Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Sammarco, Alessandro (2018) Study on normal and tumoral cell subpopulations and their interactions in the mammary gland cancer of humans and animals. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document
Thesis not accessible until 31 December 2020 for intellectual property related reasons.
Visibile to: nobody

6Mb

Abstract (italian or english)

Human breast cancer (HBC), canine (CMT), and feline mammary tumors (FMT) are extremely common and are characterized by a remarkable both inter- and intra-tumor heterogeneity. Intra-tumor heterogeneity is due to the coexistence of cancer cells that differ between each other in terms of phenotypic, genetic, behavioral characteristics, and metastatic potential. Cancer stem cells (CSCs) are thought to be responsible for such heterogeneity, resistance to therapy, and metastasis development. Several pathways are altered in CSCs, such as the oncogenic Wnt/-catenin and Hippo pathways, and CSCs are associated to the epithelial-to-mesenchymal transition (EMT) process.
The aims of this study were to i) isolate and characterized mammary CSCs; ii) investigate EMT process and Wnt/-catenin and Hippo pathways in mammary cancer of the three species; iii) establish a metastatic mouse model of breast cancer seeking for genes responsible of metastatic dissemination; iv) isolate and characterize extracellular vesicles (EVs), which is one of the main forms of intercellular communication, from canine and feline mammary tumors as well as study the role that EVs play during tumor development.
CSC-like cells were isolated from established canine and feline mammary tumor cell lines (CYPp and FMCp, respectively) and phenotypically and molecularly characterized for common CSC markers: CD44, CD24, CD133, SOX2, OCT4. Moreover, gene (qPCR) and protein (IHC and WB) expression of Wnt/-catenin and Hippo pathways-related molecules (-catenin, CCND1, YAP, TAZ, CTGF, ANKRD1) as well as protein expression (IHC) of EMT-related molecules (E-cadherin, SNAIL, TWIST, ZEB) were evaluated in a subset of human, canine, and feline mammary cancer tissues, that were also phenotypically characterized for the following markers: CK8/18, CK5/6, CK14, CD44, and vimentin. Additionally, triple negative breast cancer (TNBC) cell line MDA-MB-231 was used to establish a clinically relevant in vivo metastatic model. Finally, EVs were isolated and characterized from CYPp and FMCp and human glioblastoma-derived EVs were used to study tumor angiogenesis.
We found that CD44, CD133, SOX2, and OCT4 expression increase in CSC-like cells (mammospheres) compared to parental adherent cells, therefore they could be used as useful markers in CMTs and FMTs. Wnt/-catenin and Hippo pathways seem to be deregulated at a post-transcriptional level in HBCs, CMTs, and FMTs. Interesting similarities were confirmed between TNBCs and FMTs, as well as between ER+ HBC and CMTs. In our metastatic model, mice developed distant metastases and we found a few genes that might play a role during metastatic dissemination. Among these, caspase 3 seems to be involved in brain metastases. Additionally, EVs were isolated from CYPp and FMCp, visualized by transmissible electron microscopy, counted using nanoparticle tracking analysis, and characterized by immunogold and WB (Alix, CD63, TSG101). Finally, using a human glioblastoma cell line (GBM8) we demonstrated that EVs are directly involved in tumor angiogenesis.
Overall, this study confirms the use of dogs and cats as spontaneous models of mammary cancer development due to highly interesting biological similarities among the three species. Also, identification of EVs in CMTs and FMTs opens an interesting unexplored field in veterinary medicine.

Abstract (a different language)

Human breast cancer (HBC), canine (CMT), and feline mammary tumors (FMT) are extremely common and are characterized by a remarkable both inter- and intra-tumor heterogeneity. Intra-tumor heterogeneity is due to the coexistence of cancer cells that differ between each other in terms of phenotypic, genetic, behavioral characteristics, and metastatic potential. Cancer stem cells (CSCs) are thought to be responsible for such heterogeneity, resistance to therapy, and metastasis development. Several pathways are altered in CSCs, such as the oncogenic Wnt/-catenin and Hippo pathways, and CSCs are associated to the epithelial-to-mesenchymal transition (EMT) process.
The aims of this study were to i) isolate and characterized mammary CSCs; ii) investigate EMT process and Wnt/-catenin and Hippo pathways in mammary cancer of the three species; iii) establish a metastatic mouse model of breast cancer seeking for genes responsible of metastatic dissemination; iv) isolate and characterize extracellular vesicles (EVs), which is one of the main forms of intercellular communication, from canine and feline mammary tumors as well as study the role that EVs play during tumor development.
CSC-like cells were isolated from established canine and feline mammary tumor cell lines (CYPp and FMCp, respectively) and phenotypically and molecularly characterized for common CSC markers: CD44, CD24, CD133, SOX2, OCT4. Moreover, gene (qPCR) and protein (IHC and WB) expression of Wnt/-catenin and Hippo pathways-related molecules (-catenin, CCND1, YAP, TAZ, CTGF, ANKRD1) as well as protein expression (IHC) of EMT-related molecules (E-cadherin, SNAIL, TWIST, ZEB) were evaluated in a subset of human, canine, and feline mammary cancer tissues, that were also phenotypically characterized for the following markers: CK8/18, CK5/6, CK14, CD44, and vimentin. Additionally, triple negative breast cancer (TNBC) cell line MDA-MB-231 was used to establish a clinically relevant in vivo metastatic model. Finally, EVs were isolated and characterized from CYPp and FMCp and human glioblastoma-derived EVs were used to study tumor angiogenesis.
We found that CD44, CD133, SOX2, and OCT4 expression increase in CSC-like cells (mammospheres) compared to parental adherent cells, therefore they could be used as useful markers in CMTs and FMTs. Wnt/-catenin and Hippo pathways seem to be deregulated at a post-transcriptional level in HBCs, CMTs, and FMTs. Interesting similarities were confirmed between TNBCs and FMTs, as well as between ER+ HBC and CMTs. In our metastatic model, mice developed distant metastases and we found a few genes that might play a role during metastatic dissemination. Among these, caspase 3 seems to be involved in brain metastases. Additionally, EVs were isolated from CYPp and FMCp, visualized by transmissible electron microscopy, counted using nanoparticle tracking analysis, and characterized by immunogold and WB (Alix, CD63, TSG101). Finally, using a human glioblastoma cell line (GBM8) we demonstrated that EVs are directly involved in tumor angiogenesis.
Overall, this study confirms the use of dogs and cats as spontaneous models of mammary cancer development due to highly interesting biological similarities among the three species. Also, identification of EVs in CMTs and FMTs opens an interesting unexplored field in veterinary medicine.

EPrint type:Ph.D. thesis
Tutor:Zappulli, Valentin Elena Giuditta
Ph.D. course:Ciclo 31 > Corsi 31 > SCIENZE VETERINARIE
Data di deposito della tesi:22 November 2018
Anno di Pubblicazione:22 November 2018
Key Words:mammary cancer, cancer stem cells, Wnt/b-catenin pathway, Hippo pathway, metastasis, extracellular vesicles
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > VET/03 Patologia generale e anatomia patologica veterinaria
Struttura di riferimento:Dipartimenti > Dipartimento di Biomedicina Comparata ed Alimentazione
Codice ID:11361
Depositato il:14 Nov 2019 13:55
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Abdelmegeed SM, Mohammed S. Canine mammary tumors as a model for human disease. Oncol Lett. 2018; 15(6):8195-8205. Cerca con Google

Abels E, Breakefield XO. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake. Cell Mol Neurobiol. 2016; 36:301–312. Cerca con Google

Abraham BK, Fritz P, McClellan M, et al. Prevalence of CD44+/CD24-/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res. 2005; 11:1154-1159. Cerca con Google

AbuSamra DB, Aleisa FA, Al-Amoodi AS, et al. Not just a marker: CD34 on human hematopoietic stem/progenitor cells dominates vascular selectin binding along with CD44. Blood Adv. 2017; 1(27):2799-2816. Cerca con Google

Adamo B, Deal AM, Burrows E, et al. Phosphatidylinositol 3-kinase pathway activation in breast cancer brain metastases. Breast Cancer Res. 2011; 13:R125. Cerca con Google

Adega F, Borges A, Chaves R. Cat mammary tumors: genetic models for the human counterpart. Vet Sci. 2016; 3(3). pii: E17. Cerca con Google

Aga M, Bentz GL, Raffa S, et al. Exosomal HIF1 α supports invasive potential of exosomes. Oncogene 2014; 33(37):4613–4622. Cerca con Google

Ahmad A, Sarkar SH, Bitar B, et al. Garcinol regulates EMT and Wnt signaling pathways in vitro and in vivo, leading to anticancer activity against breast cancer cells. Mol Cancer Ther. 2012; 11:2193–2201. Cerca con Google

Aigner K, Dampier B, Descovich L, et al. The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene. 2007; 26:6979-88. Cerca con Google

Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ and Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003; 100:3983-3988. Cerca con Google

Al-Nedawi K, Meehan B, Micallef J, et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol. 2008; 10:619–624. Cerca con Google

Ali HR, Rueda OM, Chin SF, et al. Genome-driven integrated classification of breast cancer validated in over 7,500 samples. Genome Biol. 2014; 15(8):431. Cerca con Google

Altin JG, Sloan EK. The role of CD45 and CD45-associated molecules in T cell activation. Immunol Cell Biol. 1997; 75(5):430-445. Cerca con Google

Ansieau S. EMT in breast cancer stem cell generation. Cancer Lett. 2013; 338(1):63-68. Cerca con Google

Arras M, Autenried P, Rettich A, Spaeni D, Rülicke T. Optimization of intraperitoneal injection anesthesia in mice: drugs, dosages, adverse effects, and anesthesia depth. Comp Med. 2001; 51(5):443-456. Cerca con Google

Arraud N, Linare R, Tan S, et al. Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. J Thromb Haemost. 2014; 12:614–627. Cerca con Google

Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA. 2011; 108:5003–5008. Cerca con Google

Aspuria PJ, Tamanoi F. The Rheb family of GTP-binding proteins. Cell Signal. 2004; 16(10):1105–1112. Cerca con Google

Azzolin L, Panciera T, Soligo S, et al. YAP/TAZ incorporation in the beta-catenin destruction complex orchestrates the Wnt response. Cell. 2014; 158:157– 170. Cerca con Google

