Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Pastore, Maria Rita (2018) Effects of dietary soy isoflavones on Rainbow trout, Oncorhynchus mykiss. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document
Thesis not accessible until 30 April 2021 for intellectual property related reasons.
Visibile to: nobody

5Mb

Abstract (italian or english)

A balanced diet and an appropriate feeding are the two most important requirements of aquaculture. Research on feed, quality control and biological evaluation are important to formulate correct diets because without correct and suitable feeding, fish are unable to stay healthy and productive. Furthermore, quality and composition of feeds deeply affect the nutritional and organoleptic characteristics of the final product. In the last years, fish meal has been gradually and partially substituted by plant-based products, because of their improved sustainability and lower costs.
Soybean meal is the principal vegetable protein source, due to its high protein content, good amino acid profile, high digestibility, low cost, consistency and availability. Soybean meal contains isoflavones which are polyphenolic compounds (genistein, daidzein, glycitein) that, as phytoestrogens, may act as estrogen receptor agonists or antagonists causing biological activity on fish in addiction to possible changes on the fillet quality. The potential effects of isoflavones may affect the soybean meal utilization as an alternative protein source in aquaculture feed. In the meantime, it is important, for consumer safety, to evaluate the potential amount of the isoflavones in edible tissue and their antioxidant effect that could enhance the product shelf life.
Our objective was to examine, on the one hand, the effect of dietary isoflavones on growth, reproduction and health in rainbow trout (Oncorhynchus mykiss), and on the other hand, on the quality of fish food.
Rainbow trout were fed three experimental diets containing different concentrations of isoflavones (0, 500, 1500 ppm) for 70 days. Growth, estrogenic activity expressed by vitellogenin (VTG) protein levels in plasma and liver, plasma 17β-estradiol (E2) levels, gonadal development, state of stress and histological changes in various tissues were evaluated in a subsample of the animals at the end of feeding trial. Complementary analyses on growth performance, proximate composition, lipid oxidation and isoflavone deposition were carried out on the remaining part of the animals for each treatment, after being stored at 4 °C for 1 and 7 days.
Neither growth performance nor the relative mRNA levels of the liver Insulin Growh Factor I (Igf-I) were influenced by different levels of dietary isoflavones. Plasma and liver VTG protein levels and plasma E2 were unaffected by the treatments and the correlation between E2 plasma levels and VTG densitometry values was significant (p < 0.05). The fish gonadosomatic index (GSI) did not significantly differ among the three experimental groups but correlated with plasma VTG densitometry values (p < 0.05). Plasma, muscle and fin cortisol concentrations fell within the normal welfare range and were not correlated to isoflavone levels. Histologically, the distal intestine showed a normal morphology with well-differentiated enterocytes, as well as the liver showed normal hepatocytes. A supranuclear accumulation of lipid droplets in enterocytes and some lipid droplets in hepatocytes were observed in all the tested groups, suggesting an impact of basal dietary lipid on transport/metabolism of fat in the fish.
Inclusion and different levels of isoflavones in diets did not affect the performance of trout used for final product analysis either. Indeed, trout showed similar body weight at caught, 337 g on average, and an average gutted body weight of 299 g. Biometric indexes, skin and fillet colour, rheological characteristics, proximate composition and fatty acids profile of fillet were not affected by the different dietary treatments. Otherwise, time of storage reduced fillet yield (56.4 vs. 53.6%; p < 0.01), and skin lightness (59.2 vs. 51.5; p < 0.001); red index moved to more negative values (p < 0.001) and yellow index decreased (6.99 vs. 5.07; p < 0.001). Fillet pH (6.22 vs. 6.34; p < 0.001) and lightness increased (38 vs. 43.6; p < 0.001) while yellow index (6.20 vs. 4.52; p < 0.001) and shear force decreased (0.94 vs. 0.80 g kg-1; p < 0.001). According to the time of storage, trout fillet showed an increase of water, a loss of crude protein and an increase of total volatile basic nitrogen content (19.3 vs. 21.2 mg 100 g-1; p < 0.001). As a result of PUFAs omega-6 decrease (13.1% vs. 12.7%; p < 0.05), omega-3/omega-6 ratio increased (1.05 vs. 1.20; p < 0.05) during storage. The results evidenced an accumulation of isoflavones on trout fillets, even if isoflavone concentration in fillets was not significantly influenced by the content of dietary isoflavones in both storage times.
Lipid peroxidation expressed as thiobarbituric acid reactive substances (TBARS) levels in fillet on day 1 of refrigeration was significantly higher than that at day 7 (p < 0.05) but no difference resulted among groups fed different isoflavone levels, evidencing no effect of feed soy isoflavones on fillet lipid oxidation.
Overall, these results suggest that the isoflavone tested doses do not compromise rainbow trout reproduction, growth and health; although a moderate transfer of isoflavones from diet to fillet was observed, quality, technological and nutritional characteristics and lipid oxidation, were not affected by dietary treatment. Our data demonstrate that, with regard to isoflavone contents and their potential effects, soybean meal can replace fish meal in rainbow trout diets at a high level with no negative effects on fish performance and final product quality.

