Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Visentin, Valentina (2018) Human factors in industrial contexts: fatigue and recovery modelling for manual material handling activities. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document (pdf/a)
Thesis not accessible until 01 December 2021 for intellectual property related reasons.
Visibile to: nobody

4Mb

Abstract (italian or english)

Many companies still rely on the humans for carrying on the activities in the production system. Subsequently in recent years there is an increasing interest in the understanding of how human issues can influence the performance of the system and of how the operators can be prevented from facing injuries or a decreasing of their performance. All the factors related to the human characteristics are generally known as “human factors”, which are defined as follows:
“the scientific discipline concerns with the understanding of interactions among humans and other elements of a system in order to optimize human well-being and overall system performance”.
Subsequently the human factors are related to physical, cognitive and the psychosocial interaction with the workplace. Recent literature has put in evidence the need of considering more these factors because there is a bilateral influence between the technical and organizational design features and the human effects such as their health and attitudes, their physical workload and their quality of work life and safety.
However, the influence of the factors related to humans on the production system is a topic which remains still uncovered by the literature because of the difficulty in quantifying the impact of something strictly linked to the kind of operator.
In relation to this, this PhD thesis aims at considering the human factors related to the physical fatigue experienced by the operators in order to improve the assignment of the activities to the operators. In fact, still now little literature has focused on the consideration of the physical fatigue experienced by the operators in the workers assignment problem (WAP).
This thesis aims at solving this main research question by modelling the physical fatigue and recovery of operators performing manual material handling activities with the involvement of the whole body. In addition, it suggests the kind of device to be used for having feedbacks regarding the level of physical fatigue an operator is experiencing and it validates it by carrying tests firstly in a laboratory and after in a real industrial context. The data of these tests are the base for the proposed model of fatigue and recovery.
In relation to this, the PhD thesis structure is as follows:
1. State of the art analysis of the recognised impacts of human factors on manual material handling activities and of the recognised methods for monitoring the physical fatigue and for estimating the time the operator needs to recover according to level of fatigue cumulated.
2. Proposal of the heart rate monitor as the device to be used for a real-time monitoring of the physical fatigue of operators performing manual material handling activities. In relation to this, a real application is carried on in the laboratory and in an industrial field and the output of such device is compared with other existing technologies. Moreover, it is put in evidence how the only use of such device can help practitioners having a first indication of the best design of the workplace and of how to assign activities to the operators.
3. The influence of physiological factors relate to the operators are put in evidence thanks to the use of the heart rate monitor. This helped to model fatigue and recovery for each operator and to create a new formulation to set the time the operator has to recover according to his/her level of fatigue which is called “Rest Allowance”. The differences between the proposed model and the existing ones in relation to manual material handling activities are put in evidence.
4. The proposed formulations for modelling fatigue and recovery are further developed for considering the way in which physical fatigue is accumulated by the operator if he/she has to carried on a certain number of activities sequentially without having the necessary time to recover. The developed formulation allowed to evaluate, case by case, if an improved operators activities assignment is required, and to quantify the effects of physiological factors and kind of activities on the best activities’ assignment.
The data used for setting the model are obtained with the collaboration of the physiological department of the University of Padova and with several tests performed in an industrial field for different kinds of operators.

Abstract (a different language)

