Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Gaballah, Ahmed (2018) FUV- EUV Polarimetric System Development. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document
5Mb

Abstract (italian or english)

The generation and control of linearly and circularly polarized light in the far ultraviolet (FUV) and extreme ultraviolet (EUV) spectral regions are required in different frontiers research and technological areas ranging from material science, where the nature of the beam plays a fundamental role in the light-matter interaction, to optical components developments including devices for manipulation of the light polarization state. This has pushed researchers to examine and outline new optical elements as optical polarizers and quarter-wave retarders (QWRs) specifically designed for this spectral range and thought to be used in proper optical arrangements in order to provide valuable information about physical and optical properties of materials and optical coatings.
In this thesis, we present an EUV reflectometer facility located in the Institute for Photonics and Nanotechnologies-CNR Padua (Italy) which was implemented for polarimetric measurements within a suitably wide spectral range (90-160 nm) where some important spectral emission lines are, as the hydrogen Lyman alpha 121.6 and Oxygen VI (103.2 nm) lines. The development part focuses on the design and fabrication of an optical linear polarizer based on four reflection gold-coated mirrors to be inserted in the EUV reflectometer optical path. In this way, the facility can be used as an EUV spectroscopic ellipsometric system. The robustness of the methodology and the system were tested to characterize the optical and structural properties of a single layer aluminum mirror as quarter wave retarder (QWR) by deriving its amplitude component tanψ=r_p/r_s and phase difference δ.
The second part of the thesis comes from the desire to explore new optical materials employed as a capping layer for optical coatings in the far ultraviolet (FUV) and extreme ultraviolet (EUV) spectral regions. The materials are mostly absorptive in these spectral regions, thus the availability of high-performance optical coatings for the short wavelengths is quite restricted for this reason. In this part, we present a phase retarder optical component based on SnTe/Al bilayer covering the spectral range between 80 nm and 160 nm. The measurements have been performed using an EUV reflectometer facility improved for ellipsometric measurements. The specimen has been fully characterized at hydrogen Lyman–alpha line (121.6 nm) in terms of reflectance and ellipsometric parameters, i.e. the ratio r, ratio of the Fresnel coefficient, and the phase difference δ introduced between the -s and -p reflected components. To our knowledge, such structure based on SnTe haven’t been studied as capping layer for a wide spectral range in the vacuum ultraviolet, although the throughputs are not those expected for this structure. The drop-in performances are attributed to the carbon contamination on the sample surface identified by additional reflectance measurements at 160 nm wavelength. The results also confirm the potentialities and the advantages of such non-invasive optical approach.
Lastly, the whole system consisting of the reflectometer and the polarizer could be particularly useful as diagnostic tools in EUV ellipsometry field. The system can be a relatively simple complement to large-scale facilities and can be applied to test optical components by deriving their efficiency, determining the Mueller Matrix terms, and even to the analysis of optical surface and interface properties of thin films. In addition, the QWRs developed in this framework could be used in other experimental applications for generating EUV radiation beams of suitable polarization, for characterizing and controlling the polarization state of EUV radiation beams and to be inserted in an ellipsometric scheme in order to characterize optical devices.

Abstract (a different language)