Abstract (a different language)

Una dieta bilanciata e un’appropriata alimentazione sono le due maggiori richieste da parte dell’acquacoltura. Gli studi scientifici sui mangimi, il controllo qualità e la valutazione dell’aspetto biologico sono importanti per formulare una corretta e idonea dieta per le specie ittiche. Senza un’adeguata alimentazione, il pesce non può crescere nei tempi stabiliti e mantenersi in salute, oltre al fatto che la qualità e la composizione dei mangimi influenzano profondamente le caratteristiche nutrizionali e organolettiche del prodotto finale.
Negli ultimi anni, la farina di pesce è stata sostituita gradualmente e parzialmente dai prodotti derivati dalle piante, per il loro basso costo e la loro sostenibilità rispetto alla farina di pesce. La farina di soia è la principale risorsa proteica vegetale per l’alimentazione animale, per il suo elevato contenuto proteico, il buon profilo amminoacidico, l’elevata digeribilità, il costo ridotto, nonché l’ampia disponibilità.
La farina di soia contiene isoflavoni (genisteina, daidzeina, gliciteina) che sono composti polifenolici nonché fitoestrogeni ed in quanto tali possono agire come agonisti o antagonisti dei recettori degli estrogeni endogeni, agendo biologicamente sulla specie ittica e modificando le caratteristiche qualitative del prodotto finale. I potenziali effetti degli isoflavoni possono influenzare l’utilizzo della farina di soia come risorsa proteica alternativa nei mangimi per pesci. Risulta importante valutare per la sicurezza del consumatore anche il potenziale ammontare degli isoflavoni nel tessuto edibile della specie alimentata con la soia, oltre che il loro effetto antiossidante che potrebbe aumentare la shelf life del prodotto.
Il nostro obiettivo si prefiggeva, da un lato, di esaminare l’effetto degli isoflavoni della soia sulla crescita, la riproduzione e la salute della trota iridea (Oncorhynchus mykiss), dall’altro, di valutare la qualità della carne del pesce. Le trote sono state alimentate con tre diete contenenti differenti concentrazioni di isoflavoni (0, 500, 1000 ppm) per un tempo di 70 giorni. Al termine della prova di alimentazione, una parte delle trote sperimentali sono state utilizzate per valutare la crescita, l’attività estrogenica (espressa in livelli di proteine del tuorlo nel plasma e nel fegato), i livelli plasmatici di estradiolo, lo sviluppo gonadico, lo stato di stress e i cambiamenti istologici nei vari tessuti. Analisi complementari su performance di crescita, composizione prossimale, ossidazione lipidica e deposito degli isoflavoni nel filetto sono state effettuate sulla rimanente parte delle trote, dopo la loro conservazione a 4°C, per 1 e 7 giorni.
I diversi dosaggi di isoflavoni non hanno influenzato né la performance di crescita né le concentrazioni di mRNA del Fattore di Crescita Insulino Simile (Igf-I) nel fegato. I livelli della vitellogenina (VTG) in plasma e fegato e di estradiolo plasmatico (E2) non sono stati condizionati dalle diete utilizzate, inoltre la correlazione tra livello plasmatico di E2 e i valori densitometrici della VTG si è rivelata significativa (p < 0.05). L’indice gonadosomatico (GSI) delle trote non ha mostrato differenze tra i tre gruppi sperimentali ed è risultato correlato con i valori densitometrici della VTG plasmatica (p < 0.05). Le concentrazioni di cortisolo rilevate in plasma, muscolo e pinna si sono collocate in un range di valori bassi, compatibili con una condizione di benessere, e non hanno mostrato correlazioni con il livello di isoflavoni nelle diete. Dal punto di vista istologico, l’intestino distale presentava una morfologia normale con enterociti ben differenziati, così come il fegato che, a sua volta, mostrava epatociti normali. In tutti i gruppi testati, si è evidenziato un accumulo sopranucleare di gocce lipidiche che suggerisce un effetto dei lipidi della dieta basale sul trasporto/metabolismo dei grassi nel pesce.
L’inclusione di differenti livelli di isoflavoni nelle diete non ha influenzato nemmeno la performance delle trote utilizzate per l’analisi del prodotto finale in momenti diversi durante la conservazione. Infatti, le trote mostravano un simile peso del corpo alla cattura, con una media di 337 g, ed una media del peso del corpo eviscerato di 229 g. Gli indici biometrici, il colore della pelle e del filetto, le caratteristiche reologiche, la composizione chimica e il profilo acidico dei grassi del filetto non sono stati modificati dai diversi trattamenti alimentari. D’altro canto, il tempo di conservazione ha ridotto significativamente la resa dei filetti (56.4 vs. 53.6%; p < 0.01) e la luminosità della pelle (59.2 vs 51.5; p < 0.001), l’indice del rosso ha mostrato valori più negativi (p < 0,001) e l’indice del giallo è diminuito (6.99 vs. 5.07; p < 0.001). Il pH del filetto (6.22 vs. 6.34; p < 0.001) e la sua luminosità sono aumentati (38 vs. 43.6; p < 0.001), mentre l’indice del giallo (6.20 vs. 4.52; p < 0.001) e lo sforzo di taglio sono diminuiti (0.94 vs. 0.80 g kg-1; p < 0.001).
Sempre sulla base del tempo di conservazione, il filetto ha mostrato un aumento della percentuale d’acqua, una perdita in proteine ed un aumento del contenuto di azoto basico volatile (19.3 vs. 21.2 mg 100 g-1; p < 0.001). Durante la conservazione, inoltre, è risultata una diminuzione degli acidi grassi polinsaturi (PUFA) omega-6 (13.1% vs. 12.7 %; p < 0.05) e un aumento del rapporto omega-3/omega-6 (1.05 vs. 1.20; p < 0.05). I risultati hanno evidenziato, per entrambi i tempi di conservazione, un accumulo di isoflavoni nei filetti di trota, anche se la concentrazione non è stata influenzata significativamente dal contenuto degli isoflavoni presenti nelle diete. L’ossidazione lipidica, espressa come livelli di TBARS (thiobarbituric acid reactive substances), dei filetti conservati dopo 1 giorno di conservazione a 4 °C, è risultata significativamente più alta che al giorno 7 (p < 0.05), ma nessuna differenza si è riscontrata tra i gruppi alimentati con diversi livelli di isoflavoni, evidenziando nessun effetto da parte degli isoflavoni della soia sull’ossidazione lipidica del filetto.
I risultati ottenuti sembrano indicare che gli isoflavoni, alle dosi testate, non compromettano la riproduzione, la crescita e la salute della trota; anche se si è osservato un moderato trasferimento degli isoflavoni dalla dieta al filetto, la qualità, le caratteristiche nutrizionali e l’ossidazione lipidica non risultano influenzati dal trattamento alimentare. In merito al contenuto di isoflavoni nella farina di soia e al loro potenziale effetto, i nostri risultati dimostrano che la farina di pesce può essere sostituita dalla farina di soia nelle diete somministrate alle trote senza aver effetti negativi sulla performance e sulla qualità del prodotto finale.