Molte aziende ancora oggi si affidano molto agli operatori per lo svolgimento delle attività produttive. Infatti, in questi anni c’è un crescente interesse relativo alla comprensione di come i fattori legati all’uso degli operatori possa influenzare le performance del sistema produttivo e di come si possa prevenire alla forza lavoro il rischio di infortuni o di un decremento delle loro capacità dovuto alle tipologie di attività svolte. Tutti i fattori legati alle caratteristiche proprie di ciascun individuo sono conosciuti come “fattori umani” e definiti come segue:
“la disciplina scientifica che riguarda la comprensione delle interazioni tra gli umani e gli altri elementi di un sistema produttivo al fine di ottimizzare il benessere umano e le prestazioni generali del sistema”
Si possono quindi legare i fattori umani a tutti gli aspetti che riguardano gli individui e la loro relazione con il luogo di lavoro, siano essi fisici, cognitivi o sociali. La letteratura recente ha messo in evidenza la necessità di considerare maggiormente questi fattori tenendo conto dell’influenza reciproca tra le caratteristiche tecniche e organizzative del posto di lavoro e gli effetti sugli operatori umani legati alla loro salute, al loro carico di lavoro fisico, alla loro sicurezza e alla qualità della vita lavorativa.
Sebbene la riconosciuta influenza dei fattori umani sul sistema produttivo, questo tema rimane ancora un argomento non molto sviluppato dalla letteratura. Questo è anche dovuto alla difficoltà intrinseca nel quantificare aspetti così strettamente legati alle caratteristiche individuali.
Lo scopo di questa tesi è di considerare più attentamente i fattori umani legati alla fatica fisica percepita dagli operatori durante lo svolgimento delle loro attività al fine di migliorarne l’assegnazione delle attività stesse. Infatti, finora poca letteratura si è focalizzata sull’influenza della fatica fisica in quello che è definito WAP (Workers Assignment Problem).
Nella presente tesi questa principale domanda di ricerca viene risolta modellando l’andamento della fatica fisica e del recupero per operatori che svolgono attività manuali che coinvolgono il movimento generale di tutto il corpo. Viene inoltre suggerito e validato attraverso test svolti in laboratorio e in vero contesto industriale lo strumento da utilizzare per avere un monitoraggio in real-time delle condizioni fisiche degli operatori. Sui dati raccolti si basa il modello proposto per la modellazione della fatica fisica e del recupero di ciascun operatore.
La tesi si struttura quindi come segue:
1. Stato dell’arte sull’analisi dell’impatto dei fattori umani sulle attività manuali, dei metodi esistenti riconosciuti per il monitoraggio della fatica fisica e per stimare il tempo di recupero degli operatori in base al loro livello di affaticamento
2. Analisi dell’uso del cardiofrequenzimetro come strumento per avere un monitoraggio in real-time del livello di fatica fisica degli operatori che svolgono attività manuali. Viene anche presentata l’applicazione di questo strumento in test svolti in laboratorio e in un contesto industriale. L’uso di questo strumento viene comparato che altre tecnologie esistenti e viene messo in evidenza come l’uso possa aiutare a dare una prima indicazione dell’influenza del design del posto di lavoro sugli operatori e di come assegnare loro le attività.
3. Modellazione della fatica e del recupero per ciascun operatore considerando l’influenza dei fattori fisiologici di ciascuno, messi in evidenza dall’uso del cardiofrequenzimetro. Viene proposto una nuova formula per la stima del tempo di recupero di ciascun operatore, chiamata in letteratura “Rest Allowance”. Vengono messe in evidenza le differenze tra questo modello e quelli esistenti in relazione alle attività manuali.
4. Le formulazioni relative alla modellazione della fatica e del recupero sono sviluppate per considerare come la fatica fisica si accumuli se l’operatore deve svolgere più attività in sequenza senza avere la possibilità di riposarsi il tempo adeguato. Questo ha permesso di analizzare in quali casi sia meglio focalizzare l’attenzione sul miglioramento dell’assegnazione delle attività agli operatori e come i fattori fisiologici degli operatori e la tipologia di attività da svolgere possono influenzare l’assegnazione delle attività.
I dati utilizzati per lo sviluppo del modello sono stati ottenuti con la collaborazione del dipartimento di fisiologia dell’Università degli Studi di Padova e attraverso diversi test svolti su più operatori in un contesto industriale.

EPrint type:Ph.D. thesis
Tutor:Persona, Alessandro
Ph.D. course:Ciclo 31 > Corsi 31 > INGEGNERIA MECCATRONICA E DELL'INNOVAZIONE MECCANICA DEL PRODOTTO
Data di deposito della tesi:27 November 2018
Anno di Pubblicazione:27 November 2018
Key Words:rest allowance, physical fatigue, human factors, manual material handling activities
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/17 Impianti industriali meccanici
Struttura di riferimento:Dipartimenti > Dipartimento di Tecnica e Gestione dei Sistemi Industriali
Codice ID:11327
Depositato il:05 Nov 2019 17:34
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Aberg, U., Elgstrand, K., Magnus, P., & Lindholm, A. (1967). Analysts of components and prediction of energy expenditure in manual tasks. The International Journal of Production Research, 6(3), 189-196. Cerca con Google

Acheson, K. J., Campbell, I. T., Edholm, O. G., Miller, D. S., & Stock, M. J. (1980). The measurement of daily energy expenditure—an evaluation of some techniques. The American Journal of Clinical Nutrition, 33(5), 1155–1164. Cerca con Google

Achten, J., & Jeukendrup, A. E. (2003). Heart rate monitoring. Sports medicine, 33 (7), 517-538. Cerca con Google

Åhsberg, E. (1998). Perceived fatigue related to work. Ph.D. Thesis. Sweden, University of Stockholm & National Institute for Working Life. Cerca con Google

Al-Eisawi, K. W., Kerk, C. J., Congleton, J. J., Amendola, A. A., Jenkins, O. C., & Gaines, W. G. (1999). The effect of handle height and cart load on the initial hand forces in cart pushing and pulling. Ergonomics, 42(8), 1099-1113. Cerca con Google

Al-Eisawi, K. W., Kerk, C. J., Congleton, J. J., Amendola, A. A., Jenkins, O. C., & Gaines, W. (1999). Factors affecting minimum push and pull forces of manual carts. Applied Ergonomics, 30(3), 235-245. Cerca con Google

Ammar, A., Pierreval, H., & Elkosentini, S. (2013, October). Workers assignment problems in manufacturing systems: A literature analysis. In 5th International conference on industrial engineering and systems management (pp. 1-7). 28-30 October. Rabat, Morocco. Cerca con Google

