Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

De Poi, Rossella (2018) Mass spectrometry as an emerging tool for the detection of proteins in complex matrices: from untargeted to targeted analysis. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document
Thesis not accessible for intellectual property related reasons.
Visibile to: nobody

5Mb

Abstract (italian or english)

My PhD was performed in Mérieux NutriSciences, a company which provides analytical services. During my PhD I worked on three projects, whose common determinant was the application of mass spectrometry (MS) to the analysis of proteins. The main study deals with MS as a new tool for the analysis of food allergens. Food allergy is an important health problem involving immunological reactions that arise following exposure to protein allergens. In the absence of a cure, patients need to avoid the offending food to prevent allergic reactions. In the European Union, 14 allergens must be indicated in food labels when intentionally added. However, one of the main causes triggering allergic reactions is represented by undesired contamination of food by allergens in production facilities. Even tiny amounts of allergens can trigger severe manifestations; thus, to protect consumers sensitive analytical methods are required. Recently, methods based on MS have received increasing attention for the quantification of food allergens in complex matrices. In the present study, the development of a method based on MS for the simultaneous detection of egg, milk, tree nuts and peanuts allergens into bakery products is described. The method is based on the detection of specific peptides generated from the enzymatic hydrolysis of the target allergens and employs a technique called Multiple Reaction Monitoring, in which the mass spectrometer is operated to selectively acquire signals deriving from specific couples of m/z values, corresponding to a peptide ion and to one of its fragments. The method developed allows to detect target allergens in a specific way and with acceptable sensitivities and can be considered as a valuable alternative to other common analytical techniques, such as ELISA and PCR. A second topic of this thesis is bovine beta-casein, a polymorphic protein for which 12 genetic variants have been identified, the most common being A1 and A2. Some reports suggested a possible association between the consumption of A1 beta-casein and the etiology of some human diseases, including ischemic heart disease and diabetes. At the basis of the effects caused by A1 beta-casein there would be a bioactive peptide with opioid-like activity, released by proteolytic enzymes upon gastrointestinal digestion. This peptide, called beta-casomorphin-7, was shown to be produced only from certain beta-casein isoforms, having a histidine in position 67, including the A1 variant. On the other hand, variants possessing a proline in position 67, such as the A2 variant, would not be able to generate beta-casomorphin-7. Based on these assumptions, some companies now sell “A2 milk”, a milk containing only A2 beta-casein. In this project, a LC-MS analytical method was developed to discriminate between A2 milk and commercial milk, which typically contains a mixture of A1 and A2 beta-casein. The final purpose is to offer milk producers an analytical tool to certify that a milk labeled as “A2 milk” is really as such, eventually capable to identify possible frauds or contaminations. Finally, in this thesis a minor project is described, having as object the enzyme transglutaminase (TGase) from microbial origin. TGase catalyses the formation of isopeptide bonds between carboxamides of glutamine residues and amine groups of lysine, resulting in protein cross-linking. The action of TGase can determine significant changes in the physico-chemical properties of proteins, leading to changes in viscosity, thermal stability and elasticity. For these reasons, TGase finds application as an additive in the food industry. In this study a TGase from an unknown microbial source has been characterized and identified by applying a bottom-up proteomic approach. The identified enzyme is produced from a bacterial strain different from the one most commonly used in food industrial applications, S. mobaraense. Moreover, a method for the measurement of TGase enzymatic activity by the hydroxamate assay has been set up and has now become a service offered by the Mérieux NutriSciences.

Abstract (a different language)

Il mio dottorato di ricerca si è svolto in Mérieux NutriSciences, un’ azienda che fornisce servizi analitici. Durante il mio periodo di dottorato ho lavorato su tre progetti, il cui determinante comune era l'applicazione della spettrometria di massa (SM) all'analisi delle proteine. Lo studio principale riguarda la SM applicata all'analisi degli allergeni alimentari. L'allergia alimentare è una patologia importante, dovuta a reazioni immunologiche che insorgono a seguito dell'esposizione di un soggetto ad allergeni proteici. Poiché ad oggi non esiste cura, per prevenire le reazioni allergiche i pazienti devono evitare di assumere alimenti contenenti allergeni. Nell'Unione Europea, 14 allergeni devono essere indicati sulle etichette degli alimenti se aggiunti intenzionalmente. Tuttavia, una delle principali cause di reazione allergica è rappresentata dalla contaminazione indesiderata degli alimenti con allergeni all'interno degli impianti di produzione. Anche piccole quantità di allergene possono scatenare gravi reazioni; dunque, per proteggere i consumatori sono necessari metodi analitici sensibili. Recentemente, i metodi basati sulla SM hanno ricevuto crescente attenzione per la quantificazione degli allergeni alimentari in matrici complesse. Nel presente studio viene descritto lo sviluppo di un metodo basato sulla SM per il rilevamento simultaneo di allergeni da uova, latte, arachidi e frutta secca in prodotti da forno. Il metodo si basa sull'identificazione di specifici peptidi generati dall'idrolisi enzimatica degli allergeni target ed impiega una tecnica chiamata Multiple Reaction Monitoring, in cui lo spettrometro di massa è utilizzato per acquisire selettivamente segnali derivanti da coppie di specifici valori m/z, corrispondenti a uno ione peptidico e ad uno dei suoi frammenti. Il metodo sviluppato consente di rilevare gli allergeni target in modo specifico e con sensibilità accettabile e può essere considerato una valida alternativa ad altre comuni tecniche analitiche, come l’ELISA e la PCR. Un secondo argomento trattato in questa tesi riguarda la beta-caseina bovina, una proteina polimorfica per la quale sono state identificate 12 varianti genetiche, fra cui le più comuni sono la A1 e la A2. Alcuni studi hanno suggerito una possibile associazione fra il consumo di beta-caseina A1 e l'eziologia di alcune malattie, tra cui l’ischemia cardiaca e il diabete. Alla base degli effetti causati dalla beta-caseina A1 ci sarebbe un peptide bioattivo con attività simil-oppiode, rilasciato da specifici enzimi proteolitici durante la digestione. Questo peptide, chiamato beta-casomorphin-7, viene generato solo a partire da alcune isoforme di beta-caseina, contenenti un'istidina in posizione 67, inclusa la variante A1. Al contrario, le varianti che possiedono una prolina in posizione 67, come la variante A2, non sarebbero in grado di generare il peptide beta-casomorphin-7. Sulla base di queste ipotesi, alcune aziende vendono ora il cosiddetto "latte A2", un tipo di latte contenente solo beta-caseina A2. In questo progetto di dottorato è stato sviluppato un metodo analitico LC-MS per discriminare il latte A2 dal latte commerciale, che tipicamente contiene una miscela di beta-caseina A1 e A2. Lo scopo finale è offrire ai produttori di latte uno strumento analitico per certificare che un latte etichettato come "latte A2" sia realmente tale, ed eventualmente in grado di identificare possibili frodi o contaminazioni. Infine, in questa tesi viene descritto un progetto che ha come oggetto l'enzima transglutaminasi (TGasi) di origine microbica. La TGasi catalizza la formazione di legami isopeptidici tra residui di glutammina e di lisina, determinando la formazione di cross-linking fra proteine. L'azione della TGasi può determinare cambiamenti significativi nelle proprietà fisico-chimiche delle proteine, portando a modifiche nella viscosità, nella stabilità termica e nella elasticità. Per questi motivi, la TGasi trova applicazione come additivo nell'industria alimentare. In questo studio, una specie di TGasi di origine microbica è stata caratterizzata e identificata applicando un approccio proteomico “bottom-up”. L'enzima identificato viene prodotto da un ceppo batterico diverso da quello più comunemente utilizzato nelle applicazioni industriali alimentari, denominato S. mobaraense. Infine, è stato sviluppato un metodo per la misurazione dell'attività enzimatica della TGasi mediante il saggio dell'idrossammato, che è ora diventato un servizio analitico offerto da Mérieux NutriSciences.