EPrint type:Ph.D. thesis
Tutor:Radaelli, Giuseppe
Supervisor:Bertotto, Daniela
Ph.D. course:Ciclo 29 > Corsi 29 > SCIENZE VETERINARIE
Data di deposito della tesi:17 July 2018
Anno di Pubblicazione:17 July 2018
Key Words:cortisol, fillet quality, gonadosomatic index, growth, Oncorhynchus mykiss, soybean isoflavone, vitellogenin
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > VET/01 Anatomia degli animali domestici
Struttura di riferimento:Dipartimenti > Dipartimento di Biomedicina Comparata ed Alimentazione
Codice ID:11288
Depositato il:07 Nov 2019 14:33
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Abimorad E.G., Squassoni G.H., Carneiro D.J., 2008. Apparent digestibility of protein, energy, and amino acids in some selected feed ingredients for pacu Piaractus mesopotamicus. Aqua. Nutr., 14, 374–380. Cerca con Google

Adlercreutz H., van der Wildt J., Kinzel J., 1995. Lignan and isoflavonoid conjugates in human urine. J. Steroid Biochem. Mol. Biol., 52, 97–103. Cerca con Google

Anderson J.S., Lall S.P., Anderson D.M., Chandrasoma J., 1992. Apparent and true availability of amino acids from common feed ingredients for Atlantic salmon (Salmo salar) reared in sea water. Aquaculture, 108, 111–124. Cerca con Google

Axelson M., Kirk D., Farrant R., Cooley G., Lawson A., Setchell K., 1982. The identification of the weak estrogen equol (7-hydroxi-3-4'-hydrohyphenyl) chroman in human urine. Biochem. J., 201, 353–357. Cerca con Google

Babar V.S., Chava J.K., Kadam S.S., 1988. Effects of heat treatments and germination on trypsin inhibitor activity and polyphenols in jackbean (Canavalia ensiformis L. DC). Plant Foods Hum. Nutr., 38, 319–324. Cerca con Google

Barnes S., 2010. The biochemistry, chemistry and physiology of the isoflavones in soybeans and their food products. Lymphat. Res. Biol., 8, 89–98. Cerca con Google

Barnes S., Boersma B., Patel R., Kirk M., Darley-Usmar V.M., Kim H., Xu J., 2000. Isoflavonoids and chronic disease: mechanisms of action. Biofactors., 12, 209–215. Cerca con Google

Barrows F.T., Stone D.A., Hardy R.W., 2007. The effects of extrusion conditions on the nutritional value of soybean meal for rainbow trout (Oncorhynchus mykiss). Aquaculture, 265, 244–252. Cerca con Google

Bellaloui N., 2012. Soybean seed phenol, lignin, and isoflavones and sugars composition altered by foliar boron application in soybean under water stress. Food Sci. Nutr., 3, 579–590. Cerca con Google

Bennetts H.W., Underwood E.J., Shier F.L., 1946. A specific breeding problem of sheep on subterranean clover pastures in Western Australia. Aust. Vet. J., 22, 2–12. Cerca con Google

Bjorck I., Asp N. G., 1983. The effects of extrusion cooking on nutritional value. A literature review. J. Food Eng., 2, 281–308 Cerca con Google

Boyd C.E., Tucker C., McNevin A., Bostock K., Clay J., 2007, Indicators of resource use efficiency and environmental performance in fish and crustacean aquaculture. Rev. Fish. Sci., 15, 327–360. Cerca con Google

Brugere C., Ridler, N., 2004. Global aquaculture outlook in the next decades: an analysis of national aquaculture production forecasts to 2030. FAO Fisheries Circular. No. 1001. Rome, FAO. Cerca con Google

Brzezinski A, Debi A., 1999. Phytoestrogens: the ‘natural’ selective estrogen receptor modulators? Eur. J. Obstet. Gynecol. Reprod. Biol., 85, 47–51. Cerca con Google

Bureau D.P., Harris A.M., Young Cho C., 1998. The effects of purified alcohol extracts from soy products on feed intake and growth of chinook salmon (Oncorhynchus tshawytscha) and rainbow trout (Oncorhynchus mykiss). Aquaculture, 161, 27–43. Cerca con Google

Caine W.R., Sauer W.C., Huang G.S., Diebold G., Schollenberger M., Rainer Mosenthin R., 2008. Influence of guanidination on apparent ileal digestibility of amino acids in pigs fed diets with soybean meal, rapeseed meal or peas as a protein source. Livestock Sci., 116, 300–308. Cerca con Google

Caiozzi G., Wong B.S., Ricketts M.L., 2012. Dietary modification of metabolic pathways via nuclear hormone receptors. Cell Biochem. Funct., 30, 531–551. Cerca con Google

Cao L., Naylor R., Henriksson P., Leadbitter D., Metian M., Troell M., Zhang W., 2015. China’s aquaculture and the World’s wild fisheries. Science, 347, 133–135. Cerca con Google