Andreoni, G., Mazzola, M., Ciani, O., Zambetti, M., Romero, M., Costa, F., & Preatoni, E. (2009). Method for movement and gesture assessment (MMGA) in ergonomics. In Digital Human Modeling (pp. 591–598). Berlin Heidelberg: Springer. Cerca con Google

Aroui, K., Alpan, G., & Frein, Y. (2017). Minimising work overload in mixed-model assembly lines with different types of operators: a case study from the truck industry. International Journal of Production Research, 55(21), 6305-6326. Cerca con Google

Åstrand, P. O., & Ryhming, I. (1954). A nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during submaximal work. Journal of Applied Physiology, 7(2), 218–221. Cerca con Google

Bao, S., Spielholz, P., Howard, N., & Silverstein, B. (2009). Force measurement in field ergonomics research and application. International Journal of Industrial Ergonomics, 39(2), 333-340. Cerca con Google

Battini D., Calzavara M., Persona A., Sgarbossa F., Visentin V., Zennaro I. (2018). Integrating mocap system and immersive reality for efficient human centred workstation design. The 2018 IFAC Symposium on Information Control Problems in Manufacturing, 11-13 June 2018. Cerca con Google

Battini D., Persona A., Sgarbossa F., Visentin V. (2016). Including ergonomics aspects into mixed- model assembly line balancing problem. Advances in physical ergonomics and human factors (pp. 991-1001). Springer, Cham. Cerca con Google

Battini, D., Calzavara, M., Persona, A., & Sgarbossa, F. (2015). A comparative analysis of different paperless picking systems. Industrial Management & Data Systems, 115(3), 483-503. Cerca con Google

Battini, D., Delorme, X., Dolgui, A., Persona, A., & Sgarbossa, F. (2016). Ergonomics in assembly line balancing based on energy expenditure: a multi-objective model. International Journal of Production Research, 54(3), 824-845. Cerca con Google

Battini, D., Faccio, M., Persona, A., & Sgarbossa, F. (2011). New methodological framework to improve productivity and ergonomics in assembly system design. International Journal of industrial ergonomics, 41(1), 30-42. Cerca con Google

Battini, D., Glock, C. H., Grosse, E. H., Persona, A., & Sgarbossa, F. (2017). Ergo-lot-sizing: An approach to integrate ergonomic and economic objectives in manual materials handling. International Journal of Production Economics, 185, 230-239. Cerca con Google

Battini, D., Persona, A., & Sgarbossa, F. (2014). Innovative real-time system to integrate ergonomic evaluations into warehouse design and management. Computers & Industrial Engineering, 77, 1–10. Cerca con Google

Borg, G. (1990). “Psychophysical Scaling with Applications in Physical Work and the Perception of Exertion.” Scandinavian Journal of Work, Environment and Health 16: 55–58. Cerca con Google

Borg, G. (1998). Borg's perceived exertion and pain scales. Human kinetics. Cerca con Google

Borresen, J., & Lambert, M. I. (2009). The quantification of training load, the training response and the effect on performance. Sports Medicine, 39(9), 779-795. Cerca con Google

Bradfield, R. B. (1971). A technique for determination of usual daily energy expenditure in the field. The American Journal of Clinical Nutrition, 24(9), 1148–1154. Cerca con Google

Brynzér, H., & Johansson, M. I. (1996). Storage location assignment: Using the product structure to reduce order picking times. International Journal of Production Economics, 46, 595-603. Cerca con Google

Buchholz, B., Park, J. S., Gold, J. E., & Punnett, L. (2008). Subjective ratings of upper extremity exposures: Inter-method agreement with direct measurement of exposures. Ergonomics, 51(7), 1064-1077. Cerca con Google

Burgess-Limerick, R. (2007). Ergonomics for manual tasks. Australian Master of OHS and Environment Guide. CCH Australia, North Ryde, 261-278. Cerca con Google

Byström, S., & Fransson-Hall, C. (1994). Acceptability of intermittent handgrip contractions based on physiological response. Human Factors: The Journal of the Human Factors and Ergonomics Society, 36 (1), 158-171. Cerca con Google

Calzavara, M., Persona, A., Sgarbossa, F. & Visentin, V. (2017). Recovery time setting for order picking activities. Proceedings of XXII Summer School “Francesco Turco”,13-15 September 2017, Palermo, Italy Cerca con Google

Calzavara, M., Persona, A., Sgarbossa, F. & Visentin, V. (2018). A device to monitor fatigue level in order-picking. Industrial Management and Data Systems, 118 (4), pp. 714-727. Cerca con Google

Calzavara, M., Persona, A., Sgarbossa, F., Visentin, V. A device to monitor fatigue level in order-picking (2018a). Industrial Management and Data Systems, 118 (4), pp. 714-727. Cerca con Google

Calzavara, M., Persona, A., Sgarbossa, F. & Visentin, V. (2018b). A model for rest allowance estimation to improve tasks assignment to operators. International Journal of Production Research. Cerca con Google

Calzavara, M., Persona, A., Sgarbossa, F. & Visentin, V. (2018c). Fatigue accumulation in the assignment of manual material handling activities to operators. Incom- Ifac Symposium on Information Control Problems in Manufacturing, 11-13th June 2018. Cerca con Google