Baietti MF, Zhang Z, Mortier E, et al. Syndecan – syntenin – ALIX regulates the biogenesis of exosomes. Nat Cell Biol. 2012; 14:677–685. Cerca con Google

Bakhshinyan D, Adile AA, Qazi MA, et al. Introduction to cancer stem cells: past, present, and future. Methods Mol Biol. 2018; 1692:1-16. Cerca con Google

Balaj L, Lessard R, Dai L, et al. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun. 2011; 2:180. Cerca con Google

Bao B, Ahmad A, Azmi AS, Ali S, Sarkar FH. Overview of cancer stem cells (CSCs) and mechanisms of their regulation: implications for cancer therapy. Curr Protoc Pharmacol. 2013; Chapter 14:Unit 14.25. Cerca con Google

Barbarulo A, Iansante V, Chaidos A, et al. Poly(ADP-ribose) polymerase family member 14 (PARP14) is a novel effector of the JNK2-dependent pro-survival signal in multiple myeloma. Oncogene. 2013; 32:4231–4242. Cerca con Google

Barbieri F, Thellung S, Ratto A, et al. In vitro and in vivo antiproliferative activity of metformin on stem-like cells isolated from spontaneous canine mammary carcinomas: translational implications for human tumors. BMC Cancer. 2015; 15:228. Cerca con Google

Barbieri F, Wurth R, Ratto A. Isolation of stem-like cells from spontaneous feline mammary carcinomas: Phenotypic characterization and tumorigenic potential. Exp Cell Res. 2012; 318(7):847-860. Cerca con Google

Barone R. Mamelles. Tome 4 Splanchnologie II. 1990. Editions vigot, Paris. Cerca con Google

Bartlett J, Mallon E, Cooke T. The clinical evaluation of HER-2 status: which test to use? J Pathol. 2003; 199(4):411-417. Cerca con Google

Bartucci M, Dattilo R, Moriconi C, et al. TAZ is required for metastatic activity and chemoresistance of breast cancer stem cells. Oncogene. 2015; 34(6):681– 690. Cerca con Google

Batagov AO, Kurochkin IV. Exosomes secreted by human cells transport largely mRNA fragments that are enriched in the 3’- untranslated regions. Biol Direct. 2013; 8:12. Cerca con Google

Batlle E, Sancho E, Franci C, et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000; 2:84-89. Cerca con Google

Bauerschmitz GJ, Ranki T, Kangasniemi L, et al. Tissue-specific promoters active in CD44+CD24-/low breast cancer cells. Cancer Res. 2008; 68(14):5533-5539. Cerca con Google

Beffagna G, Sacchetto R, Cavicchioli L, et al. A preliminary investigation of the role of the transcription co-activators YAP/TAZ of the hippo signalling pathway in canine and feline mammary tumours. Vet J. 2016; 207:105-111. Cerca con Google

Berghoff AS, Bartsch R, Wohrer A, et al. Predictive molecular markers in metastases to the central nervous system: recent advances and future avenues. Acta Neuropathol. 2014; 128:879-91. Cerca con Google

Bezdenezhnykh N, Semesiuk N, Lykhova O, Zhylchuk V, Kudryavets Y. Impact of stromal cell components of tumor microenvironment on epithelial-mesenchymal transition in breast cancer cells. Exp Oncol. 2014; 36(2):72-78. Cerca con Google

Bilic J, Huang YL, Davidson G, et al. Wnt induces LRP6 signalosomes and promotes disheveled-dependent LRP6 phosphorylation. Science. 2007; 316(5831):1619–1622. Cerca con Google

Birnbaum D, Bertucci F, Ginestier C, et al. Basal and luminal breast cancers: basic or luminous? [review]. Int J Oncol. 2004; 25:249–258. Cerca con Google

Blacking TM, Waterfall M, Argyle DJ. CD44 is associated with proliferation, rather than a specific cancer stem cell population, in cultured canine cancer cells. Vet Immunol Immunopathol. 2011; 141(1-2):46-57. Cerca con Google

Blacking TM, Waterfall M, Samuel K, Argyle DJ. Flow cytometric techniques for detection of candidate cancer stem cell subpopulations in canine tumour models. Vet Comp Oncol. 2012; 10(4):252-273. Cerca con Google

Blans K, Hansen MS, Sørensen LV, et al. Pellet-free isolation of human and bovine milk extracellular vesicles by size-exclusion chromatography. J Extracell Vesicles. 2017; 6:1294340. Cerca con Google

Blick T, Hugo H, Widodo E, et al. Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44(hi/) CD24(lo/-) stem cell phenotype in human breast cancer. J Mammary Gland Biol Neoplasia. 2010; 15(2):235–252. Cerca con Google

Bocker W, Moll R, Poremba C, et al. Common adult stem cells in the human breast give rise to glandular and myoepithelial cell lineages: a new cell biological concept. Lab Invest. 2002; 82:737–746. Cerca con Google

Bodemann BO, White MA. Ral GTPases and cancer: Linchpin support of the tumorigenic platform. Nat Rev Cancer. 2008; 8:133–140. Cerca con Google

Böing AN, van der Pol E, Grootemaat AE, et al. Single-step isolation of extracellular vesicles by size-exclusion chromatography. J Extracell Vesicles. 2014; 3:23430. Cerca con Google

Bongiovanni L, D’Andrea A, Porcellato I, et al. Canine cutaneous melanocytic tumours: significance of b-catenin and survivin immunohistochemical expression. Vet Dermatol. 2015; 26(4):270-e59. Cerca con Google

Brastianos PK, Carter SL, Santagata S, et al. Abstract: Genomic characterization of 101 brain metastases and paired primary tumors reveals patterns of clonal evolution and selection of driver mutations. AACR. San Diego, 2014. Cerca con Google

Brunetti B, Asproni P, Beha G, et al. Molecular phenotype in mammary tumors of queens: correlation between primary tumour and lymph node metastasis. J Comp Pathol. 2013; 148(2-3):206-213. Cerca con Google

Bubici C, Papa S. JNK signalling in cancer: in need of new, smarter therapeutic targets. Br J Pharmacol. 2014; 171:24–37. Cerca con Google

Buess M, Rajski M, Vogel-Durrer BM, Herrmann R, Rochlitz C. Tumor-endothelial interaction links the CD44(+)/CD24(−) phenotype with poor prognosis in early-stage breast cancer. Neoplasia. 2009; 11(10):987-1002. Cerca con Google

Burnett RM, Craven KE, Krishnamurthy P, et al. Organ-specific adaptive signaling pathway activation in metastatic breast cancer cells. Oncotarget. 2015; 6:12682-12696. Cerca con Google

Caliari D, Zappulli V, Rasotto R et al. Triple-negative vimentin-positive heterogeneous feline mammary carcinomas as a potential comparative model for breast cancer. BMC Vet Res. 2014; 10:185. Cerca con Google

Camerlingo R, Ferraro GA, De Francesco F. The role of CD44+/CD24-/low biomarker for screening, diagnosis and monitoring of breast cancer. Oncol Rep. 2014; 31(3):1127-1132. Cerca con Google

Campbell LL, Polyak K. Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle 2007; 6(19):2332–2338. Cerca con Google

Cantin R, Diou J, Bélanger D, Tremblay AM, Gilbert C. Discrimination between exosomes and HIV-1: Purification of both vesicles from cell-free supernatants. J Immunol Methods. 2008; 338(1-2):21–30. Cerca con Google

Cantrell MA, Ebelt ND, Pfefferle AD, Perou CM, Van Den Berg CL. c-Jun N-terminal kinase 2 prevents luminal cell commitment in normal mammary glands and tumors by inhibiting p53/Notch1 and breast cancer gene 1 expression. Oncotarget. 2015; 6:11863–11881. Cerca con Google

Carayon K, Chaoui K, Ronzier E, et al. Proteolipidic composition of exosomes changes during reticulocyte maturation. J Biol Chem. 2011; 286:34426–34439. Cerca con Google

Carr J, Williams DG, Hayden TR. Molecular detection of multiple respiratory viruses in molecular diagnostics. 2010. Pp. 289-300. Cerca con Google

Catteau X, Simon P, Vanhaeverbeek M, Noël JC. Variable stromal periductular expression of CD34 and smooth muscle actin (SMA) in intraductal carcinoma of the breast. PLoS One. 2013; 8(3):e57773. Cerca con Google

Cellurale C, Weston CR, Reilly J, et al. Role of JNK in a Trp53-dependent mouse model of breast cancer. PLoS One. 2010; 5:e12469. Cerca con Google

Chan SW, Lim CJ, Chen L, et al. The Hippo pathway in biological control and cancer development. J Cell Physiol. 2011; 226:928–939. Cerca con Google

Chang JC. Cancer stem cells: Role in tumor growth, recurrence, metastasis, and treatment resistance. Medicine (Baltimore). 2016; 95(Suppl 1):S20-S25. Cerca con Google

Charafe-Jauffret E, Ginestier C, Iovino F, et al. Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res. 2010; 16(1):45–55. Cerca con Google

Chen CH, Shen J, Lee WJ, Chow SN. Overexpression of cyclin D1 and c-Myc gene products in human primary epithelial ovarian cancer. Int J Gynecol Cancer. 2005; 15:878–83. Cerca con Google

Cheng CW, Liu YF, Yu JC, et al. Prognostic Significance of cyclin D1, -catenin, and MTA1 in patients with invasive ductal carcinoma of the breast. Ann Surg Oncol. 2012; 19(13):4129-4139. Cerca con Google

Chen DS, Mellman I. Oncology Meets Immunology: The Cancer-Immunity Cycle. Immunity. 2013; 39:1-10. Cerca con Google

Chen K, Zhao H, Hu Z, et al. CASP3 polymorphisms and risk of squamous cell carcinoma of the head and neck. Clin Cancer Res. 2008; 14:6343–6349. Cerca con Google

Chen N, Nomura M, She QB, et al. Suppression of skin tumorigenesis in c-Jun NH(2)-terminal kinase-2-deficient mice. Cancer Res. 2001; 61:3908–3912. Cerca con Google

Chen P, O'Neal JF, Ebelt ND, et al. Jnk2 effects on tumor development, genetic instability and replicative stress in an oncogene-driven mouse mammary tumor model. PLoS One. 2010; 5:e10443. Cerca con Google