Chen X.R., Tan B.P., Mai K.S., Zhang W.B., Wang X.J., Ai Q.H., Xu W., Liufu Z.G., Ma H.M., 2011. Dietary administration of soybean isoflavones enhances the immunity of white shrimp Litopenaeus vannamei and its resistance against Vibrio alginolyticus. Aquac. Nutr., 17, 24–32. Cerca con Google

Choct M., Dersjant-Li Y., McLeish J., Peisker M., 2010. Soy oligosaccharides and soluble non-starch polysaccharides: A review of digestion, nutritive and anti-nutritive effects in pigs and poultry. Asian-Australasian J. Anim. Sci., 23, 1386–1398. Cerca con Google

Cowx I.G., 2005. Cultured aquatic species information program. Rainbow trout (Oncorhynchus mykiss). Fisheries and aquaculture department (FAO). Rome. Available: http://www.fao.org//fishery/culturedspecies/Oncorhynchusmykiss/en (Accessed:15/03/2018). Vai! Cerca con Google

Dakora F.D., Phillips D.A., 1996. Diverse functions of isoflavonoids in legumes transcend anti-microbial definitions of phytoalexins. Physiol. Mol. Plant Pathol. 49, 1–20. Cerca con Google

Day A.J., Cañada F.J., Díaz J.C., Kroon P.A., Mclauchlan R., Faulds C.B., Plumb G.W., Morgan M.R., 2000. Williamson G. Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett., 468, 166–170. Cerca con Google

Duffus C.M., Duffus J.H., 1991. In: D’Mello F.J.P., Duffus C.M., Duffus J.H. (Eds.), Toxic Substances in Crop Plants. The Royal Society of Chemistry, Thomas Graham House, Science Park, Cambridge CB44WF, Cambridge, UK, pp. 1–21. Cerca con Google

EU, 2014. Council Regulation (European Union) No 43/2014 of 20 January 2014 fixing for 2014 the fishing opportunities for certain fish stocks and groups of fish stocks, applicable in Union waters, and to Union vessels, in certain non-Union waters. Available at: http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2014:024:0001:01:EN:HTML (2014), (Accessed 11/03/2014). Vai! Cerca con Google

FAO, 2012. The State of World Fisheries and Aquaculture 2012 (SOFIA). Fisheries and Aquaculture Department, Food and Agriculture Organization, Rome, Italy. Cerca con Google

FAO, 2016. The State of World Fisheries and Aquaculture 2016 (SOFIA): Contributing to food security and nutrition for all. Food and Agriculture Organizatio, Rome, Italy, 200 pp. Cerca con Google

Farmakalidis E., Murphy P.A., 1985. Estrogenic potenty of genistin and daidzin in mice. Food Chem. Toxicol., 223, 9–22. Cerca con Google

FEAP, 2017. European Aquaculture Production Report 2008-2016. Available online: http://www.feap.info/Docdownload.asp?ID=B488944A4D07030600D0 (Accessed: 20/01/2018). Vai! Cerca con Google

Francis G., Makkar H.P., Becker K., 2001. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture, 199, 197–227. Cerca con Google

Friedman M., 1996. Nutritional value of proteins from different food sources: A Review. J. Agric. Food Chem., 44, 6–29. Cerca con Google

Garcia S.M., Grainger R.J.R., 2005. Gloom and doom? The future of marine capture fisheries. Philos. Trans. R. Soc. B-Biol. Sci. 360, 21–46. Cerca con Google

Gatlin D.M., 2002. Use of soybean meal in the diets of omnivorous freshwater fish. Department of Wildlife and Fisheries Sciences. Texas A&M University System. Available on: http://www.academia.edu/23906458/Use_of_Soybean_Meal_in_the_Diets_of_Omnivorous_Freshwater_Fish (Accessed 12/03/2018). Vai! Cerca con Google

Gatlin D. III, Barrows F., Bellis D., Brown P., Campen J., Dabrowski K., Gaylord T.G., Hardy R.W., Herman E.M., Hu G., Krogdahl A., Nelson R., Overturf K.E., Rust M., Sealey W., Skonberg D., Souza E.J., Stone D., Wilson R.F., 2007. Expanding the utilization of sustainable plant products in aquafeeds: a review. Aqua. Res., 38, 551–579. Cerca con Google

Gillund F., Myhr A.I., 2010. Perspectives on salmon feed: a deliberative assessment of several alternative feed resources. J. Agric. Environ. Ethics, 23, 527–550. Cerca con Google

Glazier M.G., Bowman M.A., 2001. A review of the evidence for the use of phytoestrogens as a replacement for traditional estrogen replacement therapy. Arch. Intern. Med., 161, 1161–1172. Cerca con Google

Glencross B., Evans D., Dods K., McCafferty P., Hawkins W., Maas R., Sipsas S., 2005. Evaluation of the digestible value of lupin and soybean protein concentrates and isolates when fed to rainbow trout, Oncorhynchus mykiss, using either stripping or settlement faecal collection methods. Aquaculture, 245, 211–220. Cerca con Google

Goda A.M.A.S., Wafa M. E., El‐Haroun E. R., Chowdhury K., 2007. Growth performance and feed utilization of Nile tilapia Oreochromis niloticus (Linnaeus, 1758) and tilapia galilae Sarotherodon galilaeus (Linnaeus, 1758) fingerlings fed plant protein‐based diets. Aqua. Res., 38, 827–837. Cerca con Google

Grant G., 1991. Lectins. In: D’Mello F.J.P., Duffus C.M., Duffus J.H. (Eds.), Toxic Substances in Crop Plants. The Royal Society of Chemistry, Thomas Graham House, Science Park, Cambridge CB44WF, Cambridge, UK, pp. 49–67. Cerca con Google