Caragnano, G., & Lavatelli, I. (2012). ERGO-MTM model: an integrated approach to set working times based upon standardized working performance and controlled biomechanical load. Work, 41(Supplement 1), 4422-4427. Cerca con Google

Carroll, T. J., Taylor, J. L., & Gandevia, S. C. (2016). Recovery of central and peripheral neuromuscular fatigue after exercise. Journal of Applied Physiology, 122(5), 1068-1076. Cerca con Google

Chackelson, C., Errasti, A., Ciprés, D., & Lahoz, F. (2013). Evaluating order picking performance trade-offs by configuring main operating strategies in a retail distributor: A Design of Experiments approach. International Journal of Production Research, 51(20), 6097–6109. Cerca con Google

Chaffin D (2002) On simulating human reach motions for ergonomics analyses. Human Factors and Ergonomics in Manufacturing 12(3):235–247. Cerca con Google

Chaffin, D. B. (1979). Manual materials handling: the cause of over-exertion injury and illness in industry. Journal of environmental pathology and toxicology, 2 (5), 31-66. Cerca con Google

Christensen, C. C., Frey, H. M., Foenstelien, E., Aadland, E., & Refsum, H. E. (1983). A critical evaluation of energy expenditure estimates based on individual O2 consumption/heart rate curves and average daily heart rate. The American journal of clinical nutrition, 37 (3), 468-472. Cerca con Google

Cifrek, M., Medved, V., Tonković, S., & Ostojić, S. (2009). Surface EMG based muscle fatigue evaluation in biomechanics. Clinical Biomechanics, 24(4), 327-340. Cerca con Google

Ciriello, V. M. (2003). The effects of box size, frequency and extended horizontal reach on maximum acceptable weights of lifting. International Journal of Industrial Ergonomics, 32(2), 115-120. Cerca con Google

Ciriello, V. M., & Snook, S. H. (1999). Survey of manual handling tasks. International Journal of Industrial Ergonomics, 23(3), 149-156. Cerca con Google

Ciriello, V. M., Maikala, R. V., Dempsey, P. G., & O’Brien, N. V. (2011). Gender differences in psychophysically determined maximum acceptable weights and forces for industrial workers observed after twenty years. International archives of occupational and environmental health, 84(5), 569-575. Cerca con Google

Ciriello, V.M., Snook, S.H., Buck, A.C., Wilkinson, P.L. The effects of task duration on psychophysically-determined maximum acceptable weights and forces (1990) Ergonomics, 33 (2), pp. 187-200. Cerca con Google

David, G. C. (2005). Ergonomic methods for assessing exposure to risk factors for work-related musculoskeletal disorders. Occupational medicine, 55(3), 190-199. Cerca con Google

De Koster, R., Le-Duc, T., & Roodbergen, K. J. (2007). Design and control of warehouse order picking: A literature review. European Journal of Operational Research, 182(2), 481–501. Cerca con Google

Dempsey, P. G., Ciriello, V. M., Maikala, R. V., & O'Brien, N. V. (2008). Oxygen consumption prediction models for individual and combination materials handling tasks. Ergonomics, 51(11), 1776-1789. Cerca con Google

Dode, P., Greig, M., Zolfaghari, S., & Neumann, W. P. (2016). Integrating human factors into discrete event simulation: a proactive approach to simultaneously design for system performance and employees’ well-being. International Journal of Production Research, 54(10), 3105-3117. Cerca con Google

El Ahrache, K. and Imbeau, D. (2009). Comparison of rest allowance models for static muscular work. International Journal of Industrial Ergonomics, 39 (1), 73-80. Cerca con Google

El ahrache, K., Imbeau, D., & Farbos, B. (2005). Percentile values for determining maximum endurance times for static muscular work. International Journal of Industrial Ergonomics, 36(2), 99-108. Cerca con Google

Eliezer, E. K. (1982) Physiological Basis for the Design of Work and Rest, Handbook of Industrial Engineering, chapter 6.4.1. Cerca con Google

Ferjani, A., Ammar, A., Pierreval, H., & Elkosantini, S. (2017). A simulation-optimization based heuristic for the online assignment of multi-skilled workers subjected to fatigue in manufacturing systems. Computers & Industrial Engineering, 112, 663-674. Cerca con Google

Frazelle, E., & Frazelle, E. (2002). World-class warehousing and material handling (Vol. 1). New York: McGraw-Hill. Cerca con Google

Gamelin, F. X., Berthoin, S., & Bosquet, L. (2006). Validity of the Polar S810 heart rate monitor to measure RR intervals at rest. Medicine and Science in Sports and Exercise, 38(5), 887. Cerca con Google

Garg, A., Chaffin, D. B., & Herrin, G. D. (1978). Prediction of metabolic rates for manual materials handling jobs. American Industrial Hygiene Association Journal, 39(8), 661-674. Cerca con Google

