Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Moz, Stefania (2018) Emerging role of monocytes and of their intracellular calcium content in spondyloarthritis. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document - Accepted Version
1794Kb

Abstract (italian or english)

Background. The Spondyloarthritis (SpA) are a group of a multifactorial diseases characterised by a complex interplay between an inherited background and environmental factors that lead to immune response dysregulation and inflammation of the joints, mainly the sacro-ileal. Different from rheumatoid arthritis, there are no specific biomarkers for disease activity in the SpA that could be used in clinical practice. New biomarkers discovery could be helpful for early diagnosis, monitoring of disease activity, as well as for prognosis, outcome measures, and for assessing treatment efficacy. In SpA patients, macrophages infiltrating the inflamed joints, derive from circulating monocytes, express not only inflammatory cytokines, like TNF-α, IL-1β or TGF-β, but also enzymes causing tissue destruction and remodelling, like metalloproteinases. Metalloproteinases (MMPs), MMP3 in particular, have been reported to be highly expressed in synovial tissue and in peripheral blood of SpA patients. Recent studies have showed that MMP8 and MMP9, in particular, are produced by peripheral blood mononuclear cells (PBMCs) if they are stimulated by calprotectin (S100A8/S100A9 heterodimer). The SpA synovial tissue is characterized by an increased vascularization and an infiltrate composed of nucleated polymorphs, macrophages and lymphocytes. In these cells calcium signals are essential for various cellular functions, including proliferation, differentiation, apoptosis, and gene transcription. The aims of this work are to investigate whether the TNF-α, IL-1β, TGF-β, S100A8, S100A9, MMP3, MMP8 and MMP9 mRNA expression levels and intracellular calcium ([Ca2+]i) fluxes variations in PBMCs might be associated with SpA.
Methods. The study population comprised 64 patients with a diagnosis of SpA (39 males and 25 females; mean age±standard deviation: 39.5±13.2 years) and 100 healthy controls (58 males and 42 females; mean age±standard deviation: 46.68.5). Among patients, 26 (40.6%) had diagnosis of Ankylosing Spondylitis (AS), (modified New York criteria) and 38 (59.3%) had a diagnosis of Psoriatic Arthritis (PsA) (CASPAR criteria). Blood samples were collected and complete blood count, CRP, ESR, uric acid, ALT and glucose were evaluated. Relative quantification (Real Time PCR) of TNF-α, IL-1β, TGF-β, S100A8, S100A9, MMP3, MMP8 and MMP9 mRNA were performed. Intracellular calcium ([Ca2+]i) fluxes were studied in patients and controls monocyte cells by a fluorescent microscope.
Results. The mRNA expression levels in PBMCs of TNF-α, IL-1β, TGF-β were similar in AS and PsA patients when compared to controls. The variations of TNF-α, TGF-β and IL-1β were correlated each other. TNF-α mRNA expression levels also show a significant correlation if patient’s relatives with SpA where found (t=-2.5386, p=0.013).
MMP8 and MMP9 mRNA expression levels did not vary between controls and patients, nor they were related to disease clinical activity indices. S100A9 mRNA expression did not vary, the expression of S100A8 (F=3.29, p=0.039) was reduced in PsA patients. S100A8 and S100A9 expression levels were significantly correlated with circulating inflammatory cells and S100A8 was correlated with CRP and ESR. Monocytes from healthy controls had evident and frequent ([Ca2+]i) oscillations, while SpA patients monocytes did not. The percentage of cells exhibiting ([Ca2+]i) oscillations profile was significantly lower in AS with respect to controls (F=6.15, p=0.003). The percentage of monocytes with intracellular calcium oscillations and the studied molecules were not correlated with the type of therapy or of drug used.
Conclusions. SpA associates with a reduced expression of the inflammatory S100A8 calcium binding protein and with a decreased intracellular calcium fluxes in patients' cells compared to healthy subjects, suggesting that the presence of the disease affects the "on-off" mechanisms that regulate the concentration of intracellular calcium.

Abstract (a different language)

Introduzione. Le Spondiloartriti (SpA) sono un gruppo di malattie multifattoriali caratterizzate da una complessa interazione tra fattori genetici ed ambientali che determinano una disregolazione del sistema immunitario e l’attivazione di processi infiammatori a livello articolare, in particolar modo nelle articolazioni sacro-iliache. A differenza dell’artrite reumatoide, nelle SpA non esistono dei biomarcatori specifici di attività di malattia che vengono utilizzati nella pratica clinica. Pertanto, la ricerca di nuovi biomarcatori potrebbe essere d’ausilio per una diagnosi precoce e per un adeguato monitoraggio dell’attività di malattia, oltre che essere impiegati come fattori prognostici, misure di outcome e strumenti di valutazione dell’efficacia di trattamento.Nei pazienti con SpA, i macrofagi che infiltrano le articolazioni e che derivano principalmente dai monociti circolanti non esprimono solo citochine infiammatorie come TNF-α, IL-1β o TGF-β ma anche enzimi coinvolti nel rimodellamento tissutale come le metallo proteinasi di matrice (MMPs). La metalloproteinasi di matrice 3 (MMP-3), infatti, è riconosciuta come una molecola altamente espressa nel tessuto sinoviale e nel sangue periferico dei pazienti con SpA. Studi recenti hanno evidenziato che le metallo proteinasi di matrice 8 e 9 (MMP8 e MMP9) vengono prodotte dalle cellule mononucleate derivate da sangue periferico (PBMCs) quando vengono stimolate da calprotectina (eterodimero formato dalle proteine S100A8 e S100A9).Vi è poi una crescente evidenza del ruolo patogenetico nelle Spa svolto dalle cellule appartenenti all’immunità innata quali macrofagi, mastociti e neutrofili; il tessuto sinoviale dei pazienti con SpA infatti è caratterizzato da una elevata vascolarizzazione e quindi da una forte infiltrazione delle cellule immunitarie. In queste cellule i segnali di calcio intracellulare sono essenziali nella regolazione di numerose funzioni cellulari incluse proliferazione, differenziazione, apoptosi e trascrizione genica.
Lo scopo di questo lavoro è stato quello di analizzare i livelli di espressione genica delle molecole TNF-α, IL-1β, TGF-β, S100A8, S100A9, MMP3, MMP8 e MMP9 e di valutare se le variazione dei flussi di calcio intracellulare ([Ca2+]i) nei PBMCs potrebbero essere associati alla presenza di SpA.
Metodi.La popolazione studiata comprendeva 64 pazienti con diagnosi di SpA (età media ± deviazione standard: 39.5 ± 13.2 anni; 39 maschi, 25 femmine) e 100 controlli sani (età media ± deviazione standard: 46.6 ± 8.5 anni; 58 maschi, 42 femmine). Tra i pazienti, 26 (40.6%) presentavano spondilite anchilosante (AS) e 38 (59.3%) artrite psoriasica (PsA), con diagnosi formulata sulla base dei criteri rispettivamente di New York e CASPAR. Per ciascun soggetto arruolato, sono stati raccolti i dati demografici e fisiologici, la storia clinica e familiare. Sono stati raccolti poi, campioni di sangue, al fine di valutare l’emocromo e la VES, e di determinare i livelli di PCR, acido urico, prealbumina, alanina aminotransferasi (ALT) e glucosio.
Per ciascun soggetto è stata effettuata un’analisi di espressione genica relativa (Real Time PCR) di
TNF-α, IL-1β, TGF-β, S100A8, S100A9, MMP3, MMP8 e MMP9. La determinazione dei flussi di calico intracellulare ([Ca2+]i) nei pazienti e nei controlli è stata effettuate mediante microscopio ad epifluorescenza.
Risultati. I livelli di espressione genica relativa nei PBMCs delle citochine infiammatorie of TNF-α, IL-1β, TGF-β erano simili nei pazienti con AS e PsA se comparati ai livelli di espressione nei controlli sani. Le variazioni dei livelli di espressione di TNF-α, TGF-β e IL-1β correlavano tra di loro. I livelli di espressione di TNF-α però risultavano correlati in maniera diretta, nei pazienti, con la presenza di una familiarità per la malattia (t=-2.5386, p=0.013). I livelli di espressione di MMP8 e MMP9 non risultavano essere associati con la diagnosi di SpA e non correlavano con gli indici clinici di attività di malattia.Anche i livelli di espressione di S100A9 non risultavano essere associati con la diagnosi di SpA mentre i livelli di espressione di S100A8 (F=3.29, p=0.039) erano ridotti nei pazienti con PsA.I livelli di espressione di S100A8 e S100A9 correlavano in maniera significativa con il numero di cellule infiammatorie circolanti e S100A8 correlava con i valori di PCR e VES. Dall’analisi dei dati ottenuti dai controlli sani e dai pazienti risultava evidente come la maggior parte dei monociti dei soggetti di controllo presentassero pulsazioni regolari di calcio intracellulare a differenza delle cellule ottenute da pazienti.I pazienti affetti da AS presentavano una ridotta percentuale di monociti con oscillazioni dei flussi di calcio intracellulare rispetto ai controlli sani (F=6.15, p=0.003). La percentuale di monociti con variazione di calcio intracellulare e l’ espressione delle molecole studiate non risultavano essere correlati ne con il tipo di terapia ne con il tipo di farmaco utilizzato.
Conclusioni. In conclusione, I risultati di questo studio hanno evidenziato che nei pazienti con SpA vi è una ridotta espressione della proteina legante calcio S100A8 e vi è un decremento dei flussi di calcio intracellulare rispetto ai controlli sani, suggerendo che la presenza della malattia influenza i meccanismi "on-off" che regolano la concentrazione di calcio intracellulare.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Punzi, Leonardo
Ph.D. course:Ciclo 31 > Corsi 31 > SCIENZE CLINICHE E SPERIMENTALI
Data di deposito della tesi:16 November 2018
Anno di Pubblicazione:16 November 2018
Key Words:Spondiloartriti, biomarcatori, infiammazione, Ankylosis spondylitis, psoriatic arthritis, intracellular calcium fluxes
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/16 Reumatologia
Struttura di riferimento:Dipartimenti > Dipartimento di Medicina
Codice ID:11336
Depositato il:08 Nov 2019 10:25
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Moll JM, Haslock I, Macrae IF, Wright V. Associations between ankylosing spondylitis, psoriatic arthritis, Reiter's disease, the intestinal arthropathies, and Behcet's syndrome. Medicine 1974;53:343-64. Cerca con Google