Griffiths D.W., 1991. Condensed tannins. In: D’Mello F.J.P., Duffus C.M., Duffus J.H. Eds., Toxic Substances in Crop Plants. The Royal Society of Chemistry, Thomas Graham House, Science Park, Cambridge CB4 4WF, Cambridge, pp. 180–201. Cerca con Google

Guimarães I.G., Pezzato L.E., Barros M.M., Tachibana L., 2008. Nutrient digestibility of cereal grain products and by-products in extruded diets for Nile tilapia. J. World Aqua. Soc., 39, 781–789. Cerca con Google

Han Y. W., Wilfred A.G., 1988. Hydrolysis of phytate in soybean and cottonseed meals by Aspergillus ficuum phytase. J. Agric. Food Chem., 36, 259–262. Cerca con Google

Hardy R.W., 1996. Alternative protein sources for salmon and trout diets. Anim. Sci. Technol., 59, 71–80. Cerca con Google

Hardy R.W., 2000. New developments in aquatic feed ingredients, and potential of enzyme supplements. In: Cruz - Suárez L.E., Ricque-Marie D., Tapia-Salazar M., Olvera-Novoa M.A., Civera-Cerecedo R. (Eds.), Avances en Nutrición Acuícola V. Memorias del V Simposium Internacional de Nutrición Acuícola, Mérida, Yucatán, Mexico, pp. 216–226. Cerca con Google

Hardy R.W., Tacon A.G.J., 2002. Fish meal: historical uses, production trends and future outlook for supplies. In: Responsible Marine Aquaculture, Stickney R.R., MacVey J.P. (Eds.), CABI Publishing, New York, 311–325. Cerca con Google

Harris D.M., Besselink E., Henning S.M., Go V.L.W., Heber D., 2005. Phytoestrogens induce differential estrogen receptor alpha- or beta-mediated responses in transfected breast cancer cells, Exp. Biol. Med., 230, 558–568. Cerca con Google

Hedstrom L., 2002. Serine protease mechanism and specificity. Chem. Rev., 102, 4501–4524. Cerca con Google

Herbourne J.B., 1989. Biosynthesis and functions of antinutritional factors in plants. Aspects Appl. Biol., 19, 21–28. Cerca con Google

Horowitz R.M., Asen S., 1989. Decarboxylation and exchange reactions in flavonoid glycoside malonates. Phytochemistry, 28, 2531–2532. Cerca con Google

Hossain M.A., Jauncey K., 1990. Detoxification of linseed and sesame meal and evaluation of their nutritive value in the diet of carp (Cyprinus carpio L.). Asian Fish. Sci., 3, 169–183. Cerca con Google

Hungria M., Bohrer T.R.J., 2000. Variability of nodulation and dinitrogen fixation capacity among soybean cultivars. Biol. Fert. Soils, 31, 45–52. Cerca con Google

Hwang C.S., Kwak H.S., Lim H.J., Lee S.H., Kang Y.S., Choe T.B., Hur H.G., Han K.O., 2006. Isoflavone metabolites and their in vitro dual functions: They can act as an estrogenic agonist or antagonist depending on the estrogen concentration. J. Steroid Biochem. Mol. Biol., 101, 246–253. Cerca con Google

Jurgella G.F., Marwah A., Malison J.A., Peterson R., Barry T.P., 2006. Effects of xenobiotics and steroids on renal and hepatic estrogen metabolism in lake trout. Gen. Comp. Endocrinol., 148, 273–281. Cerca con Google

Kelly G.E., Joannou G.E., Reeder A.Y., Nelson C., Waring M.A., 1995. The variable metabolic response to dietary isoflavones in humans. Proc. Soc. Exp. Biol. Med., 208, 40–43. Cerca con Google

Kendall R.L., 1988. Taxonomic changes in the North American trout names. Trans. Am. Fish. Soc., 117, 321. Cerca con Google

Kim J.D., Kaushik S.J., 1992. Contribution of digestible energy from carbohydrates and estimation of protein/energy requirements for growth of Rainbow trout (Oncorhynchus mykiss). Aquaculture, 106, 161–169. Cerca con Google

King R.A., Broadbent J.L., Head R.J., 1996 Absorption and excretion of the soy isoflavone genistein in rats. J. Nutr., 126, 176–182. Cerca con Google

Klinger D., Naylor R., 2012. Searching for solutions in aquaculture: charting a sustainable course. Annu. Rev. Environ. Resour., 37, 247–276. Cerca con Google

Ko K., Malison, J., Reed J., 1999. Effect of genistein on the growth and reproductive function of male and female yellow perch Perca flavescens. J. World Aqua. Soc., 30, 73–79. Cerca con Google

Krogdahl Å., Bakke A.M., 2015. Antinutrients. In: Lee C.S., Lim C., Gatlin III D.M., Webster C.D. (Eds.), Dietary Nutrients, Additives and Fish Health. Wiley-Blackwell, Hoboken, NJ, USA, pp. 211–235. Cerca con Google

Krogdahl Å., Hemre G.I., Mommsen T.P., 2005. Carbohydrates in fish nutrition: digestion and absorption in postlarval stages. Aqua. Nutr. 11, 103-122. Cerca con Google

Krogdahl A., Roem A., Baeverfjord G., 1995. Effects of soybean saponin, raffinose and soybean alcohol extract on nutrient digestibilities, growth and intestinal morphology in Atlantic salmon. In: Svennevig N., Krogdahl A. (Eds.), Quality in aquaculture. Proc. Intl. Conf. Aquaculture ’95 and the satellite meeting Nutrition and Feeding of Cold Water Species, Trondheim, Norway, August 9–12. Eur. Aquacult. Soc. Spec. Publ. No. 23, Gent, Belgium, pp. 118–119. Cerca con Google