EPrint type:Ph.D. thesis
Tutor:Polverino de Laureto, Patrizia
Supervisor:De Dominicis, Emiliano
Ph.D. course:Ciclo 31 > Corsi 31 > SCIENZE MOLECOLARI
Data di deposito della tesi:21 November 2018
Anno di Pubblicazione:November 2018
Key Words:Chimica analitica; spettrometria di massa; biochimica delle proteine;analisi su alimenti; latte A2; allergeni alimentari; transglutaminasi. Analytical chemistry; mass spectrometry; protein biochemistry; food analysis; A2 milk; food allergens; transglutaminase.
Settori scientifico-disciplinari MIUR:Area 03 - Scienze chimiche > CHIM/01 Chimica analitica
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze del Farmaco
Codice ID:11337
Depositato il:08 Nov 2019 11:40
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Chapter 1-References Cerca con Google

Abbas AK, Lichtman AH. Le basi dell'immunologia. Fisiopatologia del sistema immunitario. Elsevier, 2006. Cerca con Google

Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature 2003;422:198-207. Cerca con Google

Alcocer MJ, Murtagh GJ, Bailey K, Dumoulin M, Meseguer AS, Parker MJ, Archer DB. The disulphide mapping, folding and characterisation of recombinant Ber e 1, an allergenic protein, and SFA8, two sulphur-rich 2S plant albumins. J Mol Biol 2002;324:165-75. Cerca con Google

Allen KJ, Remington BC, Baumert JL, Crevel RW, Houben GF, Brooke-Taylor S, Kruizinga AG, Taylor SL. Allergen reference doses for precautionary labeling (VITAL 2.0): clinical implications. J Allergy Clin Immunol 2014;133:156-64. Cerca con Google

Alleoni ACC. Albumen protein and functional properties of gelation and foaming. Sci Agric 2006;63: 291-298. Cerca con Google

Ansari P, Stoppacher N, Baumgartner S. Marker peptide selection for the determination of hazelnut by LC-MS/MS and occurrence in other nuts. Anal Bioanal Chem 2012;402:2607-15. Cerca con Google

Azarnia S, Boye JI, Mongeon V, Sabik H. Detection of ovalbumin in egg white, whole egg and incurred pasta using LC–ESI-MS/MS and ELISA. Food Research International 2013;52: 526-34. Cerca con Google

Barr JR, Maggio VL, Patterson DG Jr, Cooper GR, Henderson LO, Turner WE, Smith SJ, Hannon WH, Needham LL, Sampson EJ. Isotope dilution--mass spectrometric quantification of specific proteins: model application with apolipoprotein A-I. Clin Chem 1996;42:1676-82. Cerca con Google

Bauer T, Weller P, Hammes WP, Hertel C. The effect of processing parameters on DNA degradation in food. Eur Food Res Technol 2003;217: 338-43. Cerca con Google

Beyer K, Morrow E, Li XM, Bardina L, Bannon GA, Burks AW, Sampson HA. Effects of cooking methods on peanut allergenicity. J Allergy Clin Immunol 2001;107:1077-81. Cerca con Google

Bignardi C, Elviri L, Penna A, Careri M, Mangia A Particle-packed column versus silica-based monolithic column for liquid chromatography-electrospray-linear ion trap-tandem mass spectrometry multiallergen trace analysis in foods. J Chromatogr A 2010;1217:7579-85. Cerca con Google

Bloom KA, Huang FR, Bencharitiwong R, Bardina L, Ross A, Sampson HA, Nowak-Węgrzyn A. Effect of heat treatment on milk and egg proteins allergenicity. Pediatr Allergy Immunol 2014;25:740-6. Cerca con Google

Bock SA, Muñoz-Furlong A, Sampson HA. Fatalities due to anaphylactic reactions to foods. J Allergy Clin Immunol 2001;107:191-3. Cerca con Google

Bogdanov B, Smith RD. Proteomics by FTICR mass spectrometry: top down and bottom up. Mass Spectrom Rev 2005;24:168-200. Cerca con Google

Boja ES, Rodriguez H. The path to clinical proteomics research: integration of proteomics, genomics, clinical laboratory and regulatory science. Korean J Lab Med 2011;31:61-71. Cerca con Google

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72:248-254. Cerca con Google

Breiteneder H, Mills EN. Molecular properties of food allergens. J Allergy Clin Immunol 2005;115:14-23. Cerca con Google

Carrotta R, Bauer R, Waninge R, Rischel C. Conformational characterization of oligomeric intermediates and aggregates in beta-lactoglobulin heat aggregation Protein Sci. 2001;10:1312-8. Cerca con Google

Caubet JC, Wang J. Current understanding of egg allergy. Pediatr Clin North Am 2011;58:427-43. Cerca con Google

Chait BT. Mass Spectrometry: Bottom-Up or Top-Down?. Science 2006;314:65-66. Cerca con Google

Chapman MD, Pomés A, Breiteneder H, Ferreira F. Nomenclature and structural biology of allergens. J Allergy Clin Immunol 2007;119:414-20. Cerca con Google

Creamer LK. Effect of sodium dodecyl sulfate and palmitic acid on the equilibrium unfolding of bovine beta-lactoglobulin. Biochemistry 1995;34:7170-6. Cerca con Google

Crespo JF, James JM, Fernandez-Rodriguez C, Rodriguez J. Food allergy: nuts and tree nuts. Br J Nutr 2006;96:95-102. Cerca con Google

Croguennec T, Mollé D, Mehra R, Bouhallab S. Spectroscopic characterization of heat-induced nonnative beta-lactoglobulin monomers. Protein Sci 2004;13:1340-6. Cerca con Google

Croote D, Quake SR. Food allergen detection by mass spectrometry: the role of systems biology. NPJ Syst Biol Appl 2016;2:16022. Cerca con Google

Dalgleish DG, Corredig M. The structure of the casein micelle of milk and its changes during processing. Annu Rev Food Sci Technol 2012;3:449-67. Cerca con Google

Davis PJ, Smales CM, James DC. How can thermal processing modify the antigenicity of proteins? Allergy 2001;56:56-60. Cerca con Google

Davis PJ, Williams SC. Protein modification by thermal processing. Allergy 1998;53:102-5. Cerca con Google

Dawson PH. Quadrupole Mass Spectrometry and its Applications. Elsevier,1976. Cerca con Google

De Oliveira FC, Coimbra JS, de Oliveira EB, Zuñiga AD, Rojas EE. Food Protein-polysaccharide Conjugates Obtained via the Maillard Reaction: A Review. Crit Rev Food Sci Nutr 2016;56:1108-25. Cerca con Google

Demmel A, Hupfer C, Busch U, Engel KH. Quantification of lupine (Lupinus angustifolius) in wheat flour using real-time PCR and an internal standard material. Eur Food Res Technol 2012;235: 61-66. Cerca con Google

Dhanapala P, De Silva C, Doran T, Suphioglu C. Cracking the egg: An insight into egg hypersensitivity. Mol Immunol 2015;66:375-83. Cerca con Google

D'Hondt K, Bosch D, Van Damme J, Goethals M, Vandekerckhove J, Krebbers E. An aspartic proteinase present in seeds cleaves Arabidopsis 2 S albumin precursors in vitro. J Biol Chem 1993;268:20884-91. Cerca con Google

Donovan JW, Mapes CJ. A differential scanning calorimetric study of conversion of ovalbumin to S-ovalbumin in eggs. J Sci Food Agric 1976;27:197-204. Cerca con Google

Downs ML, Baumert JL, Taylor SL, Mills EN. Mass spectrometric analysis of allergens in roasted walnuts. J Proteomics 2016;142:62-9. Cerca con Google

Downs ML, Semic-Jusufagic A, Simpson A, Bartra J, Fernandez-Rivas M, Rigby NM, Taylor SL, Baumert JL, Mills EN. Characterization of low molecular weight allergens from English walnut (Juglans regia). J Agric Food Chem 2014;62:11767-75 Cerca con Google

EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2014. Scientific Opinion on the evaluation of allergenic foods and food ingredients for labelling purposes. EFSA Journal 2014;12:3894, 286 pp. Cerca con Google

Ehn BM, Ekstrand B, Bengtsson U, Ahlstedt S. Modification of IgE binding during heat processing of the cow's milk allergen beta-lactoglobulin. J Agric Food Chem 2004;52:1398-403. Cerca con Google

Ewan PW. Clinical study of peanut and nut allergy in 62 consecutive patients: new features and associations. BMJ. 1996;312:1074-8. Cerca con Google

Farrell HM Jr, Jimenez-Flores R, Bleck GT, Brown EM, Butler JE, Creamer LK, Hicks CL, Hollar CM, Ng-Kwai-Hang KF, Swaisgood HE. Nomenclature of the proteins of cows' milk--sixth revision. J Dairy Sci 2004;87:1641-74. Cerca con Google

Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization for mass spectrometry of large biomolecules. Science 1989;246:64-71. Cerca con Google

Geiselhart S, Hoffmann-Sommergruber K, Bublin M. Tree nut allergens. Mol Immunol 2018;100:71-81. Cerca con Google

Gekko K, Timasheff SN. Mechanism of protein stabilization by glycerol: preferential hydration in glycerol-water mixtures. Biochemistry 1981;20:4667-76. Cerca con Google

Gendel SM, Zhu J. Analysis of U.S. Food and Drug Administration food allergen recalls after implementation of the food allergen labeling and consumer protection act. J Food Prot 2013;76:1933-8. Cerca con Google

Gendel SM. Comparison of international food allergen labeling regulations. Regul Toxicol Pharmacol 2012;63:279-85. Cerca con Google

Gundry RL, White MY, Murray CI, Kane LA, Fu Q, Stanley BA, Van Eyk JE. Preparation of proteins and peptides for mass spectrometry analysis in a bottom-up proteomics workflow. Curr Protoc Mol Biol 2009;Chapter 10:Unit10.25. Cerca con Google