2. Giovannini L, Orlandi M, Lodato C, Cioffi E, Tenti S, Bardelli M, Talarico R, Guiducci S. One year in review 2015: spondyloarthritis. Clin Exp Rheumatol 2015;33:769-78. Cerca con Google

3. Garg N, van den Bosch F, Deodhar A. The concept of spondyloarthritis: where are we now? Best Pract Res Clin Rheumatol 2014;28:663-72. Cerca con Google

4. Dougados M, Baeten D. Spondyloarthritis. Lancet 2011;377:2127-37. Cerca con Google

5. Terenzi R, Monti S, Tesei G, Carli L. One year in review 2017:spondyloarthritis. Clin Exp Rheumatol. 2018;36(1):1-14. Cerca con Google

6. van der Heijde D, Ramiro S, Landewé R, Baraliakos X, Van den Bosch F, SeprianoA, Regel A, Ciurea A, Dagfinrud H, Dougados M, van Gaalen F, Géher P, van der Horst-Bruinsma I, Inman RD, Jongkees M, Kiltz U, Kvien TK, Machado PM, Marzo-Ortega H, Molto A, Navarro-Compàn V, Ozgocmen S, Pimentel-Santos FM, Reveille J, Rudwaleit M, Sieper J, Sampaio-Barros P, Wiek D, Braun J. 2016 update of the ASAS-EULAR management recommendations for axial spondyloarthritis. AnnRheum Dis. 2017;76(6):978-91. Cerca con Google

7. Strand V, Singh JA. Patient Burden of Axial Spondyloarthritis. J Clin Rheumatol. 2017;23(7):383-91. Cerca con Google

8. Rudwaleit M, van der Heijde D, Khan MA, Braun J, Sieper J. How to diagnose axial spondyloarthritis early. Ann Rheum Dis. 2004;63(5):535-43. Cerca con Google

9. van Tubergen A. The changing clinical picture and epidemiology of spondyloarthritis. Nat Rev Rheumatol. 2015 Feb;11(2):110-8.Review. Cerca con Google

10. van der Linden S, Valkenburg HA, Cats A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum. 1984;27(4):361-8. Cerca con Google

11. Amor B, Dougados M, Mijiyawa M. [Criteria of the classification of spondylarthropathies]. Rev Rhum Mal Osteoartic. 1990;57(2):85-9. Cerca con Google

12. Dougados M, van der Linden S, Juhlin R, Huitfeldt B, Amor B, Calin A, Cats A, Dijkmans B, Olivieri I, Pasero G, et al. The European Spondylarthropathy Study Group preliminary criteria for the classification of spondylarthropathy. Arthritis Rheum. 1991 ;34(10):1218-27. Cerca con Google

13. Rudwaleit M, Braun J, Sieper J; Assessment of SpondyloArthritis international Society. [ASAS classification criteria for axial spondyloarthritis]. Z Rheumatol. 2009;68(7):591-3. Cerca con Google

14. Rudwaleit M, van der Heijde D, Landewé R, Akkoc N, Brandt J, Chou CT, Dougados M, Huang F, Gu J, Kirazli Y, Van den Bosch F, Olivieri I, Roussou E, Scarpato S, Sørensen IJ, Valle-Oñate R, Weber U, Wei J, Sieper J. The Assessment of SpondyloArthritis International Society classification criteria for peripheral spondyloarthritis and for spondyloarthritis in general. Ann Rheum Dis. 2011;70(1):25-31. Cerca con Google

15. Rudwaleit M, van der Heijde D, Landewé R, Listing J, Akkoc N, Brandt J, Braun J, Chou CT, Collantes-Estevez E, Dougados M, Huang F, Gu J, Khan MA, Kirazli Y,Maksymowych WP, Mielants H, Sørensen IJ, Ozgocmen S, Roussou E, Valle-Oñate R,Weber U, Wei J, Sieper J. The development of Assessment of SpondyloArthritis international Society classification criteria for axial spondyloarthritis (part II): validation and final selection. Ann Rheum Dis. 2009;68(6):777-83. Cerca con Google

16. Akkoc N. Are spondyloarthropathies as common as rheumatoid arthritis worldwide? A review. Curr Rheumatol Rep. 2008;10(5):371-8. Review. Cerca con Google

17. Reveille JD, Witter JP, Weisman MH. Prevalence of axial spondylarthritis in the United States: estimates from a cross-sectional survey. Arthritis Care Res (Hoboken). 2012;64(6):905-10. Cerca con Google

18. Hukuda S, Minami M, Saito T, Mitsui H, Matsui N, Komatsubara Y, Makino H, Shibata T, Shingu M, Sakou T, Shichikawa K. Spondyloarthropathies in Japan: nationwide questionnaire survey performed by the Japan Ankylosing Spondylitis Society. J Rheumatol. 2001;28(3):554-9. Cerca con Google