Kuiper G.G.J.M., Carlsson B., Grandien K., Enmark E., Hågg-blad J., Nilsson, S., Gustafsson J.Å., 1997. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology, 138, 863–870. Cerca con Google

Kuiper G.G.J.M., Lemmen J.G, Carlsson B., Corton J.C., Safe S.H., van deer Saat P.T., van der Burg B., Gustafsson J.Å., 1998. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology, 139, 4252–4263. Cerca con Google

Kurosu M., 2011. Biologically Active Molecules from Soybeans. Soybean and Health, Prof. Hany El-Shemy (Ed.), ISBN: 978-953-307-535-8, InTech, Available on: https://www.intechopen.com/books/soybean-and-health/biologically-active-molecules-from-soybeans/ (Accessed 30/04/2018). Vai! Cerca con Google

Latonnelle K., Fostier A., LeMenn F.E., Bennetau-Pelissero C., 2002. Binding affinities of hepatic nuclear estrogen receptors for phytoestrogens in rainbow trout and Siberian sturgeon. Gen. Comp. Endocrinol., 129, 69–79. Cerca con Google

LC Laboratories, 2007. Reagents for signal transduction research (pp. 3–4). Woburn, MA: Catalog/Handbook of LC Laboratories. Cerca con Google

Leclerq G., Heuson, J.C., 1979. Physiological and pharmacological effects of estrogens in breast cancer. Biochim. Biophys. Acta, 560, 427–455. Cerca con Google

Li M.H., Peterson B.C., Janes C.L., Robinson E.H., 2006. Comparison of diets containing various fish meal levels on growth performance, body composition and insulin-like growth factor-I of juvenile channel catfish Ictalurus punctatus of different strains. Aquaculture, 253, 628–635. Cerca con Google

Liener I.E., 1989. Antinutritional factors in legume seeds: state of the art. In: Huisman, J., van der Poel A.F.B., Liener I.E. Eds., Recent Advances of Research in Antinutritional Factors in Legume Seeds. Pudoc, Wageningen, pp. 6–14. Cerca con Google

Liener I.E., 1994. Implications of antinutritional components in soybean foods. Crit. Rev. Food Sci. Nutr., 34, 31–67. Cerca con Google

Lusas E.W., Riaz M.N., 1995. Soy protein products: processing and use. J. Nutr., 125, 573S–580S. Cerca con Google

Martin P.M., Horwitz K.B., Ryan D.S., McGuire W.L., 1978. Phytoestrogen interaction with estrogen receptors in human breast cancer cells. Endocrinology, 103,1860–1867. Cerca con Google

Martínez-Llorens S., Vidal A.T., Moñino A.V., Gómez Ader, J., Torres M.P., Cerdá M.J., 2008. Blood and haemoglobin meal as protein sources in diets for gilthead sea bream (Sparus aurata): effects on growth, nutritive efficiency and fillet sensory differences. Aquac. Res., 39, 1028–1037. Cerca con Google

Mauvais-Jarvis F., 2011. Estrogen and androgen receptors: regulators of fuel homeostasis and emerging targets for diabetes and obesity. Trends Endocrinol. Metab. 22, 24–33. Cerca con Google

Meyers S., 2009. Developments in world aquaculture, feed formulations and role of carotenoids. Pure Appl. Chem., 66, 1069–1076. Cerca con Google

Nakano H., Ogura K., Takahashi E., Harada T., Nishiyama T., Muro K., Hiratsuka A., Kadota S., Watabe T., 2004. Regioselective monosulfation, disulfation of the phytoestrogens daidzein, genistein by human liver sulfotransferases. Drug Metab. Pharmacokinet., 19, 216–226. Cerca con Google

Naylor R.L., Goldburg R.J., Mooney H., Beveridge M., Clay J., Folk C., Kautsky N., Lubchenco J., Primavera J., Williams M., 1998. Nature’s subsides to shrimp and salmon farming. Nature, 405, 1017–1024. Cerca con Google

Ng Y., Hanson S., Malison J.A., Wentworth B., Barry, T.P., 2006. Genistein and other isoflavones found in soybean inhibit estrogen metabolism in salmonid fish. Aquaculture, 254, 658–665. Cerca con Google

Nguyen T.N., Davis D. A., Saoud I.P., 2009. Evaluation of alternative protein sources to replace fish meal in practical diets for juvenile tilapia, Oreochromis spp. J. World Aquac. Soc., 40, 113–121. Cerca con Google

Norton G., 1991. Proteinase inhibitors. In: D’Mello F.J.P., Duffus C.M., Duffus J.H. (Eds.), Toxic Substances in Crop Plants. The Royal Society of Chemistry, Thomas Graham House, Science Park, Cambridge CB44WF, Cambridge, pp. 68–106. Cerca con Google

NRC, 2011. Nutrient Requirements of Fish and Shrimp. National Academies Press, Washington, DC, USA, pp. 57–95. Cerca con Google

Nurmi T., Mazur W., Heinonen S., Kokkonen J., Adlercreutz H., 2002. Isoflavone content of the soy based supplements. J. Pharm. Biomed. Anal., 28, 1–11. Cerca con Google

Oliva-Teles A., Gouveia A.J., Gomes E., Rema P., 1994. The effect of different processing treatments on soybean meal utilization by rainbow trout, Oncorhynchus mykiss. Aquaculture, 124 343–349. Cerca con Google

Peisker M., 2001. Manufacturing of soy protein concentrate for animal nutrition. Cahiers Opt. Méditerr, 54, 103–107. Cerca con Google