Cheng H, Liang H, Qin Y, Liu Y. Nuclear -catenin overexpression in metastatic sentinel lymph node is associated with synchronous liver metastasis in colorectal cancer. Diagn Pathol. 2011; 6:109. Cerca con Google

Cheng L, Sun X, Scicluna BJ, et al. Characterization and deep sequencing analysis of exosomal and non-exosomal miRNA in human urine. Kidney Int. 2014; 86(2):433-444. Cerca con Google

Cheng YJ, Lee CH, Lin YP. Caspase-3 enhances lung metastasis and cell migration in a protease-independent mechanism through the ERK pathway. Int J Cancer. 2008; 123(6):1278-1285. Cerca con Google

Chia S, Norris B, Speers C, et al. Human epidermal growth factor receptor 2 overexpression as a prognostic factor in a large tissue microarray series of node-negative breast cancers. J Clin Oncol. 2008; 26(35): 5697-5704. Cerca con Google

Chiou SH, Wang ML, Chou YT, et al. Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res. 2010; 70(24):10433–10444. Cerca con Google

Christianson HC, Svensson KJ, Belting M. Seminars in Cancer Biology Exosome and microvesicle mediated phene transfer in mammalian cells. Semin Cancer Biol. 2014; 28:31–38 (2014). Cerca con Google

Chunthapong J, Seftor EA, Khalkhali-Ellis Z, et al. Dual roles of E-cadherin in prostate cancer invasion. J Cell Biochem. 2004; 91(4):649–661. Cerca con Google

Cizmar P, Yuana Y. Detection and Characterization of Extracellular Vesicles by Transmission and Cryo-Transmission Electron Microscopy. Methods Mol Biol. 2017; 1660:221–232. Cerca con Google

Clarke RB, Anderson E, Howell A, Potten CS. Regulation of human breast epithelial stem cells. Cell Prolif. 2003; 1:45-58. Cerca con Google

Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med. 2011; 17:313–319. Cerca con Google

Cocola C, Anastasi P, Astigliano S, et al. Isolation of canine mammary cells with stem cell properties and tumour-initiating potential. Reprod Domest Anim. 2009; 2:214-217. Cerca con Google

Cocucci E, Meldolesi J. Ectosomes and exosomes: Shedding the confusion between extracellular vesicles. Trends Cell Biol. 2015; 25:364–372. Cerca con Google

Collins LC, Schnitt SJ. Breast. In: Mills SE, ed. Histology for Pathologists. 3 rd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2007:57–71. Cerca con Google

Colombo M, Raposo G, Théry C. Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles. Annu Rev Cell Dev Biol. 2014; 30:255–289. Cerca con Google

Côme C, Magnino F, Bibeau F, et al. Snail and slug play distinct roles during breast carcinoma progression. Clin Cancer Res. 2006; 12:5395–5402. Cerca con Google

Comijn J, Berx G, Vermassen P, et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell. 2001; 7:1267- 1278. Cerca con Google

Cordenonsi M, Zanconato F, Azzolin L, et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell. 2011; 147:759–772. Cerca con Google

Crabtree JS, Miele L. Breast cancer stem cells. Biomedicines. 2018; 6(3). pii: E77. Cerca con Google

Craig DW, O'Shaughnessy JA, Kiefer JA, et al. Genome and transcriptome sequencing in prospective metastatic triple-negative breast cancer uncovers therapeutic vulnerabilities. Mol Cancer Ther. 2013; 12:104-16. Cerca con Google

Crescitelli R, Lässer C, Szabo TG, et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell vesicles. 2013; 2:1–10. Cerca con Google

Croce JC, McClay DR. Evolution of the Wnt pathways. Methods Mol Biol. 2009; 469:3–18. Cerca con Google

Croker AK, Goodale D, Chu J, et al. High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J Cell Mol Med. 2009; 13(8B):2236–2252. Cerca con Google

Cui J, Han SY, Wang C, et al. c-Jun NH(2)-terminal kinase 2alpha2 promotes the tumorigenicity of human glioblastoma cells. Cancer Res. 2006; 66:10024–10031. Cerca con Google

da Silveira JC, Veeramachaneni DNR, Winger QA, Carnevale EM, Gerrit J. Cell-Secreted Vesicles in Equine Ovarian Follicular Fluid Contain miRNAs and Proteins: A Possible New Form of Cell Communication Within the Ovarian Follicle. Biol Reprod. 2012; 86:1–10. Cerca con Google

Damasceno KA, Ferreira E, Estrela-Lima A, et al. Relationship between the expression of versican and EGFR, HER-2, HER-3 and CD44 in matrix-producing tumours in the canine mammary gland. Histol Histopathol. 2016; 31(6):675-688. Cerca con Google

Daphu I, Sundstrøm T, Horn S, et al. In vivo animal models for studying brain metastasis: value and limitations. Clin Exp Metastasis. 2013; 30(5):695-710. Cerca con Google

de Araùjo MR, Campos LC, Ferreira E, Cassali GD. Quantitation of the regional lymph node metastatic burden and prognosis in malignant mammary tumors of dogs. J Vet Intern Med. 2015; 29(5):1360–1367. Cerca con Google

de las Mulas JM, Reymundo C, de los Monteros AE, Millán Y, Ordás J. Calponin expression and myoepithelial cell differentiation in canine, feline and human mammary simple carcinomas. Vet Comp Oncol. 2004; 2(1):24-35. Cerca con Google

de Menezes-Neto A, Saez MJ, Lozano-Ramos I, et al. Size-exclusion chromatography as a stand-alone methodology identifies novel markers in mass spectrometry analyses of plasma-derived vesicles from healthy individuals. J Extracell Vesicles. 2015; 4:27378. Cerca con Google

Debus E, Moll R, Franke WW, Weber K, Osborn M. Immunohistochemical distinction of human carcinomas by cytokeratin typing with monoclonal antibodies. Am J Pathol. 1984; 114:121–130. Cerca con Google

Dellmann HD, Carithers JR. Special epidermal structures. In: Goldner B (ed.), Cytology and Microscopic Anatomy. 1996. Williams & Wilkins, Media, USA, pp. 338–340. Cerca con Google

Destexhe E, Lespagnard L, Degeyter M, et al. Immunohistochemical identification of myoepithelial, epithelial, and connectivetissue cells in canine mammary-tumors. Vet Pathol. 1993; 30:146–154. Cerca con Google

Deugnier MA, Teulière J, Faraldo MM, Thiery JP, Glukhova MA. The importance of being myoepithelial cell. Breast Cancer Res. 2002; 4:224–230. Cerca con Google

Devarajan E, Sahin AA, Chen JS, et al. Down-regulation of caspase 3 in breast cancer: a possible mechanism for chemoresistance. Oncogene. 2002; 21:8843–8851. Cerca con Google

Di Vizio D, Morello M, Dudley AC, et al. Large oncosomes in human prostate cancer tissues and in the circulation of mice with metastatic disease. Am J Pathol. 2012; 181:1573–1584. Cerca con Google

Díaz VM, de Herreros AG. F‐box proteins: keeping the epithelial‐to‐mesenchymal transition (EMT) in check. Semin Cancer Biol. 2016; 36:71–79. Cerca con Google

Díaz VM, Viñas‐Castells R, de Herreros AG Regulation of the protein stability of EMT transcription factors. Cell Adh Migr. 2014; 8:418–428. Cerca con Google

Diaz-Martin J, Lopez-Garcia MA, Romero-Perez L, et al. Nuclear TAZ expression associates with the triple-negative phenotype in breast cancer. Endocr Relat Cancer. 2015; 22(3):443-454. Cerca con Google

Dong C, Wu Y, Yao J, et al. G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human breast cancer. J Clin Invest. 2012; 122(4):1469–148. Cerca con Google

Dong J, Feldmann G, Huang J, et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell. 2007; 130:1120–1133. Cerca con Google

Donoghue S, Baden HS, Lauder I, Sobolewski S, Pringle JH. Immunohistochemical localization of caspase-3 correlates with clinical outcome in B-cell diffuse large-cell lymphoma. Cancer Res. 1999; 59:5386–5391. Cerca con Google

Dontu G, Abdallah WM, Foley JM, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003; 17(10):1253–1270. Cerca con Google

Dontu G, Al-Hajj M, Abdallah WM, Clarke MF, Wicha MS. Stem cells in normal breast development and breast cancer. Cell Prolif. 2003; 1:59-72. Cerca con Google

Dontu G, Jackson KW, McNicholas E, et al. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res. 2004; 6(6):R605–R615. Cerca con Google

Doornebal CW, Klarenbeek S, Braumuller TM, et al. A preclinical mouse model of invasive lobular breast cancer metastasis. Cancer Res. 2013; 73(1):353-363. Cerca con Google

Dragovic RA, Gardiner C, Brooks AS, et al. Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis. Nanomedicine. 2011; 7(6):780–788. Cerca con Google

Dunnwald LK, Rossing MA, Li CI. Hormone receptor status, tumor characteristics, and prognosis: a prospective cohort of breast cancer patients. Breast Cancer Res. 2007; 9(1):R6. Cerca con Google

Dupont S, Morsut L, Aragona M, et al. Role of YAP/TAZ in mechanotransduction. Nature. 2011; 474(1): 179–183. Cerca con Google

Eger A, Aigner K, Sonderegger S, et al. DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene. 2005; 24:2375-2385. Cerca con Google

El Andaloussi S, Mäger I, Breakefield XO, Wood MJA. Extracellular vesicles: Biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013; 12:347–357. Cerca con Google

Espinosa de Los Monteros A, Fernandez A, Milan MY, et al. Coordinate expression of Cytokeratins 7 and 20 in feline and canine carcinomas. Vet Pathol. 1999; 36(3):179-190. Cerca con Google

Espinosa de los Monteros A, Millan MY, Ramirez GA, et al. Expression of maspin in mammary gland tumors of the dog. Vet Pathol. 2005; 42:250–257. Cerca con Google

Espinosa de los Monteros A, Millan MY, Ordas J, et al. Immunolocalization of the smooth muscle-specific protein calponin in complex and mixed tumors of the mammary gland of the dog: assessment of the morphogenetic role of the myoepithelium. Vet Pathol. 2002; 39:247–256. Cerca con Google