La generazione e il controllo di luce polarizzata linearmente e circolarmente nell’ ultravioletto da vuoto (VUV) e nell’estremo ultravioletto (EUV) è argomento di grande interesse in diversi ambiti tecnologici e di ricerca, che riguardano la fisica solare, la scienza dei materiali e lo sviluppo di componenti ottici, inclusi dispositivi per la manipolazione dello stato di polarizzazione della luce. Questo ha spinto i ricercatori ad esaminare e disegnare ritardatori di fase, polarizzatori e lamine al quarto d’onda, specificamente progettati per questa regione spettrale e pensati per essere usati in diverse configurazioni ellissometriche al fine di fornire preziose informazioni sulle proprietà fisiche e ottiche di materiali e rivestimenti ottici.
In questa tesi, presentiamo l’implementazione di un riflettometro EUV, già presente presso l'Istituto di fotonica e Nanotecnologie-CNR di Padova (Italia), recentemente implementato e testato per misure polarimetriche in una banda spettrale ampia, compresa tra i 90 e i 160 nm, di grande interesse per la fisica solare.
La prima parte del lavoro descrive lo sviluppo, la progettazione e la fabbricazione di un polarizzatore lineare ottico costituito da quattro specchi in oro opportunamente assemblati. Il dispositivo è stato accoppiato al riflettometro EUV in modo da permettere l’utilizzo dell’intero sistema per analisi ellissometriche nell’EUV. La robustezza della metodologia sperimentale è stata poi validata per caratterizzare le proprietà ottiche e strutturali di uno specchio di alluminio mono-strato proposto come lamina al quarto d’onda broadband. Per questo specchio, sono stati derivati i due parametri ellissometrici caratteristici tanψ=r_p/r_s e δ, la differenza di fase.
La seconda parte della tesi tratta, invece, lo sviluppo e la progettazione di lamine al quarto d’onda broadband innovative. Le attività nell'ambito di questo argomento includono la ricerca di nuovi materiali, la simulazione numerica e la caratterizzazione. A tale scopo, sono state studiate le proprietà di una lamina al quarto d’onda basata su SnTe/Al, per la quale il SnTe è stato utilizzato come strato protettivo al fine di migliorare la stabilità e l'efficienza, contro l’ossidazione e la contaminazione proprie dell’alluminio. Il campione è stato caratterizzato attraverso misure di tipo polarimetrico e di riflettanza. Le lamine al quarto d’onda sviluppate in questo contesto potrebbero essere utilizzate in altre applicazioni sperimentali per la generazione, la caratterizzazione e il controllo di luce polarizzata nell’ EUV.
L'intero strumento, composto dal riflettometro e dal polarizzatore, è a tutti gli effetti un sistema ellissometrico nell’ EUV. Lo si propone in maniera complementare a large scale facility per testare componenti ottici disegnati per l’EUV, per lo studio di coating e di interfacce di film sottili.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Nicolosi, Piergiorgio and O’Sullivan, Gerry
Supervisor:Zupella, Paola and O'Reilly, Fergal
Ph.D. course:Ciclo 30 > Corsi 30 > INGEGNERIA DELL'INFORMAZIONE
Data di deposito della tesi:24 November 2018
Anno di Pubblicazione:20 November 2018
Key Words:VUV-EUV EUV ellipsometry Circularly polarized light Optical constants Quarter wave plates Hydrogen Lyman alpha
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/22 Scienza e tecnologia dei materiali
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Codice ID:11369
Depositato il:06 Nov 2019 11:57
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] R. Saathof, G.J.M. Schutten, J.W. Spronck, R.H. Munnig Schmidt, Design and characterisation of an active mirror for EUV-lithography, Precis. Eng. 41 (2015) 102–110. doi:10.1016/j.precisioneng.2015.03.004. Cerca con Google

[2] N. V Edwards, Status and Prospects For VUV Ellipsometry (Applied to High K and Low K Materials), in: AIP Conf. Proc., AIP, 2003: pp. 723–737. doi:10.1063/1.1622551. Cerca con Google

[3] C. Von Korff Schmising, D. Weder, T. Noll, B. Pfau, M. Hennecke, C. Strüber, I. Radu, M. Schneider, S. Staeck, C.M. Günther, J. Lüning, A.E.D. Merhe, J. Buck, G. Hartmann, J. Viefhaus, R. Treusch, S. Eisebitt, Generating circularly polarized radiation in the extreme ultraviolet spectral range at the free-electron laser FLASH, Rev. Sci. Instrum. 88 (2017). doi:10.1063/1.4983056. Cerca con Google

[4] B. Vodungbo, A. Barszczak Sardinha, J. Gautier, G. Lambert, C. Valentin, M. Lozano, G. Iaquaniello, F. Delmotte, S. Sebban, J. Lüning, P. Zeitoun, Polarization control of high order harmonics in the EUV photon energy range., Opt. Express. 19 (2011) 4346–4356. doi:10.1364/OE.19.004346. Cerca con Google