Gupta RS, Springston EE, Warrier MR, Smith B, Kumar R, Pongracic J, Holl JL. The prevalence, severity, and distribution of childhood food allergy in the United States. Pediatrics 2011;128:e9-17. Cerca con Google

Hara-Hishimura I, Takeuchi Y, Inoue K, Nishimura M. Vesicle transport and processing of the precursor to 2S albumin in pumpkin. Plant J 1993;4:793-800. Cerca con Google

He L, Diedrich J, Chu YY, Yates JR 3rd. Extracting Accurate Precursor Information for Tandem Mass Spectra by RawConverter. Anal Chem 2015;87:11361-7. Cerca con Google

Hebling CM, McFarland MA, Callahan JH, Ross MM. Global proteomic screening of protein allergens and advanced glycation endproducts in thermally processed peanuts. J Agric Food Chem 2013;61:5638-48. Cerca con Google

Hebling CM, Ross MM, Callahan JH, McFarland MA. Size-selective fractionation and visual mapping of allergen protein chemistry in Arachis hypogaea. J Proteome Res 2012;11:5384-95. Cerca con Google

Heick J, Fischer M, Pöpping B. First screening method for the simultaneous detection of seven allergens by liquid chromatography mass spectrometry. J Chromatogr A 2011;1218:938-43. Cerca con Google

Heudi O, Barteau S, Zimmer D, Schmidt J, Bill K, Lehmann N, Bauer C, Kretz O. Towards absolute quantification of therapeutic monoclonal antibody in serum by LC-MS/MS using isotope-labeled antibody standard and protein cleavage isotope dilution mass spectrometry. Anal Chem 2008;80:4200-7. Cerca con Google

Holzhauser T, Kleiner K, Janise A, Röder M. Matrix-normalised quantification of species by threshold-calibrated competitive real-time PCR: allergenic peanut in food as one example. Food Chem 2014;163:68-76. Cerca con Google

Holzhauser T, Röder M. Polymerase chain reaction (PCR) methods for detecting allergens in foods. In: Handbook of Food Allergen Detection and Control. Woodhead Publishing, 2015. Cerca con Google

Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Graham Cooks R. The Orbitrap: a new mass spectrometer. J Mass Spectrom 2005;40:430-43. Cerca con Google

Huby RD, Dearman RJ, Kimber I. Why are some proteins allergens? Toxicol Sci 2000;55:235-46. Cerca con Google

Huntington JA, Stein PE. Structure and properties of ovalbumin. J Chromatogr B Biomed Sci Appl 2001;756:189-98. Cerca con Google

Ito K, Matsudomi N. Structural characteristics of hen egg ovalbumin expressed in yeast Pichia pastoris. Biosci Biotechnol Biochem 2005;69:755-61. Cerca con Google

Ito M, Mizota T, Kitaguchi T, Ohno K, Ohba T, Tanaka M. Simultaneous detection of eight species of tree nut in foods using two tetraplex polymerase chain reaction assays. Biosci Biotechnol Biochem 2018;1:1-7. Cerca con Google

Jakobsson I, Lindberg T, Benediktsson B, Hansson BG. Dietary bovine beta-lactoglobulin is transferred to human milk. Acta Paediatr Scand 1985;74:342-5. Cerca con Google

Jayasena S, Smits M, Fiechter D, de Jong A, Nordlee J, Baumert J, Taylor SL, Pieters RH, Koppelman SJ. Comparison of six commercial ELISA kits for their specificity and sensitivity in detecting different major peanut allergens. J Agric Food Chem 2015;63:1849-55. Cerca con Google

Jayat D, Gaudin JC, Chobert JM, Burova TV, Holt C, McNae I, Sawyer L, Haertlé T. A recombinant C121S mutant of bovine beta-lactoglobulin is more susceptible to peptic digestion and to denaturation by reducing agents and heating. Biochemistry 2004;43:6312-21. Cerca con Google

Jiménez-Saiz R, Belloque J, Molina E, López-Fandiño R. Human immunoglobulin E (IgE) binding to heated and glycated ovalbumin and ovomucoid before and after in vitro digestion. J Agric Food Chem 2011;59:10044-51. Cerca con Google

Johnson PE, Marsh JT, Mills ENC. Mass Spectrometry-based Quantification of Proteins and Peptides in Food. In: Quantitative Proteomics. RSC Publishing, 2014. Cerca con Google

Kamata Y, Shibasaki K. Formation of Digestion Intermediate of Glycinin. Agric Biol Chern 1978;42:2323-2329. Cerca con Google

Kang IH, Gallo M, Barry LT. Distribution of Allergen Composition in Peanut (Arachis hypogaea L.) and Wild Progenitor (Arachis) Species. Crop Sci 2007;47:997-1003. Cerca con Google

Karademir Y, Göncüoğlu N, Gökmen V. Investigation of heat induced reactions between lipid oxidation products and amino acids in lipid rich model systems and hazelnuts. Food Funct 2013;4:1061-6. Cerca con Google

Khuda S, Slate A, Pereira M, Al-Taher F, Jackson L, Diaz-Amigo C, Bigley EC 3rd, Whitaker T, Williams KM. Effect of processing on recovery and variability associated with immunochemical analytical methods for multiple allergens in a single matrix: sugar cookies. J Agric Food Chem 2012;60:4195-203. Cerca con Google

King TP, Hoffman D, Lowenstein H, Marsh DG, Platts-Mills TA, Thomas W. Allergen nomenclature. WHO/IUIS Allergen Nomenclature Subcommittee. Int Arch Allergy Immunol 1994;105:224-33. Cerca con Google

Kirkpatrick DS, Gerber SA, Gygi SP. The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. Methods 2005;35:265-73. Cerca con Google

Kitabatake N, Ishida A, Doi E. Physicochemical and Functional Properties of Hen Ovalbumin Dephosphorylated by Acid Phosphatase. Agric Bioi Chern 1988;52: 967-973. Cerca con Google

Kohno Y, Honma K, Saito K, Shimojo N, Tsunoo H, Kaminogawa S, Niimi H. Preferential recognition of primary protein structures of alpha-casein by IgG and IgE antibodies of patients with milk allergy. Ann Allergy 1994;73:419-22. Cerca con Google

Kontopidis G, Holt C, Sawyer L. Invited review: beta-lactoglobulin: binding properties, structure, and function. J Dairy Sci 2004;87:785-96. Cerca con Google

Kontopidis G, Holt C, Sawyer L. The ligand-binding site of bovine beta-lactoglobulin: evidence for a function? J Mol Biol 2002;318:1043-55. Cerca con Google

Köppel R, Dvorak V, Zimmerli F, Breitenmoser A, Eugster A, Waiblinger HU. Two tetraplex real-time PCR for the detection and quantification of DNA from eight allergens in food. Eur Food Res Technol 2010;230:367-374. Cerca con Google

Koppelman SJ, Bruijnzeel-Koomen CA, Hessing M, de Jongh HH. Heat-induced conformational changes of Ara h 1, a major peanut allergen, do not affect its allergenic properties. J Biol Chem 1999;274:4770-7. Cerca con Google

Kuhn E, Wu J, Karl J, Liao H, Zolg W, Guild B. Quantification of C-reactive protein in the serum of patients with rheumatoid arthritis using multiple reaction monitoring mass spectrometry and 13C-labeled peptide standards. Proteomics 2004;4:1175-86. Cerca con Google

Kumosinski TF, Brown EM, Farrell HM Jr. Three-dimensional molecular modeling of bovine caseins: alpha s1-casein. J Dairy Sci 1991;74:2889-95. Cerca con Google

Lange V, Picotti P, Domon B, Aebersold R. Selected reaction monitoring for quantitative proteomics: a tutorial. Molecular Systems Biology 2008;4:222. Cerca con Google

Le Bars D, Gripon JC. Specificity of plasmin towards bovine alpha S2-casein. J Dairy Res 1989;56:817-21. Cerca con Google

Lemon-Mulé H, Sampson HA, Sicherer SH, Shreffler WG, Noone S, Nowak-Wegrzyn A. Immunologic changes in children with egg allergy ingesting extensively heated egg. J Allergy Clin Immunol 2008;122:977-983. Cerca con Google

Lifschitz C, Szajewska H. Cow's milk allergy: evidence-based diagnosis and management for the practitioner. Eur J Pediatr 2015;174:141-50. Cerca con Google

Lima M, Assar SH, Ames JM. Formation of N(epsilon)-(carboxymethyl)lysine and loss of lysine in casein glucose-fatty acid model systems. J Agric Food Chem 2010;58:1954-8. Cerca con Google

Loch J, Polit A, Górecki A, Bonarek P, Kurpiewska K, Dziedzicka-Wasylewska M, Lewiński K. Two modes of fatty acid binding to bovine β-lactoglobulin--crystallographic and spectroscopic studies. J Mol Recognit 2011;24:341-9. Cerca con Google