Pelissero C., Bennetau B., Babin P., Le Menn F., Dunogues J., 1991a. The estrogenic activity of certain phytoestrogens in the Siberian sturgeon Acipenser baeri. J. Steroid Biochem. Mol. Biol., 38, 293–299. Cerca con Google

Pelissero C., Le Menn F., Kaushick S., 1991b. Estrogenic effect of dietary soy bean meal on vitellogenesis in cultured siberian sturgeon Acipenser baeri. Gen. Comp. Endocrinol., 83, 447–457. Cerca con Google

Pollack S.J., Ottinger M.A., Sullivan C.V., Woods L.C. III, 2003. The effects of the soy isoflavone genistein on the reproductive development of striped bass. N. Am. J. Aquac. 65, 226–234. Cerca con Google

Purser J., Forteath N., 2003. Salmonids. In Lucas S.J., Southgate C.P. (Ed.), Aquaculture. Blackwell Publishing, Oxford, UK. pp. 295–320. Cerca con Google

Refstie S., Korsøen Ø.J., Storebakken T., Baeverfjord G., Lein I., Roem A.J., 2000. Differing nutritional responses to dietary soybean meal in rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Aquaculture, 190, 49–63. Cerca con Google

Refstie S., Storebakken T., Roem A.J., 1998. Feed consumption and conversion in Atlantic Salmon (Salmo salar) fed diets with fish meal, extracted soybean meal or soybean meal with reduced content of oligosaccharides, trypsin inhibitors, lectins and soya antigens. Aquaculture, 162, 301–312. Cerca con Google

Refstie S., Svihus B., Shearer K.D., Storebakken T., 1999. Nutrient digestibility in Atlantic salmon and broiler chickens related to viscosity and non-starch polysaccharide content in different soyabean products. Anim. Feed Sci. Technol., 79, 331–345. Cerca con Google

Richardson N.L., Higgs D.A., Beames R.M., McBride J.R., 1985. Influence of dietary calcium, phosphorous, zinc and sodium phytate level on cataract incidence, growth and histopathology in juvenile chinook salmon (Oncorhynchus tshawytscha). J. Nutr., 115, 553–567. Cerca con Google

Rolfe B.G., 1988. Flavones and isoflavones as inducing substances of legume nodulation. Biofactors, 1, 3–10. Cerca con Google

Ronis M.J., Little J.M., Barone G.W., Chen G., Radominska-Pandya A., Badger T.M., 2006. Sulfation of the isoflavones genistein and daidzein in human and rat liver and gastrointestinal tract. J. Med. Food, 9, 348–355. Cerca con Google

Ruiz-Larrea M.B., Mohan A.R., Paganga G., Miller N.J., Bolwell G.P., Rice-Evans C.A., 1997. Antioxidant activity of phytoestrogenic isoflavones. Free Radic. Res., 26, 63–70. Cerca con Google

Rumsey G.L., Hughes S.G., Winfree R.A., 1993. Chemical and nutritional evaluation of soy protein preparations as primary nitrogen sources of rainbow trout (Oncorhynchus mykiss). Anim. Feed Sci. Technol. 40, 135–151. Cerca con Google

Sfakianos J., Coward L., Kirk M., Barnes S., 1997. Intestinal uptake and biliary excretion of the isoflavone genistein in the rat. J. Nutr., 127, 1260–1268. Cerca con Google

Song T.T., Barua, K., Buseman G., Murphy P.A., 1998. Isoflavone analysis: new internal standard and quality control. Am. J. Clin Nutr., 68, 1474S–1479S. Cerca con Google

Song T.T., Hendrich S., Murphy P.A., 1999. Estrogenic activity of glycitein, a soy isoflavone. J. Agric. Food Chem., 47, 1607–1610. Cerca con Google

Starnes C.W., 2003. Integrated taxonomic information system (ITIS). Available on: http://www.cbif.gc.ca/pls/itisca/next?v_tsn=161989&taxa=&p_king=every&p_string=containing&p_ifx=&p_lang (Accessed: 27/11/2012). Vai! Cerca con Google

Subramanian S., Hu X., Lu G., Odell J.T., Yu O., 2004. The promoters of two isoflavone synthase genes respond differentially to nodulation and defence signals in transgenic soybean roots. Plant Mol. Biol., 54, 623–639. Cerca con Google

Swick R.A., 2007. Selecting soy protein for animal feed. 15th Annual ASAIM Southeast Asian Feed Technology and Nutrition Workshop. Past Conference Papers - FTNW07, Bali Indonesia, pp. 1-11. Cerca con Google

Tacon A.G.J., Metian M., 2008. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture, 285, 146–158. Cerca con Google

Thompson K.R., Metts L.S., Muzinic L.A., Dasgupta S., Webster C.D., Brady Y.J., 2007. Use of turkey meal as a replacement for menhaden fish meal in practical diets for sunshine bass grown in cages. N. Am. J. Aquac., 69, 351–359. Cerca con Google

Thompson K.R., Rawles S.D., Metts L.S., Smith R., Wimsatt A., Gannam A.L., Twibell R.G., Johnson R.B., Brady Y. J., Webster C.D., 2008. Digestibility of dry matter, protein, lipid, and organic matter of two fish meals, two poultry by-product meals, soybean meal, and distiller’s dried grains with solubles in practical diets for sunshine bass, Morone chrysops × M. saxatilis. J. World Aquac. Soc., 39, 352–363. Cerca con Google

Tibaldi E., Hakim Y., Uni Z., Tulli F., de Francesco M., Luzzana U., Harpaz S., 2006. Effects of the partial substitution of dietary fishmeal by differently processed soybean meals on growth performance, nutrient digestibility and activity of intestinal brush border enzymes in the European sea bass (Dicentrarchus labrax). Aquaculture, 261, 182–193. Cerca con Google