Fan R, Kim NG, Gumbiner BM. Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositidedependent kinase-1. Proc Natl Acad Sci USA. 2013; 110:2569–2574. Cerca con Google

Fang D, Nguyen TK, Leishear K, et al. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res. 2005; 65:9328-9337. Cerca con Google

Ferlay J, Colombet M, Soerjomataram I, et al. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur J Cancer. 2018; pii: S0959-8049(18)30955-9 Cerca con Google

Fidler IJ, Gersten DM, Hart IR. The biology of cancer invasion and metastasis. Adv Cancer Res. 1978; 28:149-250. Cerca con Google

Fidler IJ, Kim SJ and Langley RR: The role of the organ microenvironment in the biology and therapy of cancer metastasis. J Cell Biochem. 2007; 101:927-936. Cerca con Google

Fidler IJ, Yano S, Zhang R, Fujimaki T, Bucana CD. The seed and soil hypothesis: vascularisation and brain metastases. Lancet Oncol. 2002; 3(1):53–57. Cerca con Google

Fidler IJ. Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 125I-5-iodo-2’-deoxyuridine. J Natl Cancer Inst. 1970; 45:773-782. Cerca con Google

Fidler IJ. The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited. Nat Rev Cancer. 2003; 3(6):453-458. Cerca con Google

Fidler IJ. The relationship of embolic homogeneity, number, size and viability to the incidence of experimental metastasis. Eur J Cancer. 1973; 9:223-227. Cerca con Google

Florio T, Barbieri F, Spaziante R, et al. Efficacy of a dopamine-somatostatin chimeric molecule, BIM-23A760, in the control of cell growth from primary cultures of human non-functioning pituitary adenomas: a multi-center study. Endocr Relat Cancer. 2008; 15(2):583–596. Cerca con Google

Friedl P, Wolf K. Tube travel: the role of proteases in individual and collective cancer cell invasion. Cancer Res. 2008; 68:7247-7249. Cerca con Google

Friedrichs K, Ruiz P, Franke F, et al. High expression level of alpha 6 integrin in human breast carcinoma is correlated with reduced survival. Cancer Res. 1995; 55(1):901–906. Cerca con Google

Fu V, Plouffe SW, Guan KL. The Hippo pathway in organ development, homeostasis, and regeneration. Curr Opin Cell Biol. 2018; 49:99–107. Cerca con Google

Fu YZ, Yan YY, He M, et al. Salinomycin induces selective cytotoxicity to MCF-7 mammosphere cells through targeting the Hedgehog signaling pathway. Oncol Rep. 2016; 35(2):912-922. Cerca con Google

Fujimoto A, Neo S, Ishizuka C, et al. Identification of cell surface antigen expression in canine hepatocellular carcinoma cell lines. J Vet Med Sci. 2013; 75(6):831-835. Cerca con Google

Fumagalli D, Wilson TR, Salgado R, et al. Somatic mutation, copy number and transcriptomic profiles of primary and matched metastatic estrogen receptor-positive breast cancers. Ann Oncol. 2016; 27:1860–6. Cerca con Google

Gama A, Alves A, Gartner F, Schmitt F. p63: a novel myoepithelial cell marker in canine mammary tissues. Vet Pathol. 2003; 40(4):412–420. Cerca con Google

Gama A, Alves A, Schmitt F. Identification of molecular phenotypes in canine mammary carcinomas with clinical implications: application of the human classification. Virchows Arch. 2008; 453:123–132. Cerca con Google

Gama A, Gartner F, Alves A, et al. Immunohistochemical expression of epidermal growth factor receptor (EGFR) in canine mammary tissues. Res Vet Sci. 2009; 87:432–437. Cerca con Google

Gama A, Paredes J, Albergaria A, et al. P-cadherin expression in canine mammary tissues. J Comp Pathol. 2004; 130:13–20. Cerca con Google

Gardiner C, Di Vizio D, Sahoo S, et al. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. J Extracell Vesicles. 2016; 5:32945. Cerca con Google

Gast CE, Shaw AK, Wong MH, Coussens LM. Surgical procedures and methodology for a preclinical murine model of de novo mammary cancer metastasis. J Vis Exp. 2017; (125). Cerca con Google

Geiger TR, Peeper DS. Metastasis mechanisms. Biochim Biophys Acta. 2009; 1796:293-308. Cerca con Google

Geng SQ, Alexandrou AT, Li JJ. Breast cancer stem cells: Multiple capacities in tumor metastasis. Cancer Lett. 2014; 349(1):1-7. Cerca con Google

Geradts J, de Herreros AG, Su Z, et al. Nuclear SNAIL1 and nuclear ZEB1 protein expression in invasive and intraductal human breast carcinomas. Hum Pathol. 2011; 42(8):1125-1131. Cerca con Google

Geyer FC, Lacroix-Triki M, Savage K, et al. B-Catenin pathway activation in breast cancer is associated with triple-negative phenotype but not with CTNNB1 mutation. Mod Pathol. 2011; 24(2):209-231. Cerca con Google

Ginestier C, Hur MH, Charafe-Jauffret E, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007; 1(5):555–567 Cerca con Google

Giuliano A, Swift R, Arthurs C. Quantitative expression and co-localization of Wnt signaling related proteins in feline squamous cell carcinoma. PLoS One. 2016; 11(8):e0161103. Cerca con Google

Giusti I, Delle Monache S, Di Francesco M, et al. From glioblastoma to endothelial cells through extracellular vesicles: messages for angiogenesis. Tumor Biol. 2016; 37:12743-12753. Cerca con Google

Gjerdrum C, Tiron C, Hoiby T, et al. Axl is an essential epithelial-to-mesenchymal transition-induced regulator of breast cancer metastasis and patient survival. Proc Natl Acad Sci USA. 2010; 107(3):1124–1129. Cerca con Google

Gordon MD, Nusse R. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem. 2006; 281(32):22429–22433. Cerca con Google

Green KJ, Bohringer M, Gocken T, Jones JC. Intermediate filament associated proteins. Adv Protein Chem. 2005; 70:143-202. Cerca con Google

Griffey SM, Madewell BR, Dairkee SH, et al. Immunohistochemical reactivity of basal and luminal epithelium-specific cytokeratin antibodies within normal and neoplastic canine mammary-glands. Vet Pathol. 1993; 30:155–161. Cerca con Google

Guescini M, Genedani S, Stocchi V, Agnati LF. Astrocytes and Glioblastoma cells release exosomes carrying mtDNA. J Neural Transm. 2010; 117:1–4. Cerca con Google

Guillemette S, Rico C, Godin P, Boerboom D, Paquet M. In vitro validation of the hippo pathway as a pharmacological target for canine mammary gland tumors. J Mammary Gland Biol Neoplasia. 2017; 22(3):203-214. Cerca con Google

Gumbiner BM, Kim NG. The Hippo-YAP signaling pathway and contact inhibition of growth. J Cell Sci. 2014; 127(Pt 4):709–717. Cerca con Google

Guo W, Keckesova Z, Donaher JL, et al. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell. 2012; 148(5):1015–1028. Cerca con Google

Guo W. Concise review: breast cancer stem cells: regulatory networks, stem cell niches, and disease relevance. Stem Cells Transl Med. 2014; 3(8):942-948. Cerca con Google

Gupta GP, Nguyen DX, Chiang AC, et al. Mediators of vascular remodel- ling co-opted for sequential steps in lung metastasis. Nature. 2007; 446(7137):765–770. Cerca con Google

György B, Szabó TG, Pásztói M, et al. Membrane vesicles, current state-of-the-art: Emerging role of extracellular vesicles. Cell Mol Life Sci. 2011; 68:2667–2688. Cerca con Google

Hahn KA, Adams WH. Feline mammary neoplasia: biological behavior, diagnosis, and treatment alternatives. Feline Pract. 1977; 25:5–11. Cerca con Google

Hahn KA, Bravo L, Avenelli JS. Feline breast carcinoma as a pathologic and therapeutic model for human breast cancer. In Vivo. 1994; 8:825–828. Cerca con Google

Hajra KM, Chen DY and Fearon ER. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res. 2002; 62:1613-1618. Cerca con Google

Han JI, Kim DY, Na KL. Dysregulation of the Wnt/-Catenin signaling pathway in canine cutaneous melanotic tumor. Vet Pathol. 2010; 47(2): 285-291. Cerca con Google

Han SX, Bai E, Jin GH, et al. Expression and clinical significance of YAP, TAZ, and AREG in hepatocellular carcinoma. J Immunol Res. 2014; 2014:261365. Cerca con Google

Han X, Fang X, Lou X, et al. Silencing SOX2 induced mesenchymal-epithelial transition and its expression predicts liver and lymph node metastasis of CRC patients. PLoS One. 2012; 7:e41335. Cerca con Google

Harvey KF, Zhang X, Thomas DM. The Hippo pathway and human cancer. Nat Rev Cancer. 2013; 13:246–257. Cerca con Google

Hayden DW, Barnes DM, Johnson KH. Morphologic changes in the mammary gland of megestrol acetate-treated and untreated cats: a retrospective study. Vet Pathol. 1989; 26:104–113. Cerca con Google

Hebbard L, Steffen A, Zawadzki V, et al. CD44 expression and regulation during mammary gland development and function. J Cell Sci. 2000; 113:2619-2630. Cerca con Google

Heijnen BHFG, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ. Activated Platelets Release Two Types of Membrane Vesicles. Blood J. 1999; 94:3791–3800. Cerca con Google

Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ. Activated platelets release two types of membrane vesicles: Microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood. 1999; 94:3791–3799. Cerca con Google

Hellmen E, Lindgren A. The expression of intermediate filaments in canine mammary-glands and their tumors. Vet Pathol. 1989; 26:420–428. Cerca con Google

Hemalatha A, Suresh TN, Kumar ML. Expression of vimentin in breast carcinoma, its correlation with Ki67 and other histopathological parameters. Indian J Cancer. 2013; 50(3):189–194. Cerca con Google

Herrlich P, Morrison H, Sleeman J, et al. CD44 acts both as a growth- and invasiveness-promoting molecule and as a tumor-suppressing cofactor. Ann N Y Acad Sci. 2000; 910:106-120. Cerca con Google

Hong D, Fritz AJ, Zaidi SK, et al. Epithelial‐to‐mesenchymal transition and cancer stem cells contribute to breast cancer heterogeneity. J Cell Physiol. 2018. In press. Cerca con Google