Lutter P, Parisod V, Weymuth H. Development and validation of a method for the quantification of milk proteins in food products based on liquid chromatography with mass spectrometric detection. J AOAC Int 2011;94:1043-59. Cerca con Google

Macchi FD, Shen FJ, Keck RG, Harris RJ. Amino acid analysis, using postcolumn ninhydrin detection, in a biotechnology laboratory. Methods Mol Biol 2000;159:9-30. Cerca con Google

MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, Kern R, Tabb DL, Liebler DC, MacCoss MJ. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 2010;26:966-8. Cerca con Google

Maleki SJ, Chung SY, Champagne ET, Raufman JP. The effects of roasting on the allergenic properties of peanut proteins. J Allergy Clin Immunol. 2000;106:763-8. Cerca con Google

Maleknia SD, Johnson R. Mass Spectrometry of Amino Acids and Proteins. In: Amino Acids, Peptides and Proteins in Organic Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, 2011. Cerca con Google

Manea I, Ailenei E, Deleanu D. Overview of food allergy diagnosis. Clujul Med 2016;89:5–10. Cerca con Google

Marcus JP, Green JL, Goulter KC, Manners JM. A family of antimicrobial peptides is produced by processing of a 7S globulin protein in Macadamia integrifolia kernels. Plant J 1999;19:699-710. Cerca con Google

Martins SIFS, Jongen WMF, van Boekel MAJS. A review of Maillard reaction in food and implications to kinetic modeling. Trends in Food Science & Technology 2001;11:364–373. Cerca con Google

Martos G, Lopez-Exposito I, Bencharitiwong R, Berin MC, Nowak-Węgrzyn A. Mechanisms underlying differential food allergy response to heated egg. J Allergy Clin Immunol 2011;127:990-7. Cerca con Google

McCarthy J, Hopwood F, Oxley D, Laver M, Castagna A, Righetti PG, Williams K, Herbert B. Carbamylation of proteins in 2-D electrophoresis--myth or reality? J Proteome Res. 2003;2:239-42. Cerca con Google

McSweeney PLH, Olson NF, Fox PF, Healy A. Proteolysis of bovine αs2-casein by chymosin. Z Lebensm Unters Forch 1994;199: 429-32. Cerca con Google

Mercier JC, Grosclaude F, Ribadeau‐Dumas B. Structure primaire de la caseine alphasl-bovine. Sequence complete. European Journal of Biochemistry 2005;23:41-51. Cerca con Google

Mills EN, Marigheto NA, Wellner N, Fairhurst SA, Jenkins JA, Mann R, Belton PS. Thermally induced structural changes in glycinin, the 11S globulin of soya bean (Glycine max)--an in situ spectroscopic study. Biochim Biophys Acta 2003;1648:105-14. Cerca con Google

Mills EN, Valovirta E, Madsen C, Taylor SL, Vieths S, Anklam E, Baumgartner S, Koch P, Crevel RW, Frewer L. Information provision for allergic consumers--where are we going with food allergen labelling? Allergy 2004;59:1262-8. Cerca con Google

Mills ENC, Shewry PR. Plant Food Allergens. Blackwell Science Ltd, 2004. Cerca con Google

Mirzaei H, McBee JK, Watts J, Aebersold R. Comparative evaluation of current peptide production platforms used in absolute quantification in proteomics. Mol Cell Proteomics 2008;7:813-23. Cerca con Google

Monaci L, Pilolli R, De Angelis E, Godula M, Visconti A. Multi-allergen detection in food by micro high-performance liquid chromatography coupled to a dual cell linear ion trap mass spectrometry. J Chromatogr A 2014;1358:136-44. Cerca con Google

Monaci L, Visconti A. Mass spectrometry-based proteomics methods for analysis of food allergens. Trends in Analytical Chemistry 2009;28: 581-591. Cerca con Google

Mondoulet L, Paty E, Drumare MF, Ah-Leung S, Scheinmann P, Willemot RM, Wal JM, Bernard H. Influence of thermal processing on the allergenicity of peanut proteins. J Agric Food Chem 2005;53:4547-53. Cerca con Google

Monsalve RI, Menéndez-Arias L, González de la Peña MA, Batanero E, Villalba M, Rodríguez R. Purification and characterization of napin-like proteins from radish. Journal of Experimental Botany 1994;45:1169–1176. Cerca con Google

Mueller GA, Maleki SJ, Johnson K, Hurlburt BK, Cheng H, Ruan S, Nesbit JB, Pomés A, Edwards LL, Schorzman A, Deterding LJ, Park H, Tomer KB, London RE, Williams JG. Identification of Maillard reaction products on peanut allergens that influence binding to the receptor for advanced glycation end products. Allergy 2013;68:1546-54. Cerca con Google

Murray SR, Butler RC, Timmerman‐Vaughan GM. Quantitative real‐time PCR assays to detect DNA degradation in soy‐based food products. J Sci Food Agric 2009;89:1137–11. Cerca con Google

Nakamura A, Watanabe K, Ojima T, Ahn DH, Saeki H. Effect of maillard reaction on allergenicity of scallop tropomyosin. J Agric Food Chem 2005;53:7559-64. Cerca con Google

Narita K, Ishii J. N-Terminal Sequence in Ovalbumin. The Journal of Biochemistry 1962;52:367-373. Cerca con Google

Nisbet AD, Saundry RH, Moir AJ, Fothergill LA, Fothergill JE. The complete amino-acid sequence of hen ovalbumin. Eur J Biochem 1981;115:335-45. Cerca con Google

Pafundo S, Gullì M, Marmiroli N. Multiplex real-time PCR using SYBR® GreenER™ for the detection of DNA allergens in food. Anal Bioanal Chem 2010;396:1831-9. Cerca con Google

Papayannopoulos IA. The interpretation of collision‐induced dissociation tandem mass spectra of peptides. Mass Spectrometry Reviews 1995;14:49-73. Cerca con Google

Parker CH, Khuda SE, Pereira M, Ross MM, Fu TJ, Fan X, Wu Y, Williams KM, DeVries J, Pulvermacher B, Bedford B, Zhang X, Jackson LS. Multi-allergen Quantitation and the Impact of Thermal Treatment in Industry-Processed Baked Goods by ELISA and Liquid Chromatography-Tandem Mass Spectrometry. J Agric Food Chem 2015;63:10669-80. Cerca con Google

Pedreschi R, Nørgaard J, Maquet A. Current challenges in detecting food allergens by shotgun and targeted proteomic approaches: a case study on traces of peanut allergens in baked cookies. Nutrients 2012;4:132-50. Cerca con Google

Pedrosa C, De Felice FG, Trisciuzzi C, Ferreira ST. Selective neoglycosylation increases the structural stability of vicilin, the 7S storage globulin from pea seeds. Arch Biochem Biophys 2000;382:203-10. Cerca con Google

Pekar J, Ret D, Untersmayr E. Stability of allergens. Molecular Immunology 2018;100:14-20. Cerca con Google

Pellegrini A, Hülsmeier AJ, Hunziker P, Thomas U. Proteolytic fragments of ovalbumin display antimicrobial activity. Biochim Biophys Acta 2004;1672:76-85. Cerca con Google

Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999;20:3551-67. Cerca con Google

Pfeifer S, Bublin M, Dubiela P, Hummel K, Wortmann J, Hofer G, Keller W, Radauer C, Hoffmann-Sommergruber K. Cor a 14, the allergenic 2S albumin from hazelnut, is highly thermostable and resistant to gastrointestinal digestion. Mol Nutr Food Res 2015;59:2077-86. Cerca con Google

Pilolli R, De Angelis E, Monaci L. Streamlining the analytical workflow for multiplex MS/MS allergen detection in processed foods. Food Chem 2017;221:1747-1753. Cerca con Google

Planque M, Arnould T, Dieu M, Delahaut P, Renard P, Gillard N. Advances in ultra-high performance liquid chromatography coupled to tandem mass spectrometry for sensitive detection of several food allergens in complex and processed foodstuffs. J Chromatogr A 2016;1464:115-23. Cerca con Google

Poms RE, Capelletti C, Anklam E. Effect of roasting history and buffer composition on peanut protein extraction efficiency. Mol Nutr Food Res 2004;48:459-64. Cerca con Google

Pratt JM, Simpson DM, Doherty MK, Rivers J, Gaskell SJ, Beynon RJ. Multiplexed absolute quantification for proteomics using concatenated signature peptides encoded by QconCAT genes. Nat Protoc 2006;1:1029-43. Cerca con Google

Prescott SL, Pawankar R, Allen KJ, Campbell DE, Sinn JKh, Fiocchi A, Ebisawa M, Sampson HA, Beyer K, Lee BW. A global survey of changing patterns of food allergy burden in children. World Allergy Organ J 2013;6:21. Cerca con Google