[5] B. De Pontieu, A.M. Title, J.R. Lemen, G.D. Kushner, D.J. Akin, B. Allard, T. Berger, P. Boerner, M. Cheung, C. Chou, J.F. Drake, D.W. Duncan, S. Freeland, G.F. Heyman, C. Hoffman, N.E. Hurlburt, R.W. Lindgren, D. Mathur, R. Rehse, D. Sabolish, R. Seguin, C.J. Schrijver, T.D. Tarbell, J.P. W??lser, C.J. Wolfson, C. Yanari, J. Mudge, N. Nguyen-Phuc, R. Timmons, R. van Bezooijen, I. Weingrod, R. Brookner, G. Butcher, B. Dougherty, J. Eder, V. Knagenhjelm, S. Larsen, D. Mansir, L. Phan, P. Boyle, P.N. Cheimets, E.E. DeLuca, L. Golub, R. Gates, E. Hertz, S. McKillop, S. Park, T. Perry, W.A. Podgorski, K. Reeves, S. Saar, P. Testa, H. Tian, M. Weber, C. Dunn, S. Eccles, S.A. Jaeggli, C.C. Kankelborg, K. Mashburn, N. Pust, L. Springer, R. Carvalho, L. Kleint, J. Marmie, E. Mazmanian, T.M.D. Pereira, S. Sawyer, J. Strong, S.P. Worden, M. Carlsson, V.H. Hansteen, J. Leenaarts, M. Wiesmann, J. Aloise, K.C. Chu, R.I. Bush, P.H. Scherrer, P. Brekke, J. Martinez-Sykora, B.W. Lites, S.W. McIntosh, H. Uitenbroek, T.J. Okamoto, M.A. Gummin, G. Auker, P. Jerram, P. Pool, N. Waltham, The Interface Region Imaging Spectrograph (IRIS), Sol. Phys. 289 (2014) 2733–2779. doi:10.1007/s11207-014-0485-y. Cerca con Google

[6] U. Schühle, The Lyman-alpha telescope of the extreme ultraviolet imager on Solar Orbiter, SPIE Opt. …. 8148 (2011) 81480K–81480K–11. doi:10.1117/12.893573. Cerca con Google

[7] David Attwood, Soft X-rays and extreme ultraviolet radiation, 1999. Cerca con Google

[8] J. Larruquert, Optical properties of thin film materials at short wavelengths, Woodhead Publishing Limited, 2013. doi:10.1533/9780857097316.2.290. Cerca con Google

[9] O. Kfir, P. Grychtol, E. Turgut, R. Knut, D. Zusin, Generation of phase-matched circularly-polarized extreme ultraviolet high harmonics for magnetic circular dichroism spectroscopy, ArXiv. (2014) 1–20. doi:10.1038/nphoton.2014.293. Cerca con Google

[10] J.A. Samson, D.L. Ederer, Vacuum ultraviolet spectroscopy I, Academic Press, 1998. Cerca con Google

[11] J.A. Samson, D.L. Ederer, Vacuum Ultraviolet Spectroscopy II, Academic Press, 1999. Cerca con Google

[12] M.A. Barstow, S.L. Casewell, J.B. Holberg, M.P. Kowalski, The status and future of EUV astronomy, Adv. Sp. Res. 53 (2014) 1003–1013. doi:10.1016/j.asr.2013.08.007. Cerca con Google

[13] P. Hyden, Extreme Ultraviolet Source Development Using Laser Plasmas Containing Tin, 2006. Cerca con Google

[14] Z. Huang, K.-J. Kim, Review of x-ray free-electron laser theory, Phys. Rev. Spec. Top. Beams. 10 (2007) 34801. Cerca con Google

