

Per gentile concessione di: http://philsci-archive.pitt.edu/archive/00003972/

Abstract (inglese)

A logical argument known as Fitch’s Paradox of Knowability, starting from the assumption that every truth is knowable, leads to the consequence that every truth is also actually known. Then, given the ordinary fact that some true propositions are not actually known, it concludes, by modus tollens, that there are unknowable truths. The main literature on the topic has been focusing on the threat the argument poses to the so called semantic anti-realist theories, which aim to epistemically characterize the notion of truth; according to those theories, every true proposition must be knowable. But the paradox seems to be a problem also for epistemology and philosophy of science: the conclusion of the paradox – the claim that there are unknowable truths – seems to seriously narrow our epistemic possibilities and to constitute a limit for knowledge. This fact contrasts with certain views in philosophy of science according to which every scientific truth is in principle knowable and, at least at an ideal level, a perfected, “all-embracing”, omniscient science is possible.
The main strategies proposed in order to avoid the paradoxical conclusion, given their effectiveness, are able to address only semantic problems, not epistemological ones. However, recently Bernard Linsky (2008) proposed a solution to the paradox that seems to be effective also for the epistemological problems. In particular, he suggested a possible way to block the argument employing a type-distinction of knowledge.
In the present paper, firstly, we introduce the paradox and the threat it represents for a certain views in epistemology and philosophy of science; secondly, we show Linsky’s solution; thirdly, we argue that this solution, in order to be effective, needs a certain kind of justification, and we suggest a way of justifying it in the scientific field; fourthly, we show that the effectiveness of our proposal depends on the degree of reductionism adopted in science: it is available only if we do not adopt a complete reductionism.


Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Contributo a convegno (Relazione)
Anno di Pubblicazione:01 Giugno 2008
Parole chiave (italiano / inglese):Knowability Paradox; omniscience; reductionism.
Settori scientifico-disciplinari MIUR:Area 11 - Scienze storiche, filosofiche, pedagogiche e psicologiche > M-FIL/02 Logica e filosofia della scienza
Struttura di riferimento:Dipartimenti > Dipartimento di Filosofia
Codice ID:1126
Depositato il:31 Lug 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Brogaard, B. – Salerno, J., (2002). “Fitch’s paradox of knowability”, in The Stanford Encyclopedia of philosophy (Winter 2002 edition, revised April 2004), Zalta E. (Ed.). Cerca con Google

Dummett, M. (2001). “Victor’s Error”. Analysis 61: 1-2. Cerca con Google

Edgington D. (1985). “The Paradox of Knowability”. Mind 94: 557-568. Cerca con Google

Fitch, F., (1963). “A Logical Analysis of Some Value Concepts”, in The Journal of Symbolic Logic, 28, pp. 135-142. Cerca con Google

Halbach, V., (2008). “On a Side Effect of Solving Fitch's Paradox by Typing Knowledge”, in Analysis 68, pp. 114-120. Cerca con Google

Hand, M. - Kvanvig, J., L., (1999). “Tennant on Knowability”, in Australasian Journal of Philosophy 77, pp. 422-428. Cerca con Google

Linsky, B., (2008). "Logical Types in Arguments about Knowability and Belief", in Salerno, J., (et al.), New Essays on the Knowability Paradox, Oxford University Press. Cerca con Google

Paseau, A., (2008). “Fitch's argument and typing knowledge”, in Notre Dame Journal of Formal Logic 49: to appear. Cerca con Google

Peirce, C., S., (1935). Collected Papers, Vol. VIII C. Hartshorne and P. Weiss (eds.), Cambridge: Harvard. Cerca con Google

Rescher, N., (1984). The Limits of Science, University of California Press. Cerca con Google

Rosenkranz, S., (2003). “Realism and Understanding”, in Erkenntnis, 58 (3), pp. 353-378. Cerca con Google

Routley, R., (1981). “Necessary limits to knowledge: Unknowable Truths”, in Morscher, E. et al. (eds.), Essays in Scientific Philosophy, Bad Reichental, pp. 93-113. Cerca con Google

Russell, B., (1908). “Mathematical Logic as Based on the Theory of Types”, in American Journal of Mathematics, 30, reprinted in R. C. Marsh (ed.), 1956, Logic and Knowledge, Allen and Unwin, London, pp. 59–102. Cerca con Google

Salerno, J., (2008). “Knowability Noir: 1945-1963” in Salerno, J., (et al.), New Essays on the Knowability Paradox, Oxford University Press. Cerca con Google

Schlesinger, N., G., (1986). “On the Limits of Science”, in Analysis, 46, pp. 24-26. Cerca con Google

Shapiro, S., (1993). “Anti-Realism and Modality”, in J. Czermak (ed.), Philosophy of Mathematics: Proceedings of the 15th International Wittgenstein-Symposium, Vienna: Verlag Hölder-Pichler-Tempsky Cerca con Google

Tennant, N., (1997). The Taming of the True. Oxford University Press. Cerca con Google

Wang, H. (1974). From Mathematics to Philosophy, London: Routledge and Kegan Paul. Cerca con Google

Williamson, T., (1982). “Intuitionism Disproved?” Analysis 42, 203-207. Cerca con Google

Zemach, E., M., (1987). “Are There Logical Limits For Science?”, in The British Journal for the Philosophy of Science, 38 (4), pp. 527-532. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record