19. Boyer GS, Templin DW, Cornoni-Huntley JC, Everett DF, Lawrence RC, Heyse SF, Miller MM, Goring WP. Prevalence of spondyloarthropathies in Alaskan Eskimos. J Rheumatol. 1994;21(12):2292-7. Cerca con Google

20. Alexeeva L, Krylov M, Vturin V, Mylov N, Erdesz S, Benevolenskaya L. Prevalence of spondyloarthropathies and HLA-B27 in the native population of Chukotka, Russia. J Rheumatol. 1994;21(12):2298-300. Cerca con Google

21. Muñoz-Fernández S, de Miguel E, Cobo-Ibáñez T, Carmona L, Steiner M, Descalzo MA, Ferreira A, Balsa A, Martín-Mola E; ESPIDEP Study Group. Early spondyloarthritis: results from the pilot registry ESPIDEP. Clin Exp Rheumatol. 2010;28(4):498-503. Cerca con Google

22. Costantino F, Talpin A, Said-Nahal R, Goldberg M, Henny J, Chiocchia G, Garchon HJ, Zins M, Breban M. Prevalence of spondyloarthritis in reference to HLA-B27 in the French population: results of the GAZEL cohort. Ann Rheum Dis.2015;74(4):689-93. Cerca con Google

23. Zlatkovic-Svenda MI, Stojanovic RM, Sipetic-Grujicic SB, Radak-Perovic MM, Damjanov NS, Guillemin F. Prevalence of spondyloarthritis in Serbia: a EULAR endorsed study. Ann Rheum Dis. 2015;74(10):1940-2. Cerca con Google

24. Jenkinson TR, Mallorie PA, Whitelock HC, Kennedy LG, Garrett SL, Calin A. Defining spinal mobility in ankylosing spondylitis (AS). The Bath AS Metrology Index. J Rheumatol 1994;21:1694-8. Cerca con Google

25. Creemers MC, Franssen MJ, van't Hof MA, Gribnau FW, van de Putte LB, van Riel PL. Assessment of outcome in ankylosing spondylitis: an extended radiographic scoring system. Ann Rheum Dis. 2005;64(1):127-9. Epub 2004 Mar 29. Cerca con Google

26. Heuft-Dorenbosch L, Spoorenberg A, van Tubergen A, Landewé R, van ver Tempel H, Mielants H, Dougados M, van der Heijde D. Assessment of enthesitis in ankylosing spondylitis. Ann Rheum Dis 2003;62:127-32. Cerca con Google

27. Prevoo ML, van 't Hof MA, Kuper HH, van Leeuwen MA, van de Putte LB, van Riel PL. Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum 1995;38:44-8. Cerca con Google

28. Downie WW, Leatham PA, Rhind VM, Pickup ME, Wright V. The visual analogue scale in the assessment of grip strength. Ann Rheum Dis 1978;37:382-4. Cerca con Google

29. Downie WW, Leatham PA, Rhind VM, Wright V, Branco JA, Anderson JA. Studies with pain rating scales. Ann Rheum Dis 1978;37:378-81. Cerca con Google

30. Poddubnyy D, Sieper J. Radiographic progression in ankylosing spondylitis/axial spondyloarthritis: how fast and how clinically meaningful? Curr Opin Rheumatol. 2012;24(4):363-9. Cerca con Google

31. Haroon N, Inman RD, Learch TJ, Weisman MH, Lee M, Rahbar MH, Ward MM, Reveille JD, Gensler LS. The impact of tumor necrosis factor α inhibitors on radiographic progression in ankylosing spondylitis. Arthritis Rheum. 2013 ;65(10):2645-54. Cerca con Google

32. van Tubergen A, Weber U. Diagnosis and classification in spondyloarthritis: identifying a chameleon. Nat Rev Rheumatol. 2012;8(5):253-61. Cerca con Google

33. Sieper J, Rudwaleit M, Khan MA, Braun J. Concepts and epidemiology of spondyloarthritis. Best Pract Res Clin Rheumatol. 2006;20(3):401-17. Review. Cerca con Google

34. Mohan C, Assassi S. Biomarkers in rheumatic diseases: how can they facilitate diagnosis and assessment of disease activity? BMJ. 2015;351:h5079. Cerca con Google

35. Escalas C, Trijau S, Dougados M. Evaluation of the treatment effect of NSAIDs/TNF blockers according to different domains in ankylosing spondylitis: results of a meta-analysis. Rheumatology (Oxford). 2010;49(7):1317-25. Cerca con Google

36. Taurog JD, Chhabra A, Colbert RA. Ankylosing Spondylitis and Axial Spondyloarthritis. N Engl J Med. 2016;374(26):2563-74. Cerca con Google

37. Sieper J, Listing J, Poddubnyy D, Song IH, Hermann KG, Callhoff J, Syrbe U, Braun J, Rudwaleit M. Effect of continuous versus on-demand treatment of ankylosing spondylitis with diclofenac over 2 years on radiographic progression of the spine: results from a randomised multicentre trial (ENRADAS). Ann Rheum Dis. 2016;75(8):1438-43. Cerca con Google

38. Ward MM, Deodhar A, Akl EA, Lui A, Ermann J, Gensler LS, Smith JA, Borenstein D, Hiratzka J, Weiss PF, Inman RD, Majithia V, Haroon N, Maksymowych WP, Joyce J, Clark BM, Colbert RA, Figgie MP, Hallegua DS, Prete PE, Rosenbaum JT, Stebulis JA, van den Bosch F, Yu DT, Miller AS, Reveille JD, Caplan L. American College of Rheumatology/Spondylitis Association of America/Spondyloarthritis Research and Treatment Network 2015 Recommendations for the Treatment of Ankylosing Spondylitis and Nonradiographic Axial Spondyloarthritis. Arthritis Rheumatol. 2016;68(2):282-98. Cerca con Google

39. Chen J, Lin S, Liu C. Sulfasalazine for ankylosing spondylitis. Cochrane Database Syst Rev. 2014;(11):CD004800.Review. Cerca con Google

40. Chen J, Veras MM, Liu C, Lin J. Methotrexate for ankylosing spondylitis. Cochrane Database Syst Rev. 2013;(2):CD004524. Review. Cerca con Google

41. van Denderen JC, van der Paardt M, Nurmohamed MT, de Ryck YM, Dijkmans BA, van der Horst-Bruinsma IE. Double blind, randomised, placebo controlled study of leflunomide in the treatment of active ankylosing spondylitis. Ann Rheum Dis. 2005 ;64(12):1761-4. Cerca con Google

42. Gossec L, Smolen JS, Gaujoux-Viala C, Ash Z, Marzo-Ortega H, van der Heijde D, FitzGerald O, Aletaha D, Balint P, Boumpas D, Braun J, Breedveld FC, Burmester G, Cañete JD, de Wit M, Dagfinrud H, de Vlam K, Dougados M, Helliwell P, Kavanaugh A, Kvien TK, Landewé R, Luger T, Maccarone M, McGonagle D, McHugh N, McInnes IB, Ritchlin C, Sieper J, Tak PP, Valesini G, Vencovsky J, Winthrop KL, Zink A, Emery P; European League Against Rheumatism. European League Against Rheumatism recommendations for the management of psoriatic arthritis with pharmacological therapies. Ann Rheum Dis. 2012;71(1):4-12. Cerca con Google