[15] E. Allaria, L. Badano, S. Bassanese, F. Capotondi, D. Castronovo, P. Cinquegrana, M.B. Danailov, G. D’Auria, A. Demidovich, R. De Monte, G. De Ninno, S. Di Mitri, B. Diviacco, W.M. Fawley, M. Ferianis, E. Ferrari, G. Gaio, D. Gauthier, L. Giannessi, F. Iazzourene, G. Kurdi, N. Mahne, I. Nikolov, F. Parmigiani, G. Penco, L. Raimondi, P. Rebernik, F. Rossi, E. Roussel, C. Scafuri, C. Serpico, P. Sigalotti, C. Spezzani, M. Svandrlik, C. Svetina, M. Trovó, M. Veronese, D. Zangrando, M. Zangrando, The FERMI free-electron lasers, J. Synchrotron Radiat. 22 (2015) 485–491. doi:10.1107/S1600577515005366. Cerca con Google

[16] J. Peatross, M. Ware, Physics of Light and Optics, 2010. doi:10.1364/FIO.2010.JWA64. Cerca con Google

[17] N.I. Chkhalo, S.A. Gusev, A.N. Nechay, D.E. Pariev, V.N. Polkovnikov, N.N. Salashchenko, F. Schäfers, M.G. Sertsu, A. Sokolov, M. V. Svechnikov, D.A. Tatarsky, High-reflection Mo/Be/Si multilayers for EUV lithography, Opt. Lett. 42 (2017) 5070. doi:10.1364/OL.42.005070. Cerca con Google

[18] E. Louis, A.E. Yakshin, T. Tsarfati, F. Bijkerk, Nanometer interface and materials control for multilayer EUV-optical applications, Prog. Surf. Sci. 86 (2011) 255–294. doi:10.1016/j.progsurf.2011.08.001. Cerca con Google

[19] D. Goldstein, Polarized light, 2nd ed., Marcel Dekker, 2003. Cerca con Google

[20] P.J. Ouseph, K. Driver, J. Conklin, Polarization of light by reflection and the Brewster angle, Am. J. Phys. 69 (2001) 1166. doi:10.1119/1.1397457. Cerca con Google

[21] H.L. Marshall, R. Heilmann, N.S. Schulz, A Soft X-ray Polarimeter, (2010) 1–15. Cerca con Google

[22] E. Allaria, R. Appio, L. Badano, W.A. Barletta, S. Bassanese, S.G. Biedron, A. Borga, E. Busetto, D. Castronovo, P. Cinquegrana, S. Cleva, D. Cocco, M. Cornacchia, P. Craievich, I. Cudin, G. D’Auria, M. Dal Forno, M.B. Danailov, R. De Monte, G. De Ninno, P. Delgiusto, A. Demidovich, S. Di Mitri, B. Diviacco, A. Fabris, R. Fabris, W. Fawley, M. Ferianis, E. Ferrari, S. Ferry, L. Froehlich, P. Furlan, G. Gaio, F. Gelmetti, L. Giannessi, M. Giannini, R. Gobessi, R. Ivanov, E. Karantzoulis, M. Lonza, A. Lutman, B. Mahieu, M. Milloch, S. V. Milton, M. Musardo, I. Nikolov, S. Noe, F. Parmigiani, G. Penco, M. Petronio, L. Pivetta, M. Predonzani, F. Rossi, L. Rumiz, A. Salom, C. Scafuri, C. Serpico, P. Sigalotti, S. Spampinati, C. Spezzani, M. Svandrlik, C. Svetina, S. Tazzari, M. Trovo, R. Umer, A. Vascotto, M. Veronese, R. Visintini, M. Zaccaria, D. Zangrando, M. Zangrando, Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet, Nat. Photonics. 6 (2012) 699–704. doi:10.1038/nphoton.2012.233. Cerca con Google

[23] P. Finetti, D.M.P. Holland, C.J. Latimer, C. Binns, Polarisation analysis of VUV synchrotron radiation emitted from a bending magnet source in the energy range 20-50 eV: A comparison between measurements and theoretical predictions, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 215 (2004) 565–576. doi:10.1016/j.nimb.2003.08.034. Cerca con Google