Garg, A., Waters, T., Kapellusch, J., & Karwowski, W. (2014). Psychophysical basis for maximum pushing and pulling forces: A review and recommendations. International journal of industrial ergonomics, 44(2), 281-291. Cerca con Google

Gawron, V. J., French, J., & Funke, D. (2001). An overview of fatigue. In P. A. Hancock & P. A. Desmond (Eds.), Human factors in transportation. Stress, workload, and fatigue (pp. 581-595). Mahwah, NJ, US: Lawrence Erlbaum Associates Publishers. Cerca con Google

Givi, Z. S., Jaber, M. Y., & Neumann, W. P. (2015a). Modelling worker reliability with learning and fatigue. Applied Mathematical Modelling, 39(17), 5186-5199. Cerca con Google

Givi, Z. S., Jaber, M. Y., & Neumann, W. P. (2015b). Production planning in DRC systems considering worker performance. Computers & Industrial Engineering, 87, 317-327. Cerca con Google

González-Camarena, R., Carrasco-Sosa, S., Román-Ramos, R., Gaitán-González, M. J., Medina-Bañuelos, V., & Azpiroz-Leehan, J. (2000). Effect of static and dynamic exercise on heart rate and blood pressure variabilities. Medicine and Science in Sports and Exercise, 32(10), 1719–1728. Cerca con Google

Grandjean, E. (1979). Fatigue in industry. Occupational and Environmental Medicine, 36(3), 175-186. Cerca con Google

Greig, M. A., Village, J., Salustri, F. A., Zolfaghari, S., & Neumann, W. P. (2017). A tool to predict physical workload and task times from workstation layout design data. International Journal of Production Research, 1-18. Cerca con Google

Gronalt, M., & Hartl, R. F. (2003). Workforce planning and allocation for mid-volume truck manufacturing: a case study. International Journal of Production Research, 41(3), 449-463. Cerca con Google

Grosse, E. H., Glock, C. H., & Neumann, W. P. (2017). Human factors in order picking: a content analysis of the literature. International Journal of Production Research, 55 (5), 1260-1276. Cerca con Google

Grosse, E. H., Glock, C. H., Jaber, M. Y., & Neumann, W. P. (2015). Incorporating human factors in order picking planning models: framework and research opportunities. International Journal of Production Research, 53(3), 695-717. Cerca con Google

Gunasekaran, A., Marri, H. B., & Menci, F. (1999). Improving the effectiveness of warehousing operations: a case study. Industrial Management & Data Systems, 99(8), 328-339. Cerca con Google

Hampton, S., Armstrong, G., Ayyar, M., Li, S. Quantification of perceived exertion during isometric force production with the borg scale in healthy individuals and patients with chronic stroke (2014) Topics in Stroke Rehabilitation, 21 (1), pp. 33-39. Cerca con Google

Helander, M. (2005). A guide to human factors and ergonomics. Crc Press. Cerca con Google

Hoozemans, M.J.M., Van Der Beek, A.J., Frings-Dresen, M.H.W. Pushing and pulling in relation to musculoskeletal complaints (2000). Proceedings of the XIVth Triennial Congress of the International Ergonomics Association and 44th Annual Meeting of the Human Factors and Ergonomics Association, 'Ergonomics for the New Millennium', p. 284. Cerca con Google

International Labour Organisation (ILO), 1986. Introduction to Work Study. Universal Publishing Corp., India , Third Revised Edition, 1986. Cerca con Google

Jaber, M. Y., & Neumann, W. P. (2010). Modelling worker fatigue and recovery in dual-resource constrained systems. Computers & Industrial Engineering, 59(1), 75-84. Cerca con Google

Jaber, M. Y., Givi, Z. S., & Neumann, W. P. (2013). Incorporating human fatigue and recovery into the learning–forgetting process. Applied Mathematical Modelling, 37 (12-13), 7287-7299. Cerca con Google

Jakobsen, M. D., Sundstrup, E., Persson, R., Andersen, C. H., & Andersen, L. L. (2014). Is Borg’s perceived exertion scale a useful indicator of muscular and cardiovascular load in blue-collar workers with lifting tasks? A cross-sectional workplace study. European journal of applied physiology, 114(2), 425-434. Cerca con Google

Jensen‐Urstad, K., Storck, N., Bouvier, F., Ericson, M., Lindbland, L. E., & Jensen‐Urstad, M. (1997). Heart rate variability in healthy subjects is related to age and gender. Acta Physiologica Scandinavica, 160(3), 235–241. Cerca con Google

Jung, H. S. (2010). A survey of the optimal handle position for boxes with different sizes and manual handling positions. Applied Ergonomics, 41(1), 115-122. Cerca con Google

Karvonen, J., & Vuorimaa, T. (1988). Heart rate and exercise intensity during sports activities. Sports Medicine, 5(5), 303-311. Cerca con Google

Karwowski, W. (2005). Ergonomics and human factors: the paradigms for science, engineering, design, technology and management of human-compatible systems. Ergonomics, 48 (5), 436-463. Cerca con Google