43. Sieper J, Poddubnyy D. Axial spondyloarthritis. Lancet. 2017;390(10089):73-84. Review. Cerca con Google

44. Corbett M, Soares M, Jhuti G, Rice S, Spackman E, Sideris E, Moe-Byrne T, Fox D, Marzo-Ortega H, Kay L, Woolacott N, Palmer S. Tumour necrosis factor-α inhibitors for ankylosing spondylitis and non-radiographic axial spondyloarthritis: a systematic review and economic evaluation. Health Technol Assess. 2016;20(9):1-334.Review. Cerca con Google

45. Steeland S, Libert C, Vandenbroucke RE. A New Venue of TNF Targeting. Int J Mol Sci. 2018;19(5). pii: E1442. Review. Cerca con Google

46. Tubach F, Salmon D, Ravaud P, Allanore Y, Goupille P, Bréban M, Pallot-Prades B, Pouplin S, Sacchi A, Chichemanian RM, Bretagne S, Emilie D, Lemann M, Lortholary O, Mariette X; Research Axed on Tolerance of Biotherapies Group. Risk of tuberculosis is higher with anti-tumor necrosis factor monoclonal antibody therapy than with soluble tumor necrosis factor receptor therapy: The three-year prospective French Research Axed on Tolerance of Biotherapies registry. Arthritis Rheum. 2009;60(7):1884-94. Erratum in: Arthritis Rheum. 2009;60(8):2540. Lorthololary, O [corrected to Lortholary, O]. Cerca con Google

47. Dixon WG, Hyrich KL, Watson KD, Lunt M, Galloway J, Ustianowski A; B S R B R Control Centre Consortium, Symmons DP; BSR Biologics Register. Drug-specific risk of tuberculosis in patients with rheumatoid arthritis treated with anti-TNF therapy: results from the British Society for Rheumatology Biologics Register (BSRBR). Ann Rheum Dis. 2010;69(3):522-8. Cerca con Google

48. Strangfeld A, Listing J, Herzer P, Liebhaber A, Rockwitz K, Richter C, Zink A. Risk of herpes zoster in patients with rheumatoid arthritis treated with anti-TNF-alpha agents. JAMA. 2009;301(7):737-44. Cerca con Google

49. Ding NS, Hart A, De Cruz P. Systematic review: predicting and optimising response to anti-TNF therapy in Crohn's disease - algorithm for practical management. Aliment Pharmacol Ther. 2016;43(1):30-51.Review. Cerca con Google

50. Coates LC, Cawkwell LS, Ng NW, Bennett AN, Bryer DJ, Fraser AD, Emery P, Marzo-Ortega H. Real life experience confirms sustained response to long-term biologics and switching in ankylosing spondylitis. Rheumatology (Oxford). 2008;47(6):897-900. Cerca con Google

51. Coates LC, Cawkwell LS, Ng NW, Bennett AN, Bryer DJ, Fraser AD, Emery P, Marzo-Ortega H. Sustained response to long-term biologics and switching in psoriatic arthritis: results from real life experience. Ann Rheum Dis. 2008;67(5):717-9. Cerca con Google

52. Parma A, Cometi L, Leone MC, Lepri G, Talarico R, Guiducci S. One year in review 2016: spondyloarthritis.Clin Exp Rheumatol. 2017;35(1):3-17. Cerca con Google

53. Torres T, Faria R. Ustekinumab: The "New Kid on the Block" in the Treatment of Psoriatic Arthritis. Drug Dev Res. 2015;76(8):428-31. Cerca con Google

54. Veale DJ, Fearon U. The pathogenesis of psoriatic arthritis. Lancet. 2018;391(10136):2273-2284. Cerca con Google

55. Mahendran SM, Chandran V.Exploring the Psoriatic Arthritis Proteome in Search of Novel Biomarkers. Proteomes. 2018;6(1):piiE5. Cerca con Google

56. Veale D, Yanni G, Rogers S, Barnes L, Bresnihan B, Fitzgerald O. Reduced synovial membrane macrophage numbers, ELAM-1 expression, and lining layer hyperplasia in psoriatic arthritis as compared with rheumatoid arthritis. Arthritis Rheum. 1993;36(7):893-900. Cerca con Google

57. Kruithof E, Baeten D, De Rycke L, Vandooren B, Foell D, Roth J, Cañete JD, Boots AM, Veys EM, De Keyser F. Synovial histopathology of psoriatic arthritis, both oligo- and polyarticular, resembles spondyloarthropathy more than it does rheumatoid arthritis. Arthritis Res Ther. 2005;7(3):R569-80. Cerca con Google

58. Veale DJ, Fearon U. What makes psoriatic and rheumatoid arthritis so different? RMD Open. 2015;1(1):e000025. Review. Cerca con Google

59. Sucur A, Jajic Z, Artukovic M, Matijasevic MI, Anic B, Flegar D, Markotic A, Kelava T, Ivcevic S, Kovacic N, Katavic V, Grcevic D. Chemokine signals are crucial for enhanced homing and differentiation of circulating osteoclast progenitor cells. Arthritis Res Ther. 2017;19(1):142. Cerca con Google

60. Wright V, Moll JMH. Psoriatric Arthritis. In seronegative polyarthritis. Amsterdam: North Holland Publishing Co., 1976: 169–235. Cerca con Google

61. Narváez J, Narváez JA, de Albert M, Gómez-Vaquero C, Nolla JM. Can magnetic resonance imaging of the hand and wrist differentiate between rheumatoid arthritis and psoriatic arthritis in the early stages of the disease? Semin Arthritis Rheum. 2012;42(3):234-45. Cerca con Google

62. Stuart PE, Nair RP, Tsoi LC, Tejasvi T, Das S, Kang HM, Ellinghaus E, Chandran V, Callis-Duffin K, Ike R, Li Y, Wen X, Enerbäck C, Gudjonsson JE, Kõks S, Kingo K, Esko T, Mrowietz U, Reis A, Wichmann HE, Gieger C, Hoffmann P, Nöthen MM, Winkelmann J, Kunz M, Moreta EG, Mease PJ, Ritchlin CT, Bowcock AM, Krueger GG, Lim HW, Weidinger S, Weichenthal M, Voorhees JJ, Rahman P, Gregersen PK, Franke A, Gladman DD, Abecasis GR, Elder JT. Genome-wide Association Analysis of Psoriatic Arthritis and Cutaneous Psoriasis Reveals Differences in Their Genetic Architecture. Am J Hum Genet. 2015;97(6):816-36. Cerca con Google

63. Haroon M, Winchester R, Giles JT, Heffernan E, FitzGerald O. Certain class I HLA alleles and haplotypes implicated in susceptibility play a role in determining specific features of the psoriatic arthritis phenotype. Ann Rheum Dis. 2016;75(1):155-62. Cerca con Google

64. Mameli A, Cauli A, Taccari E, Scarpa R, Punzi L, Lapadula G, Peluso R, Ramonda R, Spadaro A, Iannone F, Fanni V, Vacca A, Passiu G, Fiorillo MT, Carcassi C, Sorrentino R, Mathieu A. Association of MICA alleles with psoriatic arthritis and its clinical forms. A multicenter Italian study. Clin Exp Rheumatol. 2008;26(4):649-52. Cerca con Google

65. Goupille P, Soutif D, Valat JP. Psoriatic arthritis precipitated by physical trauma. J Rheumatol. 1991;18(4):633. Cerca con Google

66. Taylor W, Gladman D, Helliwell P, Marchesoni A, Mease P, Mielants H. CASPAR Study Group. Classification criteria for psoriatic arthritis: development of new criteria from a large international study. Arthritis Rheum 2006;54:2665-73. Cerca con Google

67. Cervini C, Leardini G, Mathieu A, Punzi L, Scarpa R. Psoriatic arthritis: epidemiological and clinical aspects in a cohort of 1.306 Italian patients. Reumatismo 2005;57:283-90. Cerca con Google