Raikos V. Effect of heat treatment on milk protein functionality at emulsion interfaces: a review. Food Hydrocolloids 2010;24:259-65. Cerca con Google

Rasmussen L, Højrup P, Petersen T. Disulphide arrangement in bovine caseins: Localization of intrachain disulphide bridges in monomers of κ- and αs2-casein from bovine milk. Journal of Dairy Research 1994;61: 485-493. Cerca con Google

Rasmussen LK, Højrup P, Petersen TE. Localization of two interchain disulfide bridges in dimers of bovine aS2-casein. Parallel and antiparallel alignments of the polypeptide chains. Eur J Biochem 1992;203:381-386. Cerca con Google

Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers, OJ L304, 22.11.2011, p. 18–63. Cerca con Google

Relkin P. Thermal unfolding of beta-lactoglobulin, alpha-lactalbumin, and bovine serum albumin. A thermodynamic approach. Crit Rev Food Sci Nutr 1996;36:565-601. Cerca con Google

Restani P, Ballabio C, Tripodi S, Fiocchi A. Meat allergy. Curr Opin Allergy Clin Immunol 2009;9:265-9. Cerca con Google

Restani P, Gaiaschi A, Plebani A, Beretta B, Cavagni G, Fiocchi A, Poiesi C, Velonà T, Ugazio AG, Galli CL. Cross-reactivity between milk proteins from different animal species. Clin Exp Allergy 1999;29:997-1004. Cerca con Google

Restani P, Velonà T, Plebani A, Ugazio AG, Poiesi C, Muraro A, Galli CL. Evaluation by SDS-PAGE and immunoblotting of residual antigenicity in hydrolysed protein formulas. Clin Exp Allergy 1995;25:651-8. Cerca con Google

Robinson A, Meredith C, Austen BM. Isolation and properties of the signal region from ovalbumin. FEBS Lett 1986;203:243-6. Cerca con Google

Roepstorff P, Fohlman J. Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom 1984;11:601. Cerca con Google

Rombouts I, Lagrain B, Brijs K, Delcour JA. Cross-linking of wheat gluten proteins during production of hard pretzels. Amino Acids 2012;42:2429-38. Cerca con Google

Rona RJ, Keil T, Summers C, Gislason D, Zuidmeer L, Sodergren E, Sigurdardottir ST, Lindner T, Goldhahn K, Dahlstrom J, McBride D, Madsen C. The prevalence of food allergy: a meta-analysis. J Allergy Clin Immunol 2007;120:638-46. Cerca con Google

Ruiter B, Trégoat V, M'rabet L, Garssen J, Bruijnzeel-Koomen CA, Knol EF, Hoffen E. Characterization of T cell epitopes in alphas1-casein in cow's milk allergic, atopic and non-atopic children. Clin Exp Allergy 2006;36:303-10. Cerca con Google

Santoro LG, Grant G, Pusztai A. Differences in the degradation in vivo and in vitro of phaseolin , the major storage protein of Phaseolus vulgaris seeds. Biochemical SOC Trans 1988;16:612-13. Cerca con Google

Sayers RL, Johnson PE, Marsh JT, Barran P, Brown H, Mills EN. The effect of thermal processing on the behaviour of peanut allergen peptide targets used in multiple reaction monitoring mass spectrometry experiments. Analyst 2016;141:4130-41. Cerca con Google

Scaravelli E, Brohée M, Marchelli R, van Hengel AJ. The effect of heat treatment on the detection of peanut allergens as determined by ELISA and real-time PCR. Anal Bioanal Chem 2009;395:127-37. Cerca con Google

Sealey-Voyksner J, Zweigenbaum J, Voyksner R. Discovery of highly conserved unique peanut and tree nut peptides by LC-MS/MS for multi-allergen detection. Food Chem 2016;194:201-11. Cerca con Google

Smits P, Van Brouwershaven JH. Heat-induced association of beta-lactoglobulin and casein micelles. J Dairy Res 1980;47:313-25. Cerca con Google

Spuergin P, Walter M, Schiltz E, Deichmann K, Forster J, Mueller H. Allergenicity of alpha-caseins from cow, sheep, and goat. Allergy 1997;52:293-8. Cerca con Google

Swaisgood HE. Chemistry of milk protein. In: Developments in Dairy Chemistry-I Proteins. Applied Science Publishers, London and New York, 1982. Cerca con Google

Tang ML, Mullins RJ. Food allergy: is prevalence increasing? Intern Med J 2017;47:256-261. Cerca con Google

Taylor SL, Baumert JL, Kruizinga AG, Remington BC, Crevel RW, Brooke-Taylor S, Allen KJ. Allergen Bureau of Australia & New Zealand, Houben G. Establishment of Reference Doses for residues of allergenic foods: report of the VITAL Expert Panel. Food Chem Toxicol 2014;63:9-17. Cerca con Google

Thurn A, Burchard W, Niki R. Structure of casein micelles II. αs1-casein. Colloid and Polymer Sci 1987;265: 897–902. Cerca con Google

Tsabouri S, Douros K, Priftis KN. Cow's milk allergenicity. Endocr Metab Immune Disord Drug Targets. 2014;14:16-26. Cerca con Google

Tukur HM, Pardal PB, Formal M, Toullec R, Lallès JP, Guilloteau P. Digestibility, blood levels of nutrients and skin responses of calves fed soyabean and lupin proteins. Reprod Nutr Dev 1995;35:27-44. Cerca con Google

Turner PJ, Mehr S, Sayers R, Wong M, Shamji MH, Campbell DE, Mills EN.. Loss of allergenic proteins during boiling explains tolerance to boiled peanut in peanut allergy. J Allergy Clin Immunol 2014;134:751-3 Cerca con Google

Vadehra DV, Nath KR, Forsythe R. Eggs as a source of protein. Critical Reviews in Food Technology 1973;4:193-309. Cerca con Google

Van den Bremer E, Heck AJR. Mass Spectrometry: Protein Conformational Analysis and Molecular Recognition. Biotechnol: Pharm Aspects. AAPS Press, 2004. Cerca con Google

Van der Veen MJ, Van Ree R, Aalberse RC, Akkerdaas J, Koppelman SJ, Jansen HM, Van der Zee JS. Poor biologic activity of cross-reactive IgE directed to carbohydrate determinants of glycoproteins. J Allergy Clin Immunol 1997;100:327-34. Cerca con Google

Van Kleef FS. Thermally induced protein gelation: gelation and rheological characterization of highly concentrated ovalbumin and soybean protein gels. Biopolymers 1986;25:31-59. Cerca con Google

Visser S, Slangen KJ, Alting AC, Vreeman HJ. Specificity of bovine plasmin in its action on bovine alfa s2-casein. Milchwissenschaft 1989;44: 335-339. Cerca con Google

Walker MJ, Burns DT, Elliott CT, Gowland MH, Mills EN. Is food allergen analysis flawed? Health and supply chain risks and a proposed framework to address urgent analytical needs. Analyst 2016;141:24-35. Cerca con Google

Watanabe H, Toda M, Sekido H, Wellner A, Fujii T, Henle T, Hachimura S, Nakajima-Adachi H. Heat treatment of egg white controls allergic symptoms and induces oral tolerance to ovalbumin in a murine model of food allergy. Mol Nutr Food Res 2014;58:394-404. Cerca con Google

Watanabe Y, Aburatani K, Mizumura T, Sakai M, Muraoka S, Mamegosi S, Honjoh T. Novel ELISA for the detection of raw and processed egg using extraction buffer containing a surfactant and a reducing agent. J Immunol Methods 2005;300:115-23. Cerca con Google

Westphal CD, Pereira MR, Raybourne RB, Williams KM. Evaluation of extraction buffers using the current approach of detecting multiple allergenic and nonallergenic proteins in food. J AOAC Int 2004;87:1458-65. Cerca con Google

Wu SY, Pérez MD, Puyol P, Sawyer L. Beta-lactoglobulin binds palmitate within its central cavity. J Biol Chem 1999;274:170-4. Cerca con Google

Wysocki VH, Tsaprailis G, Smith LL, Breci LA. Mobile and localized protons: a framework for understanding peptide dissociation. J Mass Spectrom 2000;35:1399-406. Cerca con Google

Yagi M, Sakurai K, Kalidas C, Batt CA, Goto Y. Reversible unfolding of bovine beta-lactoglobulin mutants without a free thiol group. J Biol Chem 2003;278:47009-15. Cerca con Google

Yeung J, Enzyme-linked immunosorbent assays (ELISAs) for detecting allergens in foods. In: Detecting Allergens in Food. Woodhead Publishing, 2006. Cerca con Google

Chapter 2-References Cerca con Google

Adzhubei AA, Sternberg MJ. Left-handed polyproline II helices commonly occur in globular proteins. J Mol Biol 1993;229:472-93. Cerca con Google