[24] E. Allaria, B. Diviacco, C. Callegari, P. Finetti, B.B.M. Mahieu, J. Viefhaus, M. Zangrando, G. De Ninno, G. Lambert, E. Ferrari, J. Buck, M. Ilchen, B. Vodungbo, N. Mahne, C. Svetina, C. Spezzani, S. Di Mitri, G. Penco, M. Trovo, W.M. Fawley, P.R. Rebernik, D. Gauthier, C. Grazioli, M. Coreno, B. Ressel, A. Kivimäki, T. Mazza, L. Glaser, F. Scholz, J. Seltmann, P. Gessler, J. Grünert, A. De Fanis, M. Meyer, A.K.A. Knie, S.P. Moeller, L. Raimondi, F. Capotondi, E. Pedersoli, O. Plekan, M.B. Danailov, A. Demidovich, I. Nikolov, A. Abrami, J. Gautier, J. Lüning, P. Zeitoun, L. Giannessi, M. Trov�, W.M. Fawley, P.R. Rebernik, D. Gauthier, C. Grazioli, M. Coreno, B. Ressel, A. Kivim�ki, T. Mazza, L. Glaser, F. Scholz, J. Seltmann, P. Gessler, J. Gr�nert, A. De Fanis, M. Meyer, A.K.A. Knie, S.P. Moeller, L. Raimondi, F. Capotondi, E. Pedersoli, O. Plekan, M.B. Danailov, A. Demidovich, I. Nikolov, A. Abrami, J. Gautier, J. L�ning, P. Zeitoun, L. Giannessi, Control of the polarization of a vacuum-ultraviolet, high-gain, free-electron laser, Phys. Rev. X. 4 (2014) 1–15. doi:10.1103/PhysRevX.4.041040. Cerca con Google

[25] P. Joos, Measurement of the polarization of synchrotron radiation, Phys. Rev. Lett. 4 (1960) 558. Cerca con Google

[26] J. Kim, M. Zukic, M.M. Wilson, D.G. Torr, Design and fabrication of a reflection far-ultraviolet polarizer and retarder, in: X-Ray Ultrav. Polarim., International Society for Optics and Photonics, 1994: pp. 93–104. Cerca con Google

[27] W.C. Johnson Jr, Magnesium fluoride polarizing prism for the vacuum ultraviolet, Rev. Sci. Instrum. 35 (1964) 1375–1376. Cerca con Google

[28] D.L. Steinrnetz, W.G. Phillips, M. Wirick, F.F. Forbes, A polarizer for the vacuum ultraviolet, Appl. Opt. 6 (1967) 1001–1004. Cerca con Google

[29] J. Kim, M. Zukic, D.G. Torr, Multilayer thin film design for far ultraviolet polarizers using an induced transmission and absorption technique, NASA-CR-19 (1993) 142–149. Cerca con Google

[30] F. Bridou, M. Cuniot-Ponsard, J.M. Desvignes, A. Gottwald, U. Kroth, M. Richter, Polarizing and non-polarizing mirrors for the hydrogen Lyman-α radiation at 121.6 nm, Appl. Phys. A Mater. Sci. Process. 102 (2011) 641–649. doi:10.1007/s00339-010-6133-y. Cerca con Google

[31] F. Bridou, M. Cuniot-Ponsard, J.-M. Desvignes, M. Richter, U. Kroth, a. Gottwald, Experimental determination of optical constants of MgF2 and AlF3 thin films in the vacuum ultra-violet wavelength region (60–124nm), and its application to optical designs, Opt. Commun. 283 (2010) 1351–1358. doi:10.1016/j.optcom.2009.11.062. Cerca con Google

[32] G. Hass, W.R. Hunter, Reflection polarizers for the vacuum ultraviolet using Al+ MgF 2 mirrors and an MgF 2 plate, Appl. Opt. 17 (1978) 76–82. Cerca con Google

[33] M. Yang, C. Cobet, N. Esser, Tunable thin film polarizer for the vacuum ultraviolet and soft x-ray spectral regions, J. Appl. Phys. 101 (2007) 53114. doi:10.1063/1.2710354. Cerca con Google

[34] L.R. Marcos, J.I. Larruquert, J