68. Hansson C, Eriksson C, Alenius GM. S-calprotectin (S100A8/S100A9): a potential marker of inflammation in patients with psoriatic arthritis. J Immunol Res. 2014;2014:696415. Cerca con Google

69. Scrivo R, Conigliaro P, Riccieri V, Di Franco M, Alessandri C, Spadaro A, Perricone R, Valesini G. Distribution of interleukin-10 family cytokines in serum and synovial fluid of patients with inflammatory arthritis reveals different contribution to systemic and joint inflammation. Clin Exp Immunol. 2015;179(2):300-8. Cerca con Google

70. Alenius GM, Eriksson C, Rantapää Dahlqvist S. Interleukin-6 and soluble interleukin-2 receptor alpha-markers of inflammation in patients with psoriatic arthritis? Clin Exp Rheumatol. 2009;27(1):120-3. Cerca con Google

71. Chandran V, Cook RJ, Edwin J, Shen H, Pellett FJ, Shanmugarajah S, Rosen CF, Gladman DD. Soluble biomarkers differentiate patients with psoriatic arthritis from those with psoriasis without arthritis. Rheumatology (Oxford). 2010;49(7):1399-405. Cerca con Google

72. Ritchlin CT, Kavanaugh A, Gladman DD, Mease PJ, Helliwell P, Boehncke WH, de Vlam K, Fiorentino D, Fitzgerald O, Gottlieb AB, McHugh NJ, Nash P, Qureshi AA, Cerca con Google

73. Deodhar A. Spondyloarthropathies: TNF inhibitors and structural damage in ankylosing spondylitis. Nat Rev Rheumatol. 2018 Jan;14(1):5-6. Cerca con Google

74. Stolwijk C, Essers I, van Tubergen A, Boonen A, Bazelier MT, De Bruin ML, de Vries F. The epidemiology of extra-articular manifestations in ankylosing spondylitis: a population-based matched cohort study. Ann Rheum Dis. 2015;74(7):1373-8. Cerca con Google

75. Feldtkeller E, Khan MA, van der Heijde D, van der Linden S, Braun J. Age at disease onset and diagnosis delay in HLA-B27 negative vs. positive patients with ankylosing spondylitis. Rheumatol Int. 2003;23(2):61-6. Cerca con Google

76. Smith JA. Update on Ankylosing Spondylits:current concepts in pathogenesis. Curr Allergy Asthma Rep.2015;15(1):489. Cerca con Google

77. Thomas GP, Brown MA. Genetics and genomics of ankylosing spondylitis. Immunol Rev. 2010 ;233(1):162-80. Review. Cerca con Google

78. Thorsby E. HL-A antigens and genes. I. A study of unrelated Norwegians. Vox Sang. 1969;17(2):81-92. Cerca con Google

79. Brewerton DA. Discovery: HLA and disease. Curr Opin Rheumatol. 2003;15(4):369-73. Cerca con Google

80. Khan MA. Polymorphism of HLA-B27: 105 subtypes currently known. Curr Rheumatol Rep. 2013;15(10):362 Cerca con Google

81. Ramos M, López de Castro JA. HLA-B27 and the pathogenesis of spondyloarthritis. Tissue Antigens. 2002;60(3):191-205. Review. Cerca con Google

82. Chatzikyriakidou A, Voulgari PV, Drosos AA. What is the role of HLA-B27 in spondyloarthropathies? Autoimmun Rev. 2011;10(8):464-8. Cerca con Google

83. Benjamin R, Parham P. Guilt by association: HLA-B27 and ankylosing spondylitis. Immunol. Today. 1990;11:137–142. Cerca con Google

84. Atagunduz P, Appel H, Kuon W, Wu P, Thiel A, Kloetzel PM, Sieper J. HLA-B27-restricted CD8+ T cell response to cartilage-derived self peptides in ankylosing spondylitis. Arthritis Rheum. 2005;52:892–901. Cerca con Google

85. López de Castro J.A. HLA-B27 and the pathogenesis of spondyloarthropathies. Immunol. Lett. 2007;108:27–33. Cerca con Google

86. Breban M, Fernández-Sueiro JL, Richardson JA, Hadavand RR, Maika SD, Hammer R.E, Taurog JD. T cells, but not thymic exposure to HLA-B27, are required for the inflammatory disease of HLA-B27 transgenic rats. J. Immunol. 1996;156:794–803. Cerca con Google

87. May E, Dorris ML, Satumtira N, Iqbal I, Rehman MI, Lightfoot E, Taurog JD. CD8 αβ T cells are not essential to the pathogenesis of arthritis or colitis in HLA-B27 transgenic rats. J. Immunol. 2003;170:1099–1105. Cerca con Google

88. Schröder M, Kaufman RJ. ER stress and the unfolded protein response. Mutat. Res. 2005;569:29–63. Cerca con Google

89. Turner MJ, Sowders DP, DeLay ML, Mohapatra R, Bai S, Smith JA, Brandewie JR, Taurog JD, Colbert RA. HLA-B27 misfolding in transgenic rats is associated with activation of the unfolded protein response. J. Immunol. 2005;175:2438–2448. Cerca con Google

90. Tran T.M, Dorris M.L, Satumtira N, Richardson J.A, Hammer R.E, Shang J, Taurog J.D. Additional human β2-microglobulin curbs HLA-B27 misfolding and promotes arthritis and spondylitis without colitis in male HLA-B27-transgenic rats. Arthritis Rheum. 2006;54:1317–1327. Cerca con Google

91. Kollnberger S, Bird L, Sun M.Y, Retiere C, Braud V.M, McMichael A, Bowness P. Cell-surface expression and immune receptor recognition of HLA-B27 homodimers. Arthritis Rheum. 2002;46:2972–2982. Cerca con Google

92. Chan AT, Kollnberger SD, Wedderburn LR, Bowness P. Expansion and enhanced survival of natural killer cells expressing the killer immunoglobulin-like receptor KIR3DL2 in spondylarthritis. Arthritis Rheum. 2005;52:3586–3595. Cerca con Google

93. Brown MA, Kennedy LG, MacGregor AJ, Darke C, Duncan E, Shatford JL, Taylor A, Calin A, Wordsworth P. Susceptibility to ankylosing spondylitis in twins: the role of genes, HLA, and the environment. Arthritis Rheum. 1997;40(10):1823-8. Cerca con Google

94. International Genetics of Ankylosing Spondylitis Consortium (IGAS), Cortes A, Hadler J, Pointon JP, Robinson PC, Karaderi T, Leo P, Cremin K, Pryce K, HarrisJ, Lee S, Joo KB, Shim SC, Weisman M, Ward M, Zhou X, Garchon HJ, Chiocchia G, Nossent J, Lie BA, Førre Ø, Tuomilehto J, Laiho K, Jiang L, Liu Y, Wu X, Bradbury LA, Elewaut D, Burgos-Vargas R, Stebbings S, Appleton L, Farrah C, Lau J, Kenna TJ, Haroon N, Ferreira MA, Yang J, Mulero J, Fernandez-Sueiro JL, Gonzalez-Gay MA, Lopez-Larrea C, Deloukas P, Donnelly P; Australo-Anglo-American Spondyloarthritis Consortium (TASC); Groupe Française d'Etude Génétique des Spondylarthrites (GFEGS); Nord-Trøndelag Health Study (HUNT); Spondyloarthritis Research Consortium of Canada (SPARCC); Wellcome Trust Case Control Consortium 2 (WTCCC2), Bowness P, Gafney K, Gaston H, Gladman DD, Rahman P, Maksymowych WP, Xu H, Crusius JB, van der Horst-Bruinsma IE, Chou CT, Valle-Oñate R, Romero-Sánchez C, Hansen IM, Pimentel-Santos FM, Inman RD, Videm V, Martin J, Breban M, Reveille JD, Evans DM, Kim TH, Wordsworth BP, Brown MA. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat Genet. 2013;45(7):730-8. Cerca con Google