Barnett MP, McNabb WC, Roy NC, Woodford KB, Clarke AJ. Dietary A1 β-casein affects gastrointestinal transit time, dipeptidyl peptidase-4 activity, and inflammatory status relative to A2 β-casein in Wistar rats. Int J Food Sci Nutr 2014;65:720-7. Cerca con Google

Berry GP, Creamer LK. The association of bovine beta-casein. The importance of the C-terminal region. Biochemistry 1975;14:3542-5. Cerca con Google

Bonfatti V, Grigoletto L, Cecchinato A, Gallo L, Carnier P. Validation of a new reversed-phase high-performance liquid chromatography method for separation and quantification of bovine milk protein genetic variants. J Chromatogr A 2008;1195:101-6. Cerca con Google

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248-54. Cerca con Google

Cade R, Privette M, Fregly M, Rowland N, Sun Z, Zele V, Wagemaker H, Edelstein C. Autism and Schizophrenia: Intestinal Disorders. Nutr Neurosci 2000;3:57-72. Cerca con Google

Chen CC, Chen ST, Hsieh JF. Proteomic analysis of polysaccharide-milk protein interactions induced by chitosan. Molecules 2015;20:7737-49. Cerca con Google

Chin-Dusting J, Shennan J, Jones E, Williams C, Kingwell B, Dart A. Effect of dietary supplementation with beta-casein A1 or A2 on markers of disease development in individuals at high risk of cardiovascular disease. Br J Nutr 2006;95:136-44. Cerca con Google

Cieoeliñska A, Kamiñski S, Kostyra E, Sienkiewicz-Szapka E. Beta-casomorphin 7 in raw and hydrolysed milk derived from cows of alternative-casein genotypes. Milchwissenschaft 2007;62: 125–27. Cerca con Google

Croguennec T, O’Kennedy BT, Mehra R. Heat-induced denaturation/aggregation of β-lactoglobulin A and B: kinetics of the first intermediates formed. International Dairy Journal 2004; 14:399-409. Cerca con Google

Dalgleish DG, Corredig M. The structure of the casein micelle of milk and its changes during processing. Annu Rev Food Sci Technol 2012;3:449-67. Cerca con Google

De Kruif CG, Zhulina EB. κ-casein as a polyelectrolyte brush on the surface of casein micelles. Colloids Surfaces A Physicochem Eng Aspects 1996;117:151-59. Cerca con Google

De Kruif CG. Supra-aggregates of casein micelles as a prelude to coagulation. J Dairy Sci 1998;81:3019-28. Cerca con Google

De Noni I, Cattaneo S. Occurrence of β-casomorphins 5 and 7 in commercial dairy products and in their digests following in vitro simulated gastro-intestinal digestion. Food chemistry 2010;119:560-66. Cerca con Google

Donato L, Guyomarc’h F, Amiot S, Dalgleish DG. Formation of whey protein/κ-casein complexes in heated milk: Preferential reaction of whey protein with κ-casein in the casein micelles. International Dairy Journal 2007;17:1161-67. Cerca con Google

Eigel WN, Butler JE, Ernstrom CA, Farrell HM, Harwalkar VR, Jenness R, Whitney R McL. Nomenclature of Proteins of Cow's Milk: Fifth Revision. J Dairy Sci 1984;67:1599-1631. Cerca con Google

Elitsur Y, Luk GD. Beta-casomorphin (BCM) and human colonic lamina propria lymphocyte proliferation. Clin Exp Immunol 1991;85:493-7. Cerca con Google

Elliot RB, Wasmuth HE, Bibby NJ, Hill JP. The role of beta-casein variants in the induction of insulin-dependent diabetes in the non-obese diabetic mouse and humans. In: Milk protein polymorphism, Palmerston North (New Zealand), 1997. International Dairy Federation. Cerca con Google

Elliott RB, Harris DP, Hill JP, Bibby NJ, Wasmuth HE. Type I (insulin-dependent) diabetes mellitus and cow milk: casein variant consumption. Diabetologia 1999;42:292-6. Cerca con Google

Faizullin DA, Konnova TA, Haertle T, Zuev YF. Self-assembly and secondary structure of beta-casein. Russian Journal of Bioorganic Chemistry 2013;39:366-72. Cerca con Google

Farrell HM Jr, Jimenez-Flores R, Bleck GT, Brown EM, Butler JE, Creamer LK, Hicks CL, Hollar CM, Ng-Kwai-Hang KF, Swaisgood HE. Nomenclature of the proteins of cows' milk--sixth revision. J Dairy Sci 2004;87:1641-74. Cerca con Google

Farrell HM Jr, Wickham ED, Unruh JJ, Qi PX, Hoagland PD. Secondary structural studies of bovine caseins: temperature dependence of β-casein structure as analyzed by circular dichroism and FTIR spectroscopy and correlation with micellization. Food Hydrocolloids 2001;15:341-54. Cerca con Google

Fiat AM, Migliore-Samour D, Jollès P, Drouet L, Bal dit Sollier C, Caen J. Biologically active peptides from milk proteins with emphasis on two examples concerning antithrombotic and immunomodulating activities. J Dairy Sci 1993;76:301-10. Cerca con Google

FitzGerald RJ, Meisel H. Milk protein-derived peptide inhibitors of angiotensin-I-converting enzyme. Br J Nutr 2000;84 Suppl 1:S33-7. Cerca con Google

Ganapathy V, Miyauchi S. Transport systems for opioid peptides in mammalian tissues. AAPS J 2005;7:E852-6. Cerca con Google

Garnier J. Conformation of beta-casein in solution. Analysis of a thermal transition between 5 and 40 degrees C. J Mol Biol 1966;19:586-90. Cerca con Google

Gobbetti M, Minervini F, Rizzello CG. Angiotensin I‐converting‐enzyme‐inhibitory and antimicrobial bioactive peptides. International Journal of Dairy Technology 2004;57:173-88. Cerca con Google

Gobbetti M, Minervini F, Rizzello CG. Bioactive peptides in dairy products. In: Handbook of food products manufacturing. John Wiley & Sons, 2007. Cerca con Google

Gonenne J, Camilleri M, Ferber I, Burton D, Baxter K, Keyashian K, Foss J, Wallin B, Du W, Zinsmeister AR. Effect of alvimopan and codeine on gastrointestinal transit: a randomized controlled study. Clin Gastroenterol Hepatol 2005;3:784-91. Cerca con Google

Groves ML. Some minor components of casein and other phosphoproteins in milk. A review. J Dairy Science 1969;52:1155-65. Cerca con Google

Hartwig A, Teschemacher H, Lehmann W, Gauly M, Erhardt G (1997). Influence of genetic polymorphisms in bovine milk on the occurrence of bioactive peptides. Seminar on milk protein polymorphism, IDF Special Issue no. 9702. International Dairy Federation, Brussels, 459–460. Cerca con Google

Haug A, Høstmark AT, Harstad OM. Bovine milk in human nutrition--a review. Lipids Health Dis 2007;25;6:25. Cerca con Google

Holt C, Sawyer L. Caseins as rheomorphic proteins: interpretation of primary and secondary structures of the αS1-, β- and κ-caseins. J Chem Soc Faraday Trans 1993;89:2683-92. Cerca con Google

Horne DS. Steric stabilization and casein micelle stability. Journal of Colloid and Interface Science 1986;111:250-60. Cerca con Google

Iwan M, Jarmołowska B, Bielikowicz K, Kostyra E, Kostyra H, Kaczmarski M. Transport of micro-opioid receptor agonists and antagonist peptides across Caco-2 monolayer. Peptides 2008;29:1042-7. Cerca con Google

Jang HD, Swaisgood HE. Disulfide bond formation between thermally denatured β-lactoglobulin and κ-casein in casein micelles. J Dairy Sci 1990;73:900-04. Cerca con Google

Jensen HB, Holland JW, Poulsen NA, Larsen LB. Milk protein genetic variants and isoforms identified in bovine milk representing extremes in coagulation properties. J Dairy Sci 2012;95:2891-903. Cerca con Google

Jianqin S, Leiming X, Lu X, Yelland GW, Ni J, Clarke AJ. Effects of milk containing only A2 beta casein versus milk containing both A1 and A2 beta casein proteins on gastrointestinal physiology, symptoms of discomfort, and cognitive behavior of people with self-reported intolerance to traditional cows' milk Nutr J. 2016;15:35. Cerca con Google

Jinsmaa Y, Yoshikawa M. Enzymatic release of neocasomorphin and beta-casomorphin from bovine beta-casein. Peptides 1999;20:957-62. Cerca con Google

Jost R. Milk and dairy products. In: Ullmann's Encyclopedia of Industrial Chemistry, 2005. Cerca con Google

Kamiński S, Cieslińska A, Kostyra E. Polymorphism of bovine beta-casein and its potential effect on human health. J Appl Genet 2007;48:189-98. Cerca con Google

Kelly MA, Chellgren BW, Rucker AL, Troutman JM, Fried MG, Miller AF, Creamer TP. Host−Guest Study of Left-Handed Polyproline II Helix Formation. Biochemistry 2001;40:14376-83. Cerca con Google