Keytel, L. R., Goedecke, J. H., Noakes, T. D., Hiiloskorpi, H., Laukkanen, R., Van Der Merwe, L., & Lambert, E. V. (2005). Prediction of energy expenditure from heart rate monitoring during submaximal exercise. Journal of Sports Sciences, 23(3), 289–297. Cerca con Google

Kim, S., & Nussbaum, M. A. (2013). Performance evaluation of a wearable inertial motion capture system for capturing physical exposures during manual material handling tasks. Ergonomics, 56(2), 314-326. Cerca con Google

Konz, S. (1998a). Work/rest: Part I–Guidelines for the practitioner. International journal of industrial ergonomics, 22(1), 67-71. Cerca con Google

Konz, S. (1998b). Work/rest: Part II–The scientific basis (knowledge base) for the guide1. International Journal of Industrial Ergonomics, 22(1-2), 73-99. Cerca con Google

Kuo, T.B.J., Li, J.-Y., Chen, C.-Y., Lin, Y.-C., Tsai, M.-W., Lin, S.-P., Yang, C.C.H. Influence of Accelerometer Placement and/or Heart Rate on Energy Expenditure Prediction during Uphill Exercise (2018). Journal of Motor Behavior, 50 (2), pp. 127-133. Cerca con Google

Larco, J. A., de Koster, R., Roodbergen, K. J., & Dul, J. (2016). Managing warehouse efficiency and worker discomfort through enhanced storage assignment decisions. International Journal of Production Research, 1-16. Cerca con Google

Lee, K. S., Chaffin, D. B., Herrin, G. D., & Waikar, A. M. (1991). Effect of handle height on lower-back loading in cart pushing and pulling. Applied Ergonomics, 22(2), 117-123. Cerca con Google

Leger, L., & Thivierge, M. (1988). Heart rate monitors: validity, stability, and functionality. The Physician and Sportsmedicine, 16(5), 143–51. Cerca con Google

Li, R., Deurenberg, P., & Hautvast, J. G. (1993). A critical evaluation of heart rate monitoring to assess energy expenditure in individuals. The American Journal of Clinical Nutrition, 58(5), 602–607. Cerca con Google

Lodree Jr, E. J., & Geiger, C. D. (2010). A note on the optimal sequence position for a rate-modifying activity under simple linear deterioration. European Journal of Operational Research, 201(2), 644-648. Cerca con Google

Lodree, E. J., Geiger, C. D., & Jiang, X. (2009). Taxonomy for integrating scheduling theory and human factors: Review and research opportunities. International Journal of Industrial Ergonomics, 39 (1), 39-51. Cerca con Google

Luger, T., Bosch, T., Veeger, D., & de Looze, M. (2014). The influence of task variation on manifestation of fatigue is ambiguous–a literature review. Ergonomics, 57(2), 162-174. Cerca con Google

Ma, L., Chablat, D., Bennis, F., & Zhang, W. (2009). A new simple dynamic muscle fatigue model and its validation. International Journal of Industrial Ergonomics, 39 (1), 211-220. Cerca con Google

Ma, L., Zhang, W., Wu, S., & Zhang, Z. (2015). A new simple local muscle recovery model and its theoretical and experimental validation. International Journal of Occupational Safety and Ergonomics, 21 (1), 86-93. Cerca con Google

Macey, S. L. (2010). The dynamics of progress: Time, method, and measure. University of Georgia Press. Cerca con Google

Maman, Z. S., Yazdi, M. A. A., Cavuoto, L. A., & Megahed, F. M. (2017). A data-driven approach to modeling physical fatigue in the workplace using wearable sensors. Applied ergonomics, 65, 515-529. Cerca con Google

Manenica, I. (1986). A technique for postural load assessment. The Ergonomics of Working Postures. Taylor and Francis, Londres, pp. 270-277. Cerca con Google

Marshall, M. M., Armstrong, T. J., & Ebersole, M. L. (2004). Verbal estimation of peak exertion intensity. Human factors, 46(4), 697-710. Cerca con Google

Maxfield, M. E. (1971). The indirect measurement of energy expenditure in industrial situations. The American journal of clinical nutrition, 24 (9), 1126-1138. Cerca con Google

McNaughton, R. (1959). Scheduling with deadlines and loss functions. Management Science, 6 (1), 1-12. Cerca con Google

Michalos, G., Makris, S., Rentzos, L., Chryssolouris, G. (2010). Dynamic job rotation for workload balancing in human based assembly systems. CIRP Journal of Manufacturing Science and Technology, 2 (3), pp. 153-160. Cerca con Google

Milner, N. (1986). Modelling fatigue and recovery in static postural exercise. Clinical Biomechanics, 1 (1), 29. Cerca con Google

Napolitano, M. (2012). 2012 warehouse/DC operations survey: mixed signals. Logistics management (Highlands Ranch, Colo.: 2002), 51(11). Cerca con Google

Neumann, P., & Dul, J. (2010). Human factors: spanning the gap between OM and HRM. International journal of operations & production management, 30(9), 923-950. Cerca con Google