Hong JH, Hwang ES, McManus MT, et al. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science. 2005; 309:1074–1078. Cerca con Google

Hong W, Guan KL. The YAP and TAZ transcription co-activators: Key downstream effectors of the mammalian Hippo pathway. Semin Cell Dev Biol. 2012; 23(7):785–793. Cerca con Google

Hosgood HD 3rd, Baris D, Zhang Y, et al. Caspase polymorphisms and genetic susceptibility to multiple myeloma. Hematol Oncol. 2008; 26:148–151. Cerca con Google

Howe LR, Brown AM. Wnt signaling and breast cancer. Cancer Biol Ther. 2004; 3(1):36–41. Cerca con Google

Huang Q, Li F, Liu X, et al. Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat Med. 2011; 17:860–866. Cerca con Google

Huang SF, Cheng SD, Chuang WY, et al. Cyclin D1 overexpression and poor clinical outcomes in Taiwanese oral cavity squamous cell carcinoma. World J Surg Oncol. 2012; 10:40. Cerca con Google

Huang X, Yuan T, Tschannen M, et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genom. 2013; 14:319. Cerca con Google

Hunter KW, Crawford NP and Alsarraj J. Mechanisms of metastasis. Breast Cancer Res. 2008; 10(Suppl 1):S2. Cerca con Google

Hwang MS, Yu N, Stinson SY, et al. miR-221/222 targets adiponectin receptor 1 to promote the epithelial-to-mesenchymal transition in breast cancer. PLoS One. 2013; 8(6):e66502. Cerca con Google

Im KS, Kim JH, Kim NH. Possible role of snail expression as a prognostic factor in canine mammary neoplasia. J Comp Pathol. 2012; 147(2-3):121-128. Cerca con Google

Imielinski M, Berger AH, Hammerman PS, et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell. 2012; 150:1107–1120. Cerca con Google

Incassati A, Chandramouli A, Eelkema R, Cowin P. Key signaling nodes in mammary gland development and cancer: beta-catenin. Breast Cancer Res. 2010; 12(6):213. Cerca con Google

Isenmann S, Arthur A, Zannettino AC, et al. TWIST family of basic helix‐loop‐helix transcription factors mediate human mesenchymal stem cell growth and commitment. Stem Cells. 2009; 27:2457–2468. Cerca con Google

Jang GB, Kim JY, Cho SD, et al. Blockade of Wnt/beta-catenin signaling suppresses breast cancer metastasis by inhibiting CSC-like phenotype. Sci Rep. 2015; 5:12465. Cerca con Google

Jänicke RU. MCF-7 breast carcinoma cells do not express caspase-3. Breast Cancer Res Treat. 2009; 117(1):219-221. Cerca con Google

Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin. 2011; 61:69-90. Cerca con Google

Jeong GO, Shin SH, Seo EJ, et al. TAZ mediates lysophosphatidic acid-induced migration and proliferation of epithelial ovarian cancer cells. Cell Physiol Biochem. 2013; 32:253–263. Cerca con Google

Jia S, Zocco D, Samuels ML, et al. Emerging technologies in extracellular vesicle-based molecular diagnostics. Expert Rev Mol Diagn. 2014; 14:307-321. Cerca con Google

Jiang W, Hiscox S. beta-catenin-cell adhesion and beyond (review). Int J Oncol. 1997; 11:635–641. Cerca con Google

Johnson R, Halder G. The two faces of Hippo: Targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov. 2014; 13(1): 63–79. Cerca con Google

Johnstone RM, Bianchini A, Teng K. Reticulocyte Maturation and exosomes release: transferrin receptor containing exosomes shows multiple plasma membrane functions. Blood. 1989; 74:1844–1851. Cerca con Google

Jonges LE, Nagelkerke JF, Ensink NG, et al. Caspase-3 activity as a prognostic factor in colorectal carcinoma. Lab Invest. 2001; 81:681–688. Cerca con Google

Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009; 9:239-252. Cerca con Google

Julien O, Wells JA. Caspases and their substrates. Cell Death Differ. 2017; 24(8):1380-1389. Cerca con Google

Justice RW, Zilian O, Woods DF, Noll M, Bryant PJ. The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev. 1995; 9(5):534–546. Cerca con Google

Kalra H, Simpson RJ, Ji H, et al. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol. 2012; 10(12):e1001450. Cerca con Google

Kang Y, Siegel PM, Shu W, et al. A multigenic program mdeiating breast cancer metastasis to bone. Cancer Cell. 2003; 3(6):537-549. Cerca con Google

Ke H, Harris R, Coloff JL, et al. The c-Jun NH2-terminal kinase 2 plays a dominant role in human epidermal neoplasia. Cancer Res. 2010; 70:3080–3088. Cerca con Google

Keller S, König AK, Marmé F, et al. Systemic presence and tumor-growth promoting effect of ovarian carcinoma released exosomes. Cancer Lett. 2009; 278:73–81. Cerca con Google

Kerbel RS. A decade of experience in developing preclinical models of advanced- or early-stage spontaneous metastasis to study antiangiogenic drugs, metronomic chemotherapy, and the tumor microenvironment. Cancer J. 2015; 21(4):274-283. Cerca con Google

Khoursheed MA, Mathew TC, Makar RR, et al. Expression of E-cadherin in human colorectal cancer. Surgeon. 2003; 1(2):86–91. Cerca con Google

Khramtsov AI, Khramtsova GF, Tretiakova M, et al. Wnt/b-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. Am J Pathol. 2010; 176(6):2911–2920. Cerca con Google

Kim D-K, Kang B, Kim OY, et al. EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles. J Extracell Vesicles. 2013; 2:1–7. Cerca con Google

Kim HS, Lee JW, Soung YH, et al. Inactivating mutations of caspase-8 gene in colorectal carcinomas. Gastroenterology. 2003; 125(3):708–715. Cerca con Google

Klopfleisch R, Gruber AD. Increased expression of BRCA2 and RAD51 in lymph node metastases of canine mammary adenocarcinomas. Vet Pathol. 2009; 46(3):416–422. Cerca con Google

Klopfleisch R, Lenze D, Hummel M, Gruber AD. The metastatic cascade is reflected in the transcriptome ofmetastatic canine mammary carcinomas. Vet J. 2011; 190(2):236–243. Cerca con Google

Kobayashi T, Shimizu Y, Terada N, et al. Regulation of androgen receptor transactivity and mTOR-S6 kinase pathway by Rheb in prostate cancer cell proliferation. Prostate. 2010; 70:866–874. Cerca con Google

Kohn AD, Moon RT. Wnt and calcium signaling: b-catenin-independent pathways. Cell Calcium. 2005; 38(3):439–46. Cerca con Google

Kong D, Banerjee S, Ahmad A, et al. Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS One. 2010; 5:e12445. Cerca con Google

Kong W, Jarvis C, Mackillop WJ. Estimating the need for palliative radiotherapy for brain metastasis: a benchmarking approach. Clin Oncol (R Coll Radiol). 2015; 27(2):83-91. Cerca con Google

Kontomanolis E, Kalagasidou S, Pouliliou S, et al. The Notch pathway in breast cancer progression. ScientificWorldJournal. 2018; 2018:2415489. Cerca con Google

Kowalski PJ, Rubin MA, Kleer CG. E-cadherin expression in primary carcinomas of the breast and its distant metastases. Breast Cancer Res. 2003; 5(6):R217–R222. Cerca con Google

Krisnamurrphy S, Poornima R, Challa VR, Goud YG. Triple Negative Breast Cancer - Our Experience and Review. Indian J Surg Oncol. 2012; 3(1):12-16. Cerca con Google

Kurokawa H, Nishio K, Fukumoto H, et al. Alteration of caspase-3 (CPP32/Yama/apopain) in wild-type MCF-7, breast cancer cells. Oncol Rep. 1999; 6:33–37. Cerca con Google

Lacroix M. Significance, detection and markers of disseminated breast cancer cells. Endocr Relat Cancer. 2006; 13:1033-1067. Cerca con Google

Lai CP, Kim EY, Badr CE, et al. Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat Commun. 2015; 6:7029. Cerca con Google

Lakhani SR, Ellis IO, Schnitt SJ, et al. WHO classification of tumours of the breast. 4th edition. Lyon (France): International Agency for Research on Cancer (IARC) Press; 2012. Cerca con Google

Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol. 2014; 15(3):178–196. Cerca con Google

Lan Q, Morton LM, Armstrong B, et al. Genetic variation in caspase genes and risk of non-Hodgkin lymphoma: a pooled analysis of 3 population-based case-control studies. Blood. 2009; 114:264–267. Cerca con Google

Larue L and Bellacosa A. Epithelial mesenchymal transition in development and cancer: role of phosphatidylinositol 3’ kinase/AKT pathways. Oncogene. 2005; 24:7443-7454. Cerca con Google

Lau AN, Curtis SJ, Fillmore CM, et al. Tumor-propagating cells and YAP/TAZ activity contribute to lung tumor progression and metastasis. EMBO J. 2014; 33:468–481. Cerca con Google

Lawrence MS, Stojanov P, Mermel CH, et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014; 505(7484):495–501. Cerca con Google

Lawson C, Kovacs D, Finding E, Ulfelder E. Extracellular Vesicles: Evolutionarily Conserved Mediators of Intercellular Communication. YALE J Biol Med. 2017; 90:481–491. Cerca con Google

Li CCY, Eaton SA, Young PE, et al. Glioma microvesicles carry selectively packaged coding and noncoding RNAs which alter gene expression in recipient cells. RNA Biol. 2013; 10:1333–1344. Cerca con Google

Li DM, Feng YM: Signaling mechanism of cell adhesion molecules in breast cancer metastasis: potential therapeutic targets. Breast Cancer Res Treat. 2011; 128:7-21. Cerca con Google

Li S, Shen D, Shao J, et al. Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Rep. 2013; 4:1116–30. Cerca con Google

Li Y, Zheng Q, Bao C, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 2015; 25(8):981-984. Cerca con Google

Liang K, Zhou G, Zhang Q, Li J, Zhang C. Expression of hippo pathway in colorectal cancer. Saudi J Gastroenterol. 2014; 20(3):188–194. Cerca con Google

Lim E, Vaillant F, Wu D, et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med. 2009; 15:907–991. Cerca con Google