Klein JS, Jiang S, Galimidi RP, Keeffe JR, Bjorkman PJ. Design and characterization of structured protein linkers with differing flexibilities. Protein Eng Des Sel, 2014;27:325-330. Cerca con Google

Korhonen H, Pihlanto A. Bioactive peptides from food proteins. In: Handbook of food products manufacturing. John Wiley & Sons, 2007. Cerca con Google

Kostyra E, Sienkiewicz-Szłapka E, Jarmołowska B, Krawczuk S, Kostyra H. Opioid peptides derived from milk proteins. Polish journal of food and nutrition sciences 2004;13:25-35. Cerca con Google

Kumosinski TF, Brown EM, Farrell HM Jr. Three-dimensional molecular modeling of bovine caseins: an energy-minimized beta-casein structure. J Dairy Sci 1993;76:931-45. Cerca con Google

Liao SM, Du QS, Meng JZ, Pang ZW, Huang RB. The multiple roles of histidine in protein interactions. Chem Cent J 2013;7:44. Cerca con Google

Liu H, Zhang J, Hanchang S, Changming X, Zhu Y, Hongwei X. The Prediction of Peptide Charge States for Electrospray Ionization in Mass Spectrometry. Procedia Environmental Sciences 2011; 8:483–491. Cerca con Google

Marcelino AMC, Gierasch LM. Roles of β-Turns in Protein Folding: From Peptide Models to Protein Engineering. Biopolymers 2008; 89: 380–91. Cerca con Google

McGann T, Fox P. Physico-chemical properties of casein micelles reformed from urea-treated milk. Journal of Dairy Research 1974;41:45-53. Cerca con Google

McLachlan CN. Beta-casein A1, ischaemic heart disease mortality, and other illnesses. Med Hypotheses 2001;56:262-72. Cerca con Google

Meisel H, Schlimme E. Inhibitors of angiotensin-converting-enzyme derived from bovine casein (casokinins). In: β-Casomorphins and related peptides: Recent developments. VCH, Weinheim, 1994. Cerca con Google

Morgan AA, Rubenstein E. Proline: the distribution, frequency, positioning, and common functional roles of proline and polyproline sequences in the human proteome. PLoS One 2013;8:e53785. Cerca con Google

Ng-Kwai-Hang KF, Grosclaude F. Genetic polymorphism of milk proteins. In: Advanced Dairy Chemistry—1 Proteins. Springer, 2003. Cerca con Google

Noni ID. Release of β-casomorphins 5 and 7 during simulated gastro-intestinal digestion of bovine β-casein variants and milk-based infant formulas. Food Chem 2008;110:897-903. Cerca con Google

O'Connell JE, Grinberg VY, de Kruif CG. Association behavior of beta-casein. J Colloid Interface Sci 2003;258:33-9. Cerca con Google

Oldfield DJ, Singh H, Taylor MW. Association of β-Lactoglobulin and β-Lactalbumin with the Casein Micelles in Skim Milk Heated in an Ultra-high Temperature Plant. Int Dairy Journal 1998;8:765-70. Cerca con Google

Pal S, Woodford K, Kukuljan S, Ho S. Milk Intolerance, Beta-Casein and Lactose. Nutrients 2015;7:7285-97. Cerca con Google

Park YW, Nam MS. Bioactive Peptides in Milk and Dairy Products: A Review. Korean J Food Sci Anim Resour 2015;35:831-40. Cerca con Google

Rival SG, Boeriu CG, Wichers HJ. Caseins and casein hydrolysates. 2. Antioxidative properties and relevance to lipoxygenase inhibition. J Agric Food Chem 2001;49:295-302. Cerca con Google

Roginski H. Encyclopedia of dairy sciences. Academic Press, London, 2003. Cerca con Google

Sanchez A, Vazquez A. Bioactive peptides: A review. Food Quality and Safety 2017;1:29-46. Cerca con Google

Sato S, Kwon Y, Kamisuki S, Srivastava N, Mao Q, Kawazoe Y, Uesugi M. Polyproline-rod approach to isolating protein targets of bioactive small molecules: isolation of a new target of indomethacin. J Am Chem Soc 2007;129:873-80. Cerca con Google

Scientific Report of EFSA prepared by a DATEX Working Group on the potential health impact of β‐casomorphins and related peptides. EFSA Scientific Report (2009) 231, 1–107. Cerca con Google

Shahidi F, Mine Y. Nutraceutical proteins and peptides in health and disease. CRC Press, 2005. Cerca con Google

Shandilya U, Kapila R, Kapila S, Kansal VK. Different stimulating effects of caseins and whey proteins of processed cow and buffalo milk on lymphocyte proliferation in vitro. Open Access Animal Physiology 2015;7:121-27. Cerca con Google

Singh M, Rosen CL, Chang KJ, Haddad GG. Plasma beta-casomorphin-7 immunoreactive peptide increases after milk intake in newborn but not in adult dogs. Pediatr Res 1989;26:34-8. Cerca con Google

Smits P, Brouwershaven J. Heat-induced association of β-lactoglobulin and casein micelles. Journal of Dairy Research 1980;47:313-25. Cerca con Google

Smyth E, Syme CD, Blanch EW, Hecht L, Vasák M, Barron LD. Solution structure of native proteins with irregular folds from Raman optical activity. Biopolymers 2001;58:138-51. Cerca con Google

Sun Z, Zhang Z, Wang X, Cade R, Elmir Z, Fregly M. Relation of beta-casomorphin to apnea in sudden infant death syndrome. Peptides 2003;24:937-43. Cerca con Google

Tailford KA, Berry CL, Thomas AC, Campbell JH. A casein variant in cow's milk is atherogenic. Atherosclerosis 2003;170:13-9. Cerca con Google

Teschemacher H. Opioid receptor ligands derived from food proteins. Curr Pharm Des 2003;9:1331-44. Cerca con Google

Tompa P. Intrinsically unstructured proteins. Trends Biochem Sci 2002;27:527-33. Cerca con Google

Tsabouri S, Douros K, Priftis KN. Cow's milk allergenicity. Endocr Metab Immune Disord Drug Targets 2014;14:16-26. Cerca con Google

Turner TD, Browning JL, Widmayer MA, Baskin DS. Penetration of dynorphin 1-13 across the blood-brain barrier. Neuropeptides 1998;32:141-9. Cerca con Google

Ul Haq MR, Kapila R, Sharma R, Saliganti V, Kapila S. Comparative evaluation of cow β-casein variants (A1/A2) consumption on Th2-mediated inflammatory response in mouse gut. Eur J Nutr 2014;53:1039-49. Cerca con Google

Umbach M, Teschemacher H, Praetorius K, Hirschhäuser R, Bostedt H. Demonstration of a beta-casomorphin immunoreactive material in the plasma of newborn calves after milk intake. Regul Pept 1985;12:223-30. Cerca con Google

Waldhoer M, Bartlett SE, Whistler JL. Opioid receptors. Annu Rev Biochem 2004;73:953-90. Cerca con Google

Wilkins MR, Lindskog I, Gasteiger E, Bairoch A, Sanchez JC, Hochstrasser DF, Appel RD. Detailed peptide characterization using PEPTIDEMASS--a World-Wide-Web-accessible tool. Electrophoresis 1997;18:403-8. Cerca con Google

Chapter 3-References Cerca con Google

Aeschlimann D, Paulsson M. Transglutaminases: protein cross-linking enzymes in tissues and body fluids. Thromb Haemost 1994;71:402-15. Cerca con Google

Ando H, Adachi M, Umeda K, Matsuura A, Nonaka M, Uchio R, Motoki M. Purification and characteristics of a novel transglutaminase derived from microorganisms. Agric Biol Chem 1989, 53:2613-17. Cerca con Google

Bernard BK, Tsubuku S, Shioya S. Acute toxicity and genotoxicity studies of a microbial transglutaminase. International journal of toxicology 1998;17:703-21. Cerca con Google

Cui L, Zhang D, Huang L, Liu H, Du G, Chen J. Stabilization of a new microbial transglutaminase from Streptomyces hygroscopicus WSH03-13 by spray drying. Process Biochemistry 2006;41: 1427–31. Cerca con Google

Date M, Yokoyama K, Umezawa Y, Matsui H, Kikuchi Y. Production of native-type Streptoverticillium mobaraense transglutaminase in Corynebacterium glutamicum. Appl Environ Microbiol 2003;69:3011-4. Cerca con Google

Esposito C, Caputo I. Mammalian transglutaminases. Identification of substrates as a key to physiological function and physiopathological relevance. FEBS J 2005;272:615-31. Cerca con Google

Falcone P, Serafini-Fracassini D, Del Duca S. Comparative studies of transglutaminase activity and substrates in different organs of Helianthus tuberosus. J Plant Physiol 1993;142:265-273. Cerca con Google