95. Gudjónsson JE, Kárason A, Antonsdóttir AA, Rúnarsdóttir EH, Gulcher JR, Stefánsson K, Valdimarsson H. HLA-Cw6-positive and HLA-Cw6-negative patients with Psoriasis vulgaris have distinct clinical features. J Invest Dermatol. 2002;118(2):362-5. Cerca con Google

96. Reveille JD. Biomarkers for diagnosis, monitoring of progression, and treatment responses in ankylosing spondylitis and axial spondyloarthritis. Clin Rheumatol. 2015 ;34(6):1009-18. Cerca con Google

97. Australo-Anglo-American Spondyloarthritis Consortium (TASC), Reveille JD, Sims AM, Danoy P, Evans DM, Leo P, Pointon et al. Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. Nat Genet 2010;42:123-7. Cerca con Google

98. McGonagle D, McDermott MF. A proposed classification of the immunological diseases. PLoS Med. 2006;3(8):e297. Cerca con Google

99. Gaston JS, Goodall JC, Baeten D. Interleukin-23: a central cytokine in the pathogenesis of spondylarthritis. Arthritis Rheum. 2011;63(12):3668-71. Cerca con Google

100. Pointon JJ, Harvey D, Karaderi T, Appleton LH, Farrar C, Stone MA, Sturrock RD, Reveille JD, Weisman MH, Ward MM, Brown MA, Wordsworth BP. The chromosome 16q region associated with ankylosing spondylitis includes the candidate gene tumour necrosis factor receptor type 1-associated death domain (TRADD). Ann Rheum Dis. 2010;69(6):1243-6. Cerca con Google

101. Zinovieva E, Bourgain C, Kadi A, Letourneur F, Izac B, Said-Nahal R, Lebrun N,Cagnard N, Vigier A, Jacques S, Miceli-Richard C, Garchon HJ, Heath S, Charon C, Bacq D, Boland A, Zelenika D, Chiocchia G, Breban M. Comprehensive linkage and association analyses identify haplotype, near to the TNFSF15 gene, significantly associated with spondyloarthritis. PLoS Genet. 2009;5(6):e1000528. Cerca con Google

102. Sims AM, Timms AE, Bruges-Armas J, Burgos-Vargas R, Chou CT, Doan T, Dowling A, Fialho RN, Gergely P, Gladman DD, Inman R, Kauppi M, Kaarela K, Laiho K, Maksymowych W, Pointon JJ, Rahman P, Reveille JD, Sorrentino R, Tuomilehto J, Vargas-Alarcon G, Wordsworth BP, Xu H, Brown MA; International Genetics of Ankylosing Spondylitis. Prospective meta-analysis of interleukin 1 gene complex polymorphisms confirms associations with ankylosing spondylitis. Ann Rheum Dis. 2008 Sep;67(9):1305-9. Cerca con Google

103. Vanaki N, Aslani S, Jamshidi A, Mahmoudi M. Role of innate immune system in the pathogenesis of ankylosing spondylitis. Biomed Pharmacother. 2018;105:130-143. [Epub ahead of print] Cerca con Google

104. Ambarus C, Yeremenko N, Tak PP, Baeten D. Pathogenesis of spondyloarthritis: autoimmune or autoinflammatory? Curr Opin Rheumatol. 2012;24(4):351-8. Cerca con Google

105. O'Rielly DD, Uddin M, Rahman P. Ankylosing spondylitis: beyond genome-wide association studies. Curr Opin Rheumatol. 2016;28(4):337-45.Review. Cerca con Google

106. Rezaiemanesh A, Abdolmaleki M, Abdolmohammadi K, Aghaei H, Pakdel FD, Fatahi Y, Soleimanifar N, Zavvar M, Nicknam MH. Immune cells involved in the pathogenesis of ankylosing spondylitis. Biomed Pharmacother. 2018;100:198-204. Cerca con Google

107. Garlanda C, Dinarello CA, Mantovani A. The interleukin-1 family: back to the future. Immunity. 2013;39(6):1003-18. Cerca con Google

108. Dinarello CA. Overview of the interleukin-1 family of ligands and receptors. Semin Immunol. 2013;25(6):389-93. Cerca con Google

109. Wojdasiewicz P, Poniatowski ŁA, Szukiewicz D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm. 2014;2014:561459. Review. Cerca con Google

110. van de Loo FA, Joosten LA, van Lent PL, Arntz OJ, van den Berg WB. Role of interleukin-1, tumor necrosis factor alpha, and interleukin-6 in cartilage proteoglycan metabolism and destruction. Effect of in situ blocking in murine antigen- and zymosan-induced arthritis. Arthritis Rheum. 1995;38(2):164-72. Cerca con Google

111. Nakamura I, Jimi E. Regulation of osteoclast differentiation and function by interleukin-1. Vitam Horm. 2006;74:357-70. Cerca con Google

112. Corrado A, Neve A, Maruotti N, Cantatore FP. Bone effects of biologic drugs in rheumatoid arthritis. Clin Dev Immunol. 2013;2013:945945. Review. Cerca con Google

113. Mundy GR. Osteoporosis and inflammation. Nutr Rev. 2007;65(12 Pt 2):S147-51. Review. Cerca con Google

114. Redlich K, Smolen JS. Inflammatory bone loss: pathogenesis and therapeutic intervention. Nat Rev Drug Discov. 2012;11(3):234-50. Review. Cerca con Google

115. Roux C. Osteoporosis in inflammatory joint diseases. Osteoporos Int. 2011;22(2):421-33. Cerca con Google

116. Ghozlani I, Ghazi M, Nouijai A, Mounach A, Rezqi A, Achemlal L, Bezza A, El Maghraoui A. Prevalence and risk factors of osteoporosis and vertebral fractures in patients with ankylosing spondylitis. Bone. 2009;44(5):772-6. Cerca con Google

117. Haibel H, Rudwaleit M, Listing J, Sieper J. Open label trial of anakinra in active ankylosing spondylitis over 24 weeks. Ann Rheum Dis. 2005;64(2):296-8. Cerca con Google

118. Davis JC Jr. Understanding the role of tumor necrosis factor inhibition in ankylosing spondylitis. Semin Arthritis Rheum. 2005;34(4):668-77. Review. Cerca con Google

119. Braun J, Bollow M, Neure L, Seipelt E, Seyrekbasan F, Herbst H, Eggens U, Distler A, Sieper J. Use of immunohistologic and in situ hybridization techniques in the examination of sacroiliac joint biopsy specimens from patients with ankylosing spondylitis. Arthritis Rheum. 1995;38(4):499-505. Cerca con Google

120. Gratacós J, Collado A, Filella X, Sanmartí R, Cañete J, Llena J, Molina R, Ballesta A, Muñoz-Gómez J. Serum cytokines (IL-6, TNF-α, IL-1β and IFN-γ) in ankylosing spondylitis: a close correlation between serum IL-6 and disease activity and severity. Br J Rheumatol. 1994;33(10):927-31. Cerca con Google

121. Bal A, Unlu E, Bahar G, Aydog E, Eksioglu E, Yorgancioglu R. Comparison of serum IL-1β, sIL-2R, IL-6, and TNF-α levels with disease activity parameters in ankylosing spondylitis. Clin Rheumatol. 2007;26(2):211-5. Cerca con Google