Ning, X., Zhou, J., Dai, B., & Jaridi, M. (2014). The assessment of material handling strategies in dealing with sudden loading: The effects of load handling position on trunk biomechanics. Applied ergonomics, 45(6), 1399-1405. Cerca con Google

Nunes, I. L. (2009). FAST ERGO_X–a tool for ergonomic auditing and work-related musculoskeletal disorders prevention. Work, 34(2), 133-148 Cerca con Google

Othman, M., Gouw, G. J., & Bhuiyan, N. (2012). Workforce scheduling: A new model incorporating human factors. Journal of Industrial Engineering and Management, 5(2), 259. Cerca con Google

Otto, A., & Battaïa, O. (2017). Reducing physical ergonomic risks at assembly lines by line balancing and job rotation: A survey. Computers & Industrial Engineering, 111, 467-480. Cerca con Google

Pan, J. C. H., Wu, M. H., & Chang, W. L. (2014). A travel time estimation model for a high-level picker-to-part system with class-based storage policies. European Journal of Operational Research, 237(3), 1054-1066. Cerca con Google

Patrick Neumann, W., & Dul, J. (2010). Human factors: spanning the gap between OM and HRM. International journal of operations & production management, 30(9), 923-950. Cerca con Google

Payne, P. R., Wheeler, E. F., & Salvosa, C. B. (1971). Prediction of daily energy expenditure from average pulse rate. The American Journal of Clinical Nutrition, 24(9), 1164–1170. Cerca con Google

Perez, J., De Looze, M. P., Bosch, T., & Neumann, W. P. (2014). Discrete event simulation as an ergonomic tool to predict workload exposures during systems design. International Journal of Industrial Ergonomics, 44(2), 298-306. Cerca con Google

Pichot, V., Roche, F., Gaspoz, J. M., Enjolras, F., Antoniadis, A., Minini, P., ... & Barthelemy, J. C. (2000). Relation between heart rate variability and training load in middle-distance runners. Medicine and Science in Sports and Exercise, 32(10), 1729–1736. Cerca con Google

Pope, D. P., Silman, A. J., Cherry, N. M., Pritchard, C., & Macfarlane, G. J. (1998). Validity of a self-completed questionnaire measuring the physical demands of work. Scandinavian journal of work, environment & health, 376-385. Cerca con Google

Price, A. D. (1990). Calculating relaxation allowances for construction operatives—Part 1: Metabolic cost. Applied ergonomics, 21(4), 311-317. Cerca con Google

Rajesh, R. (2016). Manual material handling: A classification scheme. Procedia Technology, 24, 568-575. Cerca con Google

Rashedi, E., & Nussbaum, M. A. (2017). Quantifying the history dependency of muscle recovery from a fatiguing intermittent task. Journal of biomechanics, 51, 26-31. Cerca con Google

Rohmert, W. (1960). Ermittlung von Erholungspausen fur Statische Arbeit des Menschen. Internationale Zeitschrift fur Angewandte Physiologie Einschliesslich Arbeitphysiologie 18: 123-164. Cerca con Google

Rohmert, W. (1973). Problems of determination of rest allowances Part 2: Determining rest allowances in different human tasks. Applied Ergonomics, 4(3), 158-162. Cerca con Google

Rose, L. M., Neumann, W. P., Hägg, G. M., & Kenttä, G. (2014). Fatigue and recovery during and after static loading. Ergonomics, 57(11), 1696-1710. Cerca con Google

Rose, L., Ericson, M. O., Glimskär, B., Nordgren, B., & Örtengren, R. (1992). Ergo-index. Development of a model to determine pause needs after fatigue and pain reactions during work. Computer Applications in Ergonomics, Occupational Safety and Health (Eds: M Mattila and W Karwowski), Elsevier Publishers BV. North-Holland, 461-468. Cerca con Google

Rusko, H. (2004). Influence of Increased Duration or Intensity on Training Load as evaluated by EPOC and TRIMPS. ACSM congress presentation. http://www.firstbeat.fi/userData/firstbeat/download/rusko_acsm_2004_congress.pdf Vai! Cerca con Google

Rusko, H.K., Pulkkinen, A., Saalasti, S., Hynynen, E. & Kettunen, J. (2003). Prediction of EPOC: A tool for monitoring fatigue accumulation during exercise? ACSM Congress, San Francisco, May 28-31, 2003. Abstract: Medicine and Science in Sports and Exercise 35 (5): Suppl: S183. Cerca con Google

Sato, H., Ohashi, J., Iwanaga, K., Yoshitake, R., Shimada, K. (1984). Endurance time and fatigue in static contractions. Journal of Human Ergology, Vol. 13: 147-154. Cerca con Google

Seppänen, M.J. (2005) Effect of increased velocity and duration of running on training load as evaluated by EPOC. Master’s thesis, University of Jyväskylä, Department of Biology of Physical Activity. (In Finnish: Nopeuden ja keston vaikutukset tasavauhtisten juoksuharjoi- tusten kuormittavuuteen.) Cerca con Google