Fauchere JL, Pliska V. Hydrophobic parameters pi of amino-acid side chains from the partitioning of N-acetyl-amino-acid amides. Eur J Med Chem 1983;18:369-75. Cerca con Google

Folk JE, Cole PW. Transglutaminase: Mechanistic features of the active site as determined by kinetic and inhibitor studies. Bioch Biophys Acta 1966;122:244–64. Cerca con Google

Friedman M, Finot PA. Nutritional improvement of bread with lysine and gamma-glutamyllysine. J Agric Food Chem 1990;38:2011-20. Cerca con Google

Giosafatto CVL, Rigby NM, Wellner N, Ridout M, Husband F, Mackie AR. Microbial transglutaminase-mediated modification of ovalbumin. Food Hydrocolloids 2012;26:261-267. Cerca con Google

Ikura K, Kometani T, Sasaki R, Chiba H. Crosslinking of soybean 7S and 11S proteins by transglutaminase. Agric Biol Chem 1980;44:2979-84. Cerca con Google

Iwami K, Yasumoto K. Amine-binding capacities of food proteins in transglutaminase reaction and digestibility of wheat gliadin with ε-attached lysine. J Sci Food Agric 1986;37:495–503. Cerca con Google

Kanaji T, Ozaki H, Takao T, Kawajiri H, Ide H, Motoki M, Shimonishi Y. Primary structure of microbial transglutaminase from Streptoverticillium sp. strain s-8112. J Biol Chem 1993;268:11565-72. Cerca con Google

Kang IJ, Matsumura Y, Ikura K, Motoki M, Sakamoto H, Mori T. Gelation and gel properties of soybean glycinin in a transglutaminase-catalyzed system. J Agric Food Chem 1994;42:159-65. Cerca con Google

Kashiwagi T, Yokoyama K, Ishikawa K, Ono K, Ejima D, Matsui H, Suzuki E. Crystal structure of microbial transglutaminase from Streptoverticillium mobaraense. J Biol Chem 2002;277:44252-60. Cerca con Google

Kato A, Wada T, Kobayashi K, Seguro K, Motoki M. Ovomucin-food protein conjugates prepared through the transglutaminase reaction. Agric Biol Chem 1991;55:1027-31. Cerca con Google

Kieliszek M, Misiewicz A. Microbial transglutaminase and its application in the food industry. A review. Folia Microbiol (Praha) 2014;59:241-50. Cerca con Google

Kuraishi C, Sakamoto J, Yamazaki K, Susa Y, Kuhara C, Soeda T. Production of restructured meat using microbial transglutaminase without salt or cooking. Journal of Food Science 1997;62:488-490. Cerca con Google

Kuraishi C, Yamazaki K, Susa Y. Transglutaminase: its utilization in the food industry. Food Reviews International 2001;17:221-46. Cerca con Google

Kurth L, Rogers PJ. Transglutaminase catalyzed cross‐linking of myosin to soya protein, casein and gluten. Journal of Food Science 1984;49:573-76. Cerca con Google

Lerner A, Matthias T. Possible association between celiac disease and bacterial transglutaminase in food processing: a hypothesis. Nutr Rev 2015;73:544-52. Cerca con Google

Lin YS, Chao ML, Liu CH, Chu WS. Cloning and expression of the transglutaminase gene from Streptoverticillium ladakanum in Streptomyces lividans. Process Biochemistry 2004;39:591-98. Cerca con Google

Moore MM, Heinbockel M, Dockery P, Ulmer HM, Arendt EK. Network formation in gluten‐free bread with application of transglutaminase. Cereal Chem 2006;83:28-36. Cerca con Google

Motoki M, Nio N, Takinami K. Functional properties of heterologous polymer prepared by transglutaminase between milk casein and soybean globulin. Agric Biol Chem 1987;51:237-39. Cerca con Google

Muszbek L, Bereczky Z, Bagoly Z, Komáromi I, Katona É. Factor XIII: a coagulation factor with multiple plasmatic and cellular functions. Physiol Rev 2011;91:931-72. Cerca con Google

Nonaka M, Matsuura Y, Nakano K, Motoki M. Improvement of the pH-solubility profile of sodium caseinate by using Ca2+-independent microbial transglutaminase with gelatin. Food Hydrocolloids 1997;11:347-49. Cerca con Google

Nonaka M, Sakamoto H, Toiguchi S, Kawajiri H, Soeda T, Motoki M. Sodium caseinate and skim milk gels formed by incubation with microbial transglutaminase. Journal of Food Science 1992;57: 1214-41. Cerca con Google

Pasternack R, Dorsch S, Otterbach JT, Robenek IR, Wolf S, Fuchsbauer HL. Bacterial pro-transglutaminase from Streptoverticillium mobaraense--purification, characterisation and sequence of the zymogen. Eur J Biochem 1998;257:570-6. Cerca con Google

Romeih E, Walker G. Recent advances on microbial transglutaminase and dairy application. Trends in Food Science & Technology 2017;62:133-40. Cerca con Google

Rossa PN, de Sá EMF, Burin VM, Bordignon-Luiz, MT. Optimization of microbial transglutaminase activity in ice cream using response surface methodology. LWT-Food Science and Technology 2011;44:29-34. Cerca con Google

Sakamoto H, Kumazawa Y, Kawajiri H, Motoki M. ε‐(γ‐Glutamyl) lysine Crosslink Distribution in Foods as Determined by Improved Method. Journal of Food Science 1995;60:416-20. Cerca con Google

Sakamoto H, Yamazaki K, Kaga C, Yamamoto Y, Ito R, Kurosaw Y. Strength enhancement by addition of microbial transglutaminase during Chinese noodle processing. Nippon Shokuhin Kagaku Kougaku Kaishi 1996,43:598-602. Cerca con Google

Salis B, Spinetti G, Scaramuzza S, Bossi M, Saccani Jotti G, Tonon G, Crobu D, Schrepfer R. High-level expression of a recombinant active microbial transglutaminase in Escherichia coli. BMC Biotechnol 2015;15:84. Cerca con Google

Seguro K, Kumazawa Y, Ohtsuka T, Ide H, Nio N, Motoki M, Kubota K. Epsilon-(gamma-Glutamyl) lysine: Hydrolysis by gamma-Glutamyltransferase of Different Origins, When Free or Protein Bound. J Agric Food Chem 1995;43:1977-81. Cerca con Google

Seguro K, Kumazawa Y, Ohtsuka T, Toiguch S, Motoki M. Microbial transglutaminase and ε‐(γ‐glutamyl) lysine crosslink effects on elastic properties of kamaboko gels. Journal of Food Science 1995;60:305-11. Cerca con Google

Singh RN, Mehta K. Purification and characterization of a novel transglutaminase from filarial nematode Brugia malayi. Eur J Biochem 1994;225:625-34. Cerca con Google

Washizu K, Ando K, Koikeda S, Hirose S, Matsuura A, Takagi H, Motoki M, Takeuchi K. Molecular cloning of the gene for microbial transglutaminase from Streptoverticillium and its expression in Streptomyces lividans. Biosci Biotechnol Biochem 1994;58:82-7. Cerca con Google

Yasueda H, Kumazawa Y, Motoki M. Purification and characterization of a tissue-type transglutaminase from red sea bream (Pagrus major). Biosci Biotechnol Biochem 1994;58:2041-5. Cerca con Google

Yokoyama K, Nio N, Kikuchi Y. Properties and applications of microbial transglutaminase. Appl Microbiol Biotechnol 2004;64:447-54. Cerca con Google

Yokoyama K, Utsumi H, Nakamura T, Ogaya D, Shimba N, Suzuki E, Taguchi S. Screening for improved activity of a transglutaminase from Streptomyces mobaraensis created by a novel rational mutagenesis and random mutagenesis. Appl Microbiol Biotechnol 2010;87:2087-96. Cerca con Google

Yokoyama KI, Nakamura N, Seguro K, Kubota K. Overproduction of microbial transglutaminase in Escherichia coli, in vitro refolding, and characterization of the refolded form. Biosci Biotechnol Biochem 2000;64:1263-70. Cerca con Google

Yu YJ, Wu SC, Chan HH, Chen YC, Chen ZY, Yang MT. Overproduction of soluble recombinant transglutaminase from Streptomyces netropsis in Escherichia coli. Appl Microbiol Biotechnol 2008;81:523-32. Cerca con Google

Zhang D, Zhu Y, Chen J. Microbial transglutaminase production: understanding the mechanism. Biotechnol Genet Eng Rev 2010;26:205-22. Cerca con Google

Zhang Y, Fonslow BR, Shan B, Baek MC, Yates JR 3rd. Protein analysis by shotgun/bottom-up proteomics. Chem Rev 2013;113:2343-94. Cerca con Google

Zhu Y, Tramper J. Novel applications for microbial transglutaminase beyond food processing. Trends Biotechnol 2008;26:559-65. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record