122. Campbell RD, Trowsdale J. Map of the human MHC. Immunol Today. 1993;14(7):349-52. Cerca con Google

123. Wilson AG, Symons JA, McDowell TL, McDevitt HO, Duff GW. Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc Natl Acad Sci U S A. 1997;94(7):3195-9. Cerca con Google

124. Elahi MM, Asotra K, Matata BM, Mastana SS. Tumor necrosis factor alpha -308 gene locus promoter polymorphism: an analysis of association with health and disease. Biochim Biophys Acta. 2009 Mar;1792(3):163-72. Cerca con Google

125. Wilson AG, de Vries N, Pociot F, di Giovine FS, van der Putte LB, Duff GW. An allelic polymorphism within the human tumor necrosis factor alpha promoter region is strongly associated with HLA A1, B8, and DR3 alleles. J Exp Med. 1993;177(2):557-60. Cerca con Google

126. D'Alfonso S, Richiardi PM. A polymorphic variation in a putative regulation box of the TNFA promoter region. Immunogenetics. 1994;39(2):150-4. Cerca con Google

127. Lee YH, Song GG. Lack of association of TNF-alpha promoter polymorphisms with ankylosing spondylitis: a meta-analysis. Rheumatology (Oxford). 2009;48(11):1359-62. Review. Cerca con Google

128. Li B, Wang P, Li H. The association between TNF-alpha promoter polymorphisms and ankylosing spondylitis: a meta-analysis. Clin Rheumatol. 2010;29(9):983-90. Cerca con Google

129. Vargas-Alarcón G, Casasola-Vargas J, Rodríguez-Pérez JM, Huerta-Sil G, Pérez-Hernández N, Londoño J, et al. Tumor necrosis factor-alpha promoter polymorphisms in Mexican patients with spondyloarthritis. Hum Immunol 2006;67:826-32. Cerca con Google

130. Shiau MY, Lo MK, Chang CP, Yang TP, Ho KT, Chang YH. Association of tumour necrosis factor alpha promoter polymorphisms with ankylosing spondylitis in Taiwan. Ann Rheum Dis 2007;66:562-3. Cerca con Google

131. Nossent JC, Sagen-Johnsen S, Bakland G. Tumor necrosis factor-α promoter -308/238 polymorphism association with less severe disease in ankylosing spondylitis is unrelated to serum TNF-α and does not predict TNF inhibitor response. J Rheumatol 2014;41:1675-82. Cerca con Google

132. Weiss A, Attisano L. The TGFbeta superfamily signaling pathway.Wiley Interdiscip Rev Dev Biol. 2013;2(1):47-63. Cerca con Google

133. Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease.N Engl J Med. 2000 May 4;342(18):1350-8. Cerca con Google

134. Chen W, Ten Dijke P. Immunoregulation by members of the TGFβ superfamily.Nat Rev Immunol. 2016;16(12):723-740. Cerca con Google

135. Oklü R, Hesketh R. The latent transforming growth factor beta binding protein (LTBP) family. Biochem J. 2000;352 Pt 3:601-10. Cerca con Google

136. Miyazono K, ten Dijke P, Heldin CH. TGF-beta signaling by Smad proteins. Adv Immunol. 2000;75:115-57. Review. Cerca con Google

137. Roberts AB. TGF-beta signaling from receptors to the nucleus. Microbes Infect.1999 ;1(15):1265-73. Review. Cerca con Google

138. Massague J. TGFbeta signalling in context, Nat. Rev. Mol.Cell Biol. 2010;13(10):616–630. Cerca con Google

139. Derynck R, Zhang Y.E. Smad-dependent and Smadindependent pathways in TGF-beta family signalling, Nature.2003;425(6958):577–584. Cerca con Google

140. Elliott RL, Blobe GC. Role of transforming growth factor Beta in human cancer. J Clin Oncol. 2005;23(9):2078-93. Cerca con Google

141. Brennan FM, Chantry D, Turner M, Foxwell B, Maini R, Feldmann M. Detection of transforming growth factor-beta in rheumatoid arthritis synovial tissue: lack of effect on spontaneous cytokine production in joint cell cultures. Clin ExpImmunol. 1990 Aug;81(2):278-85. Cerca con Google

142. Bira Y, Tani K, Nishioka Y, Miyata J, Sato K, Hayashi A, Nakaya Y, Sone S. Transforming growth factor beta stimulates rheumatoid synovial fibroblasts via the type II receptor.Mod Rheumatol. 2005;15(2):108-13. Cerca con Google

143. Pohlers D, Beyer A, Koczan D, Wilhelm T, Thiesen HJ, Kinne RW. Constitutive upregulation of the transforming growth factor-beta pathway in rheumatoid arthritis synovial fibroblasts. Arthritis Res Ther. 2007;9(3):R59. Cerca con Google

144. Odink K, Cerletti N, Brüggen J, Clerc RG, Tarcsay L, Zwadlo G, Gerhards G, Schlegel R, Sorg C. Two calcium-binding proteins in infiltrate macrophages of rheumatoid arthritis. Nature. 1987;330(6143):80-2. Cerca con Google

145. Mischke D, Korge BP, Marenholz I, Volz A, Ziegler A. Genes encoding structural proteins of epidermal cornification and S100 calcium-binding proteins form a gene complex ("epidermal differentiation complex") on human chromosome 1q21. J Invest Dermatol. 1996;106(5):989-92. Cerca con Google

146. Strupat K, Rogniaux H, Van Dorsselaer A, Roth J, Vogl T: Calcium-induced noncovalently linked tetramers of MRP8 and MRP14 are confirmed by electrospray ionization-mass analysis. J Am Soc Mass Spectrom. 2000;11(9): 780-788. Cerca con Google

147. Stríz I, Trebichavský I. Calprotectin-a pleiotropic molecule in acute and chronic inflammation. Physiol Res. 2004;53(3):245-53. Cerca con Google

148. Foell D, Roth J. Proinflammatory S100 proteins in arthritis and autoimmune disease. Arthritis Rheum. 2004;50(12):3762-71. Review. Cerca con Google

149. Yui S, Nakatani Y, Mikami M. Calprotectin (S100A8/S100A9), an inflammatory protein complex from neutrophils with a broad apoptosis-inducing activity. Biol Pharm Bull. 2003;26(6):753-60. Cerca con Google

150. Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C, van Zoelen MA, Nacken W, Foell D, van der Poll T, Sorg C, Roth J. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med. 2007 ;13(9):1042-9. Cerca con Google

151. van Lent PL, Grevers L, Blom AB, Sloetjes A, Mort JS, Vogl T, Nacken W, van den Berg WB, Roth J. Myeloid-related proteins S100A8/S100A9 regulate joint inflammation and cartilage destruction during antigen-induced arthritis. Ann Rheum Dis. 2008;67(12):1750-8. Cerca con Google

152. Viemann D, Strey A, Janning A, Jurk K, Klimmek K, Vogl T, Hirono K, Ichida F, Foell D, Kehrel B, Gerke V, Sorg C, Roth J. Myeloid-related proteins 8 and 14 induce a specific inflammatory response in human microvascular endothelial cells. Blood. 2005 ;105(7):2955-62. Cerca con Google

153. Vogl T, Ludwig S, Goebeler M, Strey A, Thorey IS, Reichelt R, Foell D, Gerke V, Manitz MP, Nacken W, Werner S, Sorg C, Roth J. MRP8 and MRP14 control microtubule reorganization during transendothelial migration of phagocytes. Blood. 2004;104(13):4260-8. Cerca con Google