Lim KH, Baines AT, Fiordalisi JJ, et al. Activation of RalA is critical for Ras-induced tumorigenesis of human cells. Cancer Cell. 2005; 7:533–545. Cerca con Google

Lin NU, Claus E, Sohl J, et al. Sites of distant recurrence and clinical outcomes in patients with metastatic triple- negative breast cancer: high incidence of central nervous system metastases. Cancer. 2008; 113:2638-2645. Cerca con Google

Lin SY, Xia W, Wang JC, et al. Beta-catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. Proc Natl Acad Sci USA. 2000; 97:4262–4266. Cerca con Google

Liu A, Feng B, Gu W, et al. The CD133+ subpopulation of the SW982 human synovial sarcoma cell line exhibits cancer stem-like characteristics. Int J Oncol. 2013a; 42:1399-1407. Cerca con Google

Liu J, Ma L, Xu J, et al. Spheroid body-forming cells in the human gastic cancer cell line MKN-45 possess cancer stem cell properties. Int J Oncol. 2013b; 42:453-459. Cerca con Google

Liu JB, Feng CY, Deng M, et al. E-cadherin expression phenotypes associated with molecular subtypes in invasive non-lobular breast cancer: evidence from a retrospective study and meta-analysis. World J Surg Oncol. 2017; 15(1):139. Cerca con Google

Liu S, Cong Y, Wang D, et al. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Rep. 2014; 2(1):78–91. Cerca con Google

Liu S, Wicha MS. Targeting breast cancer stem cells. J Clin Oncol. 2010; 28(25):4006-4012. Cerca con Google

Liu TJ, Sun BC, Zhao XL, et al. CD133+ cells with cancer stem cell characteristics associates with vasculogenic mimicry in triple-negative breast cancer. Oncogene. 2013; 32(1):544–553. Cerca con Google

Liu W, Moulay M, Willenbrock S. Comparative characterization of stem cell marker expression, metabolic activity and resistance to doxorubicin in adherent and spheroid cells derived from the canine prostate adenocarcinoma cell line CT1258. Anticancer Res. 2015; 35(4):1917-1927. Cerca con Google

Liu Y, El‐Naggar S, Darling DS, Higashi Y, Dean DC. ZEB1 links epithelial‐mesenchymal transition and cellular senescence. Development. 2008; 135(3):579–588. Cerca con Google

Llorente A, Skotland T, Sylvanne T, et al. Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochim Biophys Acta. 2013; 1831:1302–1309. Cerca con Google

Lombardo Y, de Giorgio A, Coombes CR, Stebbing J, Castellano L. Mammosphere formation assay from human breast cancer tissues and cell lines. J Vis Exp. 2015; (97). Cerca con Google

Lötvall J, Hill AF, Hochberg F, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: A position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles. 2014; 3:26913. Cerca con Google

Lu ZH, Shvartsman MB, Lee AY, et al. Mammalian target of rapamycin activator RHEB is frequently overexpressed in human carcinomas and is critical and sufficient for skin epithelial carcinogenesis. Cancer Res. 2010; 70:3287–3298. Cerca con Google

Luo Y, Huang W, Zhang H, Liu G. Prognostic significance of CD117 expression and TP53 missense mutations in triple-negative breast cancer. Oncol Lett. 2018; 15(5):6161-6170. Cerca con Google

Lyzak JS, YaremkoML, Recant W, et al. Role of CD44 in nonpalpable T1a and T1b breast cancer. Hum Pathol. 1997; 28:772–778. Cerca con Google

Maas SLN, Breakefield XO, Weaver AM. Extracellular Vesicles: Unique Intercellular Delivery Vehicles. Trends Cell Biol. 2017; 27:172–188. Cerca con Google

Maas SLN, de Vrij J, van der Vlist EJ, et al. Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics. J Control Release. 2014; 200:87–96. Cerca con Google

MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009; 17(1):9–26. Cerca con Google

MacEwen EG. Spontaneous tumors in dogs and cats: models for the study of cancer biology and treatment. Cancer Metastasis Rev. 1990; 9(2):125–136. Cerca con Google

Malhotra GK, Zhao X, Band H, Band V. Histological, molecular and functional subtypes of breast cancers. Cancer Biol Ther. 2010, 10:955–960. Cerca con Google

Martin TA, Ye L, Sanders AJ, et al. Cancer Invasion and Metastasis: Molecular and Cellular Perspective. In: Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience; 2000-2013. Cerca con Google

Martz CA, Ottina KA, Singleton KR et al. Systematic identification of signaling pathways with potential to confer anticancer drug resistance. Sci Signal. 2014; 7(357):ra121. Cerca con Google

Marusyk A, Almendro V, Polyak K: Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer. 2012, 12:323–334. Cerca con Google

Marusyk A, Polyak K. Tumor heterogeneity: causes and consequences. Biochim Biophys Acta. 2010; 1805(1):105–117. Cerca con Google

Maruyama K, MacLennan DH. Mutation of aspartic acid-351, lysine-352, and lysine-515 alters the Ca2+ transport activity of the Ca2+-ATPase expressed in COS-1 cells. Proc Natl Acad Sci USA. 1988; 85(10):3314-3318. Cerca con Google

Mathivanan S, Fahner CJ, Reid GE, Simpson RJ. ExoCarta 2012: database of exosomal proteins RNA and lipids. Nucleic Acids Res. 2012; 40(Database issue):D1241-D1244. Cerca con Google

Mathivanan S, Simpson RJ. ExoCarta: a compendium of exosomal proteins and RNA. Proteomics. 2009; 9:4997–5000. Cerca con Google

May CD, Sphyris N, Evans KW, et al. Epithelial-mesenchymal transition and cancer stem cells: a dangerously dynamic duo in breast cancer progression. Breast Cancer Res. 2011; 13(1):202. Cerca con Google

Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature. 2013;501(7467):328–337. Cerca con Google

Meyer MJ, Fleming JM, Lin AF, et al. CD44posCD49fhiCD133/2hi defines xenograft-initiating cells in estrogen receptor-negative breast cancer. Cancer Res. 2010; 70:4624-33. Cerca con Google

Michishita M, Akiyoshi R, Suemizu H, et al. Aldehyde dehydrogenase activity in cancer stem cells from canine mammary carcinoma cell lines. Vet J. 2012; 193(2):508-513. Cerca con Google

Michishita M, Akiyoshi R, Yoshimura H. Characterization of spheres derived from canine mammary gland adenocarcinoma cell lines. Res Vet Sci. 2011; 91(2):254-260. Cerca con Google

Michishita M, Ezaki S, Ogihara K, et al. Identification of tumor-initiating cells in a canine hepatocellular carcinoma cell line. Res Vet Sci. 2014; 96(2):315-322. Cerca con Google

Michishita M, Otsuka A, Nakahira R, et al. Flow cytometric analysis for detection of tumor-initiating cells in feline mammary carcinoma cell lines. Vet Immunol Immunopathol. 2013; 156(1-2):73-81. Cerca con Google

Millanta F, Calandrella M, Bari G, et al. Comparison of steroid receptor expression in normal, dysplastic, and neoplastic canine and feline mammary tissues. Res Vet Sci. 2005; 79: 225–232. Cerca con Google

Miller ME, Christensen GC, Evans HE, 1964. The mammary gland. Anatomy of the Dog. W.B. Saunders, Philadelphia, pp. 789–803. Cerca con Google

Minde DP, Radli M, Forneris F, Maurice MM, Rüdiger SG. Large extent of disorder in Adenomatous Polyposis Coli offers a strategy to guard Wnt signalling against point mutations. PLoS ONE. 2013; 8(10): e77257. Cerca con Google

Minn AJ, Kang Y, Serganova I, et al. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest. 2005; 115:44-55. Cerca con Google

Misdorp W, Else RW, Hellme’n E, et al. Histological classification of mammary tumors of the dog and the cat. In: World Heath Organization, ed. International Histological Classification of Tumors of Domestic Animals. Second ser. Vol 7. Washington, DC: Armed Forces Institute of Pathology, American Registry of Pathology; 1999:11–56. Cerca con Google

Misdorp W. Tumors of the mammary gland. In: Meuten DJ, ed. Tumors in Domestic Animals. Ames, Iowa: Iowa State Press; 2008: 575–606. Cerca con Google

Mittendorf EA, Philips AV, Meric-Bernstam F, et al. PD-L1 expression in triple-negative breast cancer. Cancer Immunol Res. 2014; 2:361-370. Cerca con Google

Mohseni M, Sun J, Lau A, et al. A genetic screen identifies an LKB1-MARK signalling axis controlling the Hippo-YAP pathway. Nat Cell Biol. 2014; 16:108–117. Cerca con Google

Moll R, Franke WW, Schiller DL, Geiger B, Krepler R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell. 1982; 31:11–24. Cerca con Google

Monteiro J, Gaspar C, Richer W, et al. Cancer stemness in Wnt-driven mammary tumorigenesis. Carcinogenesis. 2014; 35:2–13. Cerca con Google

Montserrat N, Gallardo A, Escuin D, et al. Repression of E-cadherin by SNAIL, ZEB1, and TWIST in invasive ductal carcinomas of the breast: a cooperative effort? Hum Pathol. 2011; 42(1):103-110. Cerca con Google

Moody SE, Perez D, Pan TC, et al. The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell. 2005; 8:197-209. Cerca con Google

Morello M, Minciacchi VR, de Candia P. Large oncosomes mediate intercellular transfer of functional microRNA. Cell Cycle. 2013; 12(22):3526–3536. Cerca con Google

Moulay M, Liu W, Willenbrock S, et al. Evaluation of stem cell marker gene expression in canine prostate carcinoma- and prostate cyst-derived cell lines. Anticancer Res. 2013; 33(12):5421-5431. Cerca con Google

Nathoo N, Chahlavi A, Barnett G, Toms SA. Pathobiology of brain metastases. J Clin Pathol. 2005; 58(3):237–242. Cerca con Google

Nazimek K, Bryniarski K, Santocki M, Ptak W. Exosomes as mediators of intercellular communication: clinical implications. Pol Arch Med Wewn. 2015; 125(5):370-380. Cerca con Google

Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science. 2004; 303(5663):1483–1487. Cerca con Google