Tollefson K.E., Mathisen R., Stenersen J., 2001. Estrogen mimics bind with similar affinity and specificity to the hepatic estrogen receptor in Atlantic salmon and rainbow trout. Gen. Comp. Endocrin., 126, 14–22. Cerca con Google

Triboï E., Martre P., Triboï‐Blondel A.M., 2003. Environmentally‐induced changes in protein composition in developing grains of wheat are related to changes in total protein content. J. Exp. Bot., 54, 1731–1742. Cerca con Google

Turner N., Thomson B., Shaw I., 2003. Bioactive isoflavones in functional foods: the importance of gut microflora on bioavailability. Nutr. Rev., 61, 204–213. Cerca con Google

Umphress S.T., Murphy S.P., Franke A.A., Custer L.J., Blitz C.L., 2005. Isoflavone content of foods with soy additives. J. Food Compos. Anal., 18, 533–550. Cerca con Google

USB, 2008. Nutrient specifications and quality standards for ingredients commonly used in diets for aquaculture species. U.S. Soybean Export Council, USA. Cerca con Google

USDA, 2007. USDA-Iowa State University Database on the Isoflavone Content of Foods Release 1.4. Available on: https://www.ars.usda.gov/ARSUserFiles/80400525/Data/isoflav/isoflav1-4.pdf (Accessed 25/04/2018). Vai! Cerca con Google

Vamerali T., Barion G., Hewidy M., Mosca G., 2012. Soybean Isoflavone patterns in main stem and branches as affected by water and nitrogen supply. Eur. J. Agron., 41, 1–10. Cerca con Google

van der Peol A.F.B., 1989. Effects of processing on antinutritional factors ANF and nutritional value of legume seeds for non-ruminant feeding. In: Huisman J., Van der Poel A.F.B., Liener I.E. (Eds.), Recent Advances of Research in Antinutritional Factors in Legume Seeds. Pudoc, Wageningen, pp. 213–229. Cerca con Google

Vargas Galdos, D.M.M., 2009. Quantification of soy isoflavones in commercial eggs and their transfer from poultry feed into eggs and tissues. The Ohio State University, Columbus, OH, USA. Cerca con Google

Vaya J., Tamir S., 2004. The relation between the chemical structure of flavonoids and their estrogen like activities. Curr. Med. Chem., 11, 1333–1343. Cerca con Google

Wang H., Murphy P., 1994a. Isoflavone content in commercial soybean foods. J. Agric. Food Chem., 42, 1666–1673. Cerca con Google

Wang H., Murphy P.A., 1994b. Isoflavone composition of American and Japanese soybeans in Iowa: effects of variety, crop year, and location. J. Agric. Food Chem. 1994, 42, 1674–1677. Cerca con Google

Wang L.Q., 2002. Mammalian phytoestrogens: enterodiol and enterolactone. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci., 777, 289–309. Cerca con Google

Watson R., Pauly D., 2001. Systematic distortions in world fisheries catch trends. Nature 414, 534–536. Cerca con Google

Wiseman H., 1999. The bioavailability of non-nutrient plant factors: dietary flavonoids and phyto-oestrogens. Proc. Nutr. Soc., 58: 139–146. Cerca con Google

Wiseman H., Casey K., Clarke D.B., Barnes K.A., Bowey E., 2002. Isoflavone aglycon and glucoconjugate content of high- and low-soy U.K. foods used in nutritional studies. J Agric Food Chem, 13,1404–1410. Cerca con Google

Wiseman H., O'Reilly J.D., Adlercreutz H., Mallet A.I., Bowey E.A., Rowland I.R., Sanders T.A.B., 2000. Isoflavone phytoestrogens consumed in soy decreases F(2) isoprostane concentrations and increase resistance of low density lipoproteins to oxidation in humans. Am. J. Clin. Nutr., 72, 395–400. Cerca con Google

Wolf W.J., 1970. Soybean proteins. Their functional, chemical, and physical properties. J. Agric. Food Chem., 18, 969–976. Cerca con Google

Worm B., Hilborn R., Baum J.K., Branch T.A., Collie J.S., Cerca con Google

Costello C., Fogarty M.J., Fulton E.A., Hutchings J.A., Jennings S., Jensen O.P., Lotze H.K., Mace P.M., McClanahan T.R., Palumbi S.R., Parma A.M., Rikard D., Rosenberg A.A., Zeller D., Minto C., 2009. Rebuilding global fisheries. Science, 325, 578–585. Cerca con Google

Woynarovich A., Hoitsy G., Poulsen M.T., 2011. Small-scale rainbow trout farming. FAO Fisheries and aquaculture technical paper, No 561, Rome, Italy, 81 pp Available on: http://www.fao.org/docrep/015/i2125e/i2125e.pdf (Accessed 25/04/2018). Vai! Cerca con Google

Yamamoto T., Goto T., Kine Y., Endo Y., Kitaoka Y., Sugita T., Furuita H., Iwashita Y., Suzuki N., 2008. Effect of an alcohol extract from a defatted soybean meal supplemented with a casein-based semi-purified diet on the biliary bile status and intestinal conditions in rainbow trout, Oncorhynchus mykiss (Walbaum). Aqua. Res., 39, 986–994. Cerca con Google

Xu X., Harris K.S., Wang H-J., Murphy P.A., Hendrich S., 1995. Bioavailability of soybean isoflavones depends upon gut microflora in women. J. Nutr., 125, 2307–2315. Cerca con Google

Zhang Y., Hendrich S., Murphy P., 2003. Glucuronides are the main isoflavone metabolites in women. J. Nutr., 133, 399–404. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record