154. Oktayoglu P, Bozkurt M, Mete N, Caglayan M, Em S, Nas K. Elevated serum levels of calprotectin (myeloid-related protein 8/14) in patients with ankylosing spondylitis and its association with disease activity and quality of life. J Investig Med. 2014;62(6):880-4. Cerca con Google

155. Klingberg E, Carlsten H, Hilme E, Hedberg M, Forsblad-d'Elia H. Calprotectin in ankylosing spondylitis--frequently elevated in feces, but normal in serum. Scand J Gastroenterol. 2012;47(4):435-44. Cerca con Google

156. Turina MC, Sieper J, Yeremenko N, Conrad K, Haibel H, Rudwaleit M, Baeten D, Poddubnyy D.Calprotectin serum level is an independent marker for radiographic spinal progression in axial spondyloarthritis. Ann Rheum Dis. 2014;73(9):1746-8. Cerca con Google

157. Huang J, Yin Z, Song G, Cui S, Jiang J, Zhang L. Discriminating Value of Calprotectin in Disease Activity and Progression of Nonradiographic Axial Spondyloarthritis and Ankylosing Spondylitis. Dis Markers. 2017;2017:7574147. Cerca con Google

158. Turina MC, Yeremenko N, Paramarta JE, De Rycke L, Baeten D. Calprotectin (S100A8/9) as serum biomarker for clinical response in proof-of-concept trials in axial and peripheral spondyloarthritis. Arthritis Res Ther. 2014;16(4):413. Cerca con Google

159. Turina MC, Sieper J, Yeremenko N, Conrad K, Haibel H, Rudwaleit M, Baeten D, Poddubnyy D. Calprotectin serum level is an independent marker for radiographic spinal progression in axial spondyloarthritis. Ann Rheum Dis. 2014;73(9):1746-8. Cerca con Google

160. Foell D, Kane D, Bresnihan B, Vogl T, Nacken W, Sorg C, Fitzgerald O, Roth J. Expression of the pro-inflammatory protein S100A12 (EN-RAGE) in rheumatoid and psoriatic arthritis. Rheumatology (Oxford). 2003;42(11):1383-9. Cerca con Google

161. Wendling D, Verhoeven F, Prati C. Calprotectin and spondyloarthritis. Expert Rev Clin Immunol. 2017;13(4):295-296. Cerca con Google

162. Tokito A, Jougasaki M. Matrix metalloproteinases in non-neoplastic disorders. Int. J. Mol. Sci. 2016;17:e1178 Cerca con Google

163. Sternlicht M.D, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol. 2001;17:463–516 Cerca con Google

164. Moz S, Basso D, Padoan A, Bozzato D, Fogar P, Zambon C.F, Pelloso M, Sperti C, de Kreutzenberg S.V, Pasquali C, Pedrazzoli S, Avogaro A, Plebani M. Blood expression of matrix metalloproteinases 8 and 9 and of their inducers S100A8 and S100A9 supports diagnosis and prognosis of PDAC-associated diabetes mellitus. Clin. Chim. Acta. 2016;456:24–30 Cerca con Google

165. Moz S, Aita A, Basso D, Ramonda R, Plebani M, Punzi L .Spondyloarthritis: Matrix Metalloproteinasesas Biomarkers of Pathogenesis and Response to Tumor Necrosis Factor (TNF) Inhibitors. Int J Mol Sci. 2017;18(4). pii: E830. Cerca con Google

166. Zhu J, Yu DT. Matrix metalloproteinase expression in the spondyloarthropathies. Curr Opin Rheumatol. 2006;18(4):364-8. Cerca con Google

167. Gao J.W., Zhang K.F., Lu J.S., Su T. Serum matrix metalloproteinases-3 levels in patients with ankylosing spondylitis. Genet. Mol. Res. 2015;14:17068–17078. Cerca con Google

168. Vosse D, Landewé R, Garnero P, van der Heijde D, van der Linden S, Geusens P. Association of markers of bone- and cartilage-degradation with radiological changes at baseline and after 2 years follow-up in patients with ankylosing spondylitis. Rheumatol. Oxf. 2008;47:1219–1222. Cerca con Google

169. Mattey D.L, Packham J.C, Nixon N.B, Coates L, Creamer P, Hailwood S, Taylor G.J, Bhalla A.K. Association of cytokine and matrix metalloproteinase profiles with disease activity and function in ankylosing spondylitis. Arthritis Res. Ther. 2012;14:R127. Cerca con Google

170. Paccou J, Boudot C, Mary A, Kamel S, Drüeke TB, Fardellone P, Massy Z, Brazier M, Mentaverri R. Determination and modulation of total and surface calcium-sensing receptor expression in monocytes in vivo and in vitro. PLoS One. 2013;8(10):e74800. Cerca con Google

171. Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature. 2013;496(7446):445-55. Cerca con Google

172. Jackson WD, Woollard KJ. Targeting monocyte and macrophage subpopulations for immunotherapy: a patent review (2009 - 2013). Expert Opin Ther Pat. 2014;24(7):779-90. Cerca con Google

173. Davignon JL, Hayder M, Baron M, Boyer JF, Constantin A, Apparailly F, Poupot R, Cantagrel A. Targeting monocytes/macrophages in the treatment of rheumatoid arthritis. Rheumatology (Oxford).2013;52(4):590-8. Cerca con Google

174. Séjourné A, Boudot C, Objois T, Fardellone P, Brazier M, Six I, Kamel S, Mentaverri R, Goëb V. Expression of the calcium-sensing receptor in monocytes from synovial fluid is increased in osteoarthritis. Joint Bone Spine. 2017 ;84(2):175-181. Cerca con Google

175. Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003;4(7):517-29. Cerca con Google

176. Dupont G, Combettes L, Leybaert L. Calcium dynamics: spatio-temporal organization from the subcellular to the organ level. Int Rev Cytol. 2007;261:193-245. Cerca con Google

177. Gee KR, Brown KA, Chen WN, Bishop-Stewart J, Gray D, Johnson I. Chemical and physiological characterization of fluo-4 Ca(2+)-indicator dyes. Cell Calcium. 2000;27(2):97-106. Cerca con Google

178. Aita A, Basso D, Ramonda R, Moz S, Lorenzin M, Navaglia F, Zambon CF, Padoan A, Plebani M, Punzi L. Genetics in TNF-TNFR pathway: A complex network causing spondyloarthritis and conditioning response to anti-TNFα therapy. PLoS One. 2018;13(3):e0194693. Cerca con Google

179. Clapham DE. Calcium signaling. Cell. 2007;131(6):1047-58. Review. Cerca con Google

180. Basso D, Gnatta E, Padoan A, Fogar P, Furlanello S, Aita A, Bozzato D, Zambon CF, Arrigoni G, Frasson C, Franchin C, Moz S, Brefort T, Laufer T, Navaglia F, Pedrazzoli S, Basso G, Plebani M. PDAC-derived exosomes enrich the microenvironment in MDSCs in a SMAD4-dependent manner through a new calcium related axis. Oncotarget. 2017;8(49):84928-84944. Cerca con Google

181. Cao LY, Chung JS, Teshima T, Feigenbaum L, Cruz PD Jr, Jacobe HT, Chong BF, Ariizumi K. Myeloid-Derived Suppressor Cells in Psoriasis Are an Expanded Population Exhibiting Diverse T-Cell-Suppressor Mechanisms. J Invest Dermatol. 2016 ;136(9):1801-10. Cerca con Google

182. Zhang H, Huang Y, Wang S, Fu R, Guo C, Wang H, Zhao J,Gaskin F, Chen J, Yang N, Fu SM. Myeloid-derived suppressor cells contribute to bone erosion in collagen-induced arthritis by differentiating to osteoclasts. J Autoimmun. 2015;65:82-9. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record