Nickel R, Schummer A, Seiferle E. The anatomy of domestic animals. 1st Edition. Springer-Verlag Berlin Heidelberg GmbH. Cerca con Google

Nielsen SW. The malignancy of mammary tumors in cats. Mod Vet Pract. 1967; 33:245–252. Cerca con Google

Nielsen TO, Hsu FD, Jensen K, et al. Immunohistochemical and clinical characterization of the basal- like subtype of invasive breast carcinoma. Clin Cancer Res. 2004; 10:5367–5374. Cerca con Google

Nieto MA. The snail superfamily of zinc‐finger transcription factors. Nat Rev Mol Cell Biol. 2002; 3(3):155–166. Cerca con Google

Niikura N, Hayashi N, Masuda N, et al. Treatment outcomes and prognostic factors for patients with brain metastases from breast cancer of each subtype: a multicenter retrospective analysis. Breast Cancer Res Treat. 2014; 147:103-112. Cerca con Google

Niikura N, Saji S, Tokuda Y, Iwata H. Brain metastases in breast cancer. Jpn J Clin Oncol. 2014; 44(12):1133-1140. Cerca con Google

Nishikata T, Ishikawa M, Matsuyama T, et al. Primary culture of breast cancer: A model system for epithelial-mesenchymal transition and cancer stem cells. Anticancer Res. 2013; 33(7):2867-2873. Cerca con Google

Nitta RT, Del Vecchio CA, Chu AH, et al. The role of the c-Jun N-terminal kinase 2-alpha-isoform in non-small cell lung carcinoma tumorigenesis. Oncogene. 2011; 30:234–244. Cerca con Google

Nogués L, Benito-Martin A, Hergueta-Redondo M, Peinado H. The influence of tumour-derived extracellular vesicles on local and distal metastatic dissemination. Mol Aspects Med. 2017; 60:15-26. Cerca con Google

Nolte’T Hoen ENM, Buermans HPJ, Waasdorp M, et al. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res. 2012; 40:9272–9285. Cerca con Google

Nordin JZ, Lee Y, Vader P, et al. Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties. Nanomed. 2015; 11:879-883. Cerca con Google

O'Donovan N, Crown J, Stunell H, et al. Caspase 3 in breast cancer. Clin Cancer Res. 2003; 9:738–742. Cerca con Google

Oakman C, Viale G, Di Leo A. Management of triple negative breast cancer. Breast. 2010; 19(5):312-321. Cerca con Google

Ogawa Y, Taketomi Y, Murakami M, et al. Small RNA transcriptomes of two types of exosomes in human whole saliva determined by next generation sequencing. Biol Pharm Bull. 2013; 36:66–75. Cerca con Google

Oglesbee BL. Blackwell’s five-minute veterinary consult: small mammal, 2nd edition. John Wiley & Sons. 2011. Cerca con Google

Oleinik NV, Krupenko NI, Krupenko SA. Cooperation between JNK1 and JNK2 in activation of p53 apoptotic pathway. Oncogene. 2007; 26:7222–7230. Cerca con Google

Orozco AF, Lewis DE. Flow cytometric analysis of circulating microparticles in plasma. Cytometry A. 2010; 77:502–514. Cerca con Google

Paget S. The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev. 1989; 8:98-101. Cerca con Google

Palmieri D, Chambers A, Felding-Habermann B, Huang S, Steeg PS. The biology of metastasis to a sanctuary site. Clin Cancer Res. 2007; 13(6):1656–1662. Cerca con Google

Paltian V, Alldinger S, Baumgärtner W, Wohlsein P. Expression of CD44 in canine mammary tumors. J Comp Pathol. 2009; 141(4):237-247. Cerca con Google

Pan CW, Liu H, Zhao Y, et al. JNK2 downregulation promotes tumorigenesis and chemoresistance by decreasing p53 stability in bladder cancer. Oncotarget. 2016; 7(23):35119-35131. Cerca con Google

Pan D. The Hippo signaling pathway in development and cancer. Dev Cell. 2010; 19(4):491–505. Cerca con Google

Pang LY, Blacking TM, Else RW, et al. Feline mammary carcinoma stem cells are tumorigenic, radioresistant, chemoresistant and defective in activation of the ATM/p53 DNA damage pathway. Vet J. 2013; 196(3):414-423. Cerca con Google

Park SY, Gonen M, Kim HJ, Michor F, Polyak K. Cellular and genetic diversity in the progression of in situ human breast carcinomas to an invasive phenotype. J Clin Invest. 2010; 120(2):636–644. Cerca con Google

Pascucci L, Dall-Aglio C, Bazzucchi C, et al. Horse adipose-derived mesenchymal stromal cells constitutively produce membrane vesicles: a morphological study. Histol Hitopathol. 2015; 30:549–557. Cerca con Google

Pascucci L, Alessandri G, Dall’Aglio C, et al. Membrane vesicles mediate pro-angiogenic activity of equine adipose-derived mesenchymal stromal cells. Vet J. 2014; 202:361–366. Cerca con Google

Payne SJ, Bowen RL, Jones JL, et al. Predictive markers in breast cancer—the present. Histopathology. 2008; 52:82–90. Cerca con Google

Pearlman M, Jeudy M, Chelmow D. Practice Bulletin Number 179: Breast Cancer Risk Assessment and Screening in Average-Risk Women. Obstet Gynecol. 2017; 130(1):e1-e16. Cerca con Google

Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype. Nat Rev Cancer. 2007; 7:415-28. Cerca con Google

Peña L, Gama A, Goldschmidt MH, et al. Canine Mammary Tumors: A Review and Consensus of Standard Guidelines on Epithelial and Myoepithelial Phenotype Markers, HER2, and Hormone Receptor Assessment Using Immunohistochemistry. Vet Pathol. 2014; 51(1):127-145. Cerca con Google

Peng Y, Zhang X, Feng X, Fan X, Jin Z. The crosstalk between microRNAs and the Wnt/b-catenin signaling pathway in cancer. Oncotarget. 2017; 8(8):14089-14106. Cerca con Google

Pereira CT, Rahal SC, de Carvalho Balieiro JC, Ribeiro AA. Lymphatic drainage on healthy and neoplasic mammary glands in female dogs: can it really be altered? Anat Histol Embryol. 2003; 32(5): 282–290. Cerca con Google

Pettersson AT, Mejhert N, Jernas M, et al. Twist1 in Human White Adipose Tissue and Obesity. J Clin Endocrinol Metab. 2011; 96(1):133-141. Cerca con Google

Pham PV, Phan NL, Nguyen NT, et al. Differentiation of breast cancer stem cells by knockdown of CD44: Promising differentiation therapy. J Transl Med. 2011; 9: 209. Cerca con Google

Piccolo S, Cordenonsi M, Dupont S. Molecular pathways: YAP and TAZ take center stage in organ growth and tumorigenesis. Clin Cancer Res. 2013; 19(18):4925–4930. Cerca con Google

Piccolo S, Dupont S, Cordenonsi M. The biology of YAP/TAZ: hippo signaling and beyond. Physiol Rev. 2014; 94(4):1287-1312. Cerca con Google

Polyak K, Hu M. Do myoepithelial cells hold the key for breast tumor progression? J Mammary Gland Biol Neoplasia. 2005; 10:231–247. Cerca con Google

Polyak K. Breast cancer: Origins and evolution. J Clin Invest. 2007; 117(11):3155–3163. Cerca con Google

Ponti D, Costa A, Zaffaroni A, et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 2005; 65(13): 5506-5511. Cerca con Google

Prasad CP, Gupta SD, Rath G, Ralhan R. Wnt signaling pathway in invasive ductal carcinoma of the breast: relationship between beta-catenin, dishevelled and cyclin D1 expression. Oncology. 2007; 73:112–117. Cerca con Google

Prat A, Parker JS, Karginova O, et al. Phenotypic and molecular characterization of the claudin‐low intrinsic subtype of breast cancer. Breast Cancer Res. 2010; 12(5):R68. Cerca con Google

Provenzano E, Ulaner GA, Chin SF. Molecular classification of breast cancer. PET Clin. 2018; 13(3):325-338. Cerca con Google

Psaila B, Kaplan RN, Port ER, Lyden D. Priming the ‘soil’ for breast cancer metastasis: the pre-metastatic niche. Breast Dis. 2006; 26:65-74. Cerca con Google

Qiao GL, Song LN, Deng ZF, Chen Y, Ma Lj. Prognostic value of CD44v6 expression in breast cancer: a meta-analysis. Onco Targets Ther. 2018; 11:5451-5457. Cerca con Google

Qin H, Blaschke K, Wei G, Ohi Y, Blouin L, Qi Z, Yu J, et al. Transcriptional analysis of pluripotency reveals the Hippo pathway as a barrier to reprogramming. Hum Mol Genet. 2012; 21:2054–2067. Cerca con Google

Quan Y, Yan Y, Wang X, et al. Impact of cell dissociation on identification of breast cancer stem cells. Cancer Biomark. 2012-2013; 12(3):125-133. Cerca con Google

Rajendran L, Bali J, Barr MM, et al. Emerging roles of extracellular vesicles in the nervous system. J Neurosci. 2014; 34:15482–15489. Cerca con Google

Rak J, Guha A. Extracellular vesicles – vehicles that spread spread cancer genes. Bioessay. 2012; 34:489–497. Cerca con Google

Rakha EA, Reis-Filho JS, Baehner F, et al. Breast cancer prognostic classification in the molecular era: the role of histological grade. Breast Cancer Res. 2010; 12(4):207. Cerca con Google

Rakha EA, Reis-Filho JS, Ellis IO. Basal-like breast cancer: a critical review. J Clin Oncol. 2008; 26:2568–2581. Cerca con Google

Rasotto R, Caliari D, Castagnaro M, Zanetti R, Zappulli V. An immunohistochemical study of HER-2 expression in feline mammary tumours. J Comp Pathol. 2011; 144(2-3):170-179. Cerca con Google

Reed JC. Mechanisms of apoptosis. Am J Pathol. 2000; 39:1415–1430. Cerca con Google

Regidor PA, Callies R, Regidor M, et al. Expression of the CD44 variant isoforms 6 and 4/5 in breast cancer. Correlation with established prognostic parameters. Arch Gynecol Obstet. 1996; 258(3):125-135. Cerca con Google