Sjogaard, g. (1986). Intramuscular changes during long-term contraction. The Ergonomics of Working Postures-Models, Methods and Cases. Taylor and Francis, London, pp. 136-143. Cerca con Google

Snook, S. H., & Ciriello, V. M. (1991). The design of manual handling tasks: revised tables of maximum acceptable weights and forces. Ergonomics, 34(9), 1197-1213. Cerca con Google

Snook, Stover H, and Vincent M Ciriello. (1991). “The Design of Manual Handling Tasks: Revised Tables of Maximal Acceptable Weights and Forces.” Ergonomics 34 (9): 1197–1213. Cerca con Google

Song, J., Lee, C., Lee, W., Bahn, S., Jung, C., & Yun, M. H. (2016). Development of a job rotation scheduling algorithm for minimizing accumulated work load per body parts. Work, 53(3), 511-521. Cerca con Google

Sonne, M. W., & Potvin, J. R. (2015). Fatigue accumulation and twitch potentiation during complex MVC-relative profiles. Journal of Electromyography and Kinesiology, 25 (4), 658-666. Cerca con Google

Sonne, M. W., Hodder, J. N., Wells, R., & Potvin, J. R. (2015). Force time-history affects fatigue accumulation during repetitive handgrip tasks. Journal of Electromyography and Kinesiology, 25(1), 130-135. Cerca con Google

Spurr, G. B., Prentice, A. M., Murgatroyd, P. R., Goldberg, G. R., Reina, J. C., & Christman, N. T. (1988). Energy expenditure from minute-by-minute heart-rate recording: comparison with indirect calorimetry. The American Journal of Clinical Nutrition, 48(3), 552–559. Cerca con Google

Stanton, N., Salmon, P. M., & Rafferty, L. A. (2013). Human factors methods: a practical guide for engineering and design. Ashgate Publishing, Ltd.. Cerca con Google

Strath, S. J., Swartz, A. M., Bassett Jr, D. R., O'Brien, W. L., King, G. A., & Ainsworth, B. E. (2000). Evaluation of heart rate as a method for assessing moderate intensity physical activity. Medicine and Science in Sports and Exercise, 32(9 Suppl.), S465–70. Cerca con Google

Süer, G. A., & Dagli, C. (2005). Intra-cell manpower transfers and cell loading in labor-intensive manufacturing cells. Computers & Industrial Engineering, 48(3), 643-655. Cerca con Google

Swaen, G.M.H., Van Amelsvoort, L.G.P.M., Bültmann, U., Kant, I.J. (2003). Fatigue as a risk factor for being injured in an occupational accident: Results from the Maastricht Cohort Study. Occupational and Environmental Medicine, 60 (SUPPL. 1), pp. i88-i92. Cerca con Google

Tompkins, J. A., White, J. A., Bozer, Y. A., & Tanchoco, J. M. A. (2010). Facilities Planning. John Wiley & Sons. Cerca con Google

Waters, T. R., & Putz-Anderson, V. (1996). Manual materials handling. Occupational safety and health. New York, 27, 329-350. Cerca con Google

Wilson, J. R. (2000). Fundamentals of ergonomics in theory and practice. Applied ergonomics, 31(6), 557-567. Cerca con Google

Winkel, J., & Mathiassen, S. E. (1994). Assessment of physical work load in epidemiologic studies: concepts, issues and operational considerations. Ergonomics, 37(6), 979-988. Cerca con Google

Wogalter, M. S., Hancock, P. A., & Dempsey, P. G. (1998). On the Description and Definition of Human Factors/Ergonomics. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 42 (10): 671–674. Cerca con Google

Xia, T., & Law, L. A. F. (2008). A theoretical approach for modeling peripheral muscle fatigue and recovery. Journal of biomechanics, 41(14), 3046-3052. Cerca con Google

Xu, J., Xu, X., & Xie, S. Q. (2011). Recent developments in Dual Resource Constrained (DRC) system research. European Journal of Operational Research, 215(2), 309-318. Cerca con Google

Yang, C. L., & Nguyen, T. P. Q. (2016). Constrained clustering method for class-based storage location assignment in warehouse. Industrial Management & Data Systems, 116(4), 667-689. Cerca con Google

Ye, T., & Pan, X. (2015). A convenient prediction model for complete recovery time after exhaustion in high-intensity work. Ergonomics, 58 (8), 1433-1444. Cerca con Google

Zhang, Z., Li, K. W., Zhang, W., Ma, L., & Chen, Z. (2014). Muscular fatigue and maximum endurance time assessment for male and female industrial workers. International Journal of Industrial Ergonomics, 44(2), 292-297. Cerca con Google

Zhu, Z., Zheng, F., & Chu, C. (2017). Multitasking scheduling problems with a rate-modifying activity. International Journal of Production Research, 55(1), 296-312. Cerca con Google

Zwarts, M. J., Bleijenberg, G., & Van Engelen, B. G. M. (2008). Clinical neurophysiology of fatigue. Clinical neurophysiology, 119(1), 2-10. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record