Reis-Filho JS, Tutt AN. Triple negative tumours: a critical review. Histopathology. 2008; 52:108–118. Cerca con Google

Restucci B, Maiolino P, Martano M, et al. Expression of -catenin, E-cadherin and APC in canine mammary tumors. Anticancer Res. 2007; 27(5A):3083-3089. Cerca con Google

Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells. Nature. 2001; 414:105-11. Cerca con Google

Ricardo S, Vieira AF, Gerhard R. Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype. J Clin Pathol. 2011; 64(11):937-946. Cerca con Google

Rico C, Boerboom D, Paquet M. Expression of the Hippo signalling effectors YAP and TAZ in canine mammary gland hyperplasia and malignant transformation of mammary tumours. Vet Comp Oncol. 2018. In press. Cerca con Google

Rismanchi S, Yadegar O, Muhammadnejad S, et al. Expression of vimentin filaments in canine malignant mammary gland tumors: a simulation of clinicopathological features of human breast cancer. Biomed Rep. 2014; 2(5):725–728. Cerca con Google

Rivera P, von Euler H. Molecular biological aspects of canine and human mammary tumours. Vet Pathol. 2011; 48(1):132-146. Cerca con Google

Robinson DR, Wu YM, Vats P, et al. Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat Genet. 2013; 45:1446–51. Cerca con Google

Rout ED, Webb TL, Laurence HM, Long L, Olver CS. Transferrin receptor expression in serum exosomes as a marker of regenerative anaemia in the horse. Equine Vet J. 2015; 47:101–106. Cerca con Google

Roy SS, Gonugunta VK, Bandyopadhyay A, et al. Significance of PELP1/HDAC2/ miR‐200 regulatory network in EMT and metastasis of breast cancer. Oncogene. 2014; 33(28):3707–3716. Cerca con Google

Ruivo CF, Adem B, Silva M, Melo SA. The Biology of Cancer Exosomes: Insights and New Perspectives. Cancer Res. 2017; 77:6480–6489. Cerca con Google

Runz S, Keller S, Rupp C, et al. Malignant ascites-derived exosomes of ovarian carcinoma patients contain CD24 and EpCAM. Gynecol Oncol. 2007; 107(3):563–571. Cerca con Google

Sacchetto R, Testoni S, Gentile A, et al. A defective SERCA1 protein is responsible for congenital pseudomyotonia in Chianina cattle. Am J Pathol. 2009; 174:565– 573. Cerca con Google

Salhia B, Kiefer J, Ross JT, et al. Integrated genomic and epigenomic analysis of breast cancer brain metastasis. PLoS One. 2014; 9:e85448. Cerca con Google

Salomon FV, Geyer H, Gille U, 2008. Anatomie für die Tiermedizin, 2nd edn. Enke, Stuttgart, pp. 645–655. Cerca con Google

Sanchez IM, Aplin AE. Hippo: Hungry, hungry for melanoma invasion. J Invest Dermatol. 2014; 134:14–16. Cerca con Google

Sanchez-Cespedes R, Suarez-Bonnet A, Millan Y, et al. Use of CD10 as a marker of canine mammary myoepithelial cells. Vet J. 2013; 195:192–199. Cerca con Google

Sarli G, Sassi F, Brunetti B, et al. Lymphatic vessels assessment in feline mammary tumours. BMC Cancer. 2007; 7:7. Cerca con Google

Sassi F, Benazzi C, Castellani G, et al. Molecular-based tumour subtypes of canine mammary carcinomas assessed by immunohistochemistry. BMC Vet Res. 2010; 6:5–13. Cerca con Google

Sato A, Klaunberg B, Tolwani R. In vivo bioluminescence imaging. Comp Med. 2004; 54(6):631-634. Cerca con Google

Schabath H, Runz S, Joumaa S, Altevogt P. CD24 affects CXCR4 function in pre-B lymphocytes and breast carcinoma cells. J Cell Sci. 2006; 119(Pt 2): 314–325. Cerca con Google

Schackert G, Fidler IJ. Development of in vivo models for studies of brain metastasis. Int J Cancer. 1988; 41(4):589–594. Cerca con Google

Scheel C, Weinberg RA. Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin Cancer Biol. 2012; 22(5-6):296-403. Cerca con Google

Schneider J, Pollan M, Ruibal A, et al. Histologic grade and CD44 are independent predictors of axillary lymph node invasion in early (T1) breast cancer. Tumour Biol. 1999; 20:319–330. Cerca con Google

Schwartz S Jr, Yamamoto H, Navarro M, et al. Frameshift mutations at mononucleotide repeats in caspase-5 and other target genes in endometrial and gastrointestinal cancer of the microsatellite mutator phenotype. Cancer Res. 1999; 59:2995–3002. Cerca con Google

Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ. 2015; 22(4):526-539. Cerca con Google

Shapovalov Y, Zettel M, Spielman SC, et al. Fluoxetine modulates breast cancer metastasis to the brain in a murine model. BMC Cancer. 2014; 14:598. Cerca con Google

Sharma P. Biology and management of patients with triple-negative breast cancer. Oncologist. 2016; 21(9):1050-1062. Cerca con Google

Shelke GV, Lässer C, Gho YS, Lötvall J. Importance of exosome depletion protocols to eliminate functional and RNA-containing extracellular vesicles from fetal bovine serum. J Extracell Vesicles. 2014; 3. Cerca con Google

Shi P, Feng J, Chen C. Hippo pathway in mammary gland development and breast cancer. Acta Biochim Biophys Sin (Shangai). 2015; 47(1):53-59. Cerca con Google

Shi Y, Jin J, Ji W, Guan X. Therapeutic landscape in mutational triple negative breast cancer. Mol Cancer. 2018; 17(1):99. Cerca con Google

Shima H, Yamada A, Ishikawa T, Endo I. Are breast cancer stem cells the key to resolving clinical issues in breast cancer therapy? Gland Surg. 2017; 6(1):82-88. Cerca con Google

Shin MS, Kim HS, Kang CS, et al. Inactivating mutations of CASP10 gene in non-Hodgkin lymphomas. Blood. 2002; 99(11):4094–4099. Cerca con Google

Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013; 63(1):11–30. Cerca con Google

Silver IA. The anatomy of the mammary gland of the dog and cat. J Small Anim Pract. 1966; 7:689–696. Cerca con Google

Simpson RJ, Kalra H, Mathivanan S. ExoCarta as a resource for exosomal research. J Extracell Vesicles. 2012; 1. Cerca con Google

Simpson RJ, Lim JWE, Moritz RL. Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics 2009;6:267–283. Cerca con Google

Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003; 63:5821-5828. Cerca con Google

Skibinski A, Kuperwasser C. The origin of breast tumor heterogeneity. Oncogene. 2015; 34(42):5309–5316. Cerca con Google

Skog J, Würdinger T, van Rijn S, et al. Glioblastoma microvesicles transport RNA and protein that promote tumor growth and provide diagnostic biomarkers. Nat Cell Biol. 2008; 10(12):1470–1476. Cerca con Google

Škovierová H, Okajčeková T, Strnádel J, Vidomanová E, Halašová E. Molecular regulation of epithelial-to-mesenchymal transition in tumorigenesis (Review). Int J Mol Med. 2018; 41(3):1187-1200. Cerca con Google

Sleeckx N, de Rooster H, Veldhuis Kroeze EJ, Van Ginneken C, Van Brantegem L. Canine mammary tumors, an overview. Reprod Domest Anim. 2011; 46(6):1112-1131. Cerca con Google

Smith ZJ, Lee C, Rojalin T, et al. Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content. J Extracell Vesicles. 2015; 4:28533. Cerca con Google

Sneath RJ, Mangham DC. The normal structure and function of CD44 and its role in neoplasia. Mol Pathol. 1998; 51:191–200. Cerca con Google

Soares M, Madeira S, Correira J, et al. Molecular based subtyping of feline mammary carcinomas and clinicopathological characterization. Breast. 2016; 27:44-51. Cerca con Google

Sokolova V, Ludwig AK, Hornung S, et al. Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf B Biointerfaces. 2011; 87(1):146–150. Cerca con Google

Song JL, Nigam P, Tektas SS and Selva E. microRNA regulation of Wnt signaling pathways in development and disease. Cellular signalling. 2015; 27:1380-1391. Cerca con Google

Soo CY, Song Y, Zheng Y, et al. Nanoparticle tracking analysis monitors microvesicle and exosome secretion from immune cells. Immunology. 2012; 136:192–197. Cerca con Google

Sorenmo KU, Rasotto R, Zappulli V, Goldschmidt MH. Development, anatomy, histology, lymphatic drainage, clinical features, and cell differentiation markers of canine mammary gland neoplasms. Vet Pathol. 2011; 48(1):85-97. Cerca con Google

Sorenmo KU, Worley DR, Goldschmidt MH. Tumors of the mammary gland. In: Vail D, ed. Withrow and MacEwen’s Small Animal Clinical Oncology. St Louis, MO: Elsevier; 2013:538–556. Cerca con Google

Soung YH, Lee JW, Kim HS, et al. Inactivating mutations of CASPASE-7 gene in human cancers. Oncogene. 2003; 22:6104–6108. Cerca con Google

Soung YH, Lee JW, Kim SY, et al. Somatic mutations of CASP3 gene in human cancers. Hum Genet. 2004; 115(2):112-115. Cerca con Google

Spiegelman VS, Slaga TJ, Pagano M, Minamoto T, Ronai ZE, Fuchs SY. Wnt/bcatenin signaling induces the expression and activity of bTrCP ubiquitin ligase receptor. Mol Cell. 2000; 5(5):877–882. Cerca con Google

Spinelli C, Montermini L, Meehan B, et al. Molecular subtypes and differentiation programs of glioma stem cells as determinants of extracellular vesicles profiles and endothelial cell-stimulating activities. J Extracell Vesicles. 2018; 7(1):1490144. Cerca con Google

Steinhardt AA, Gayyed MF, Klein AP, et al. Expression of Yes-associated protein in common solid tumors. Hum Pathol. 2008; 39(11):1582–1589. Cerca con Google

Stewart CJ, Crook ML. Podoplanin and SOX2 expression in CIN 3-like squamous cell carcinoma of the cervix. Int J Gynecol Pathol. 2018; 37(1)59-67. Cerca con Google

Stingl J. Detection and analysis of mammary gland stem cells. J Pathol. 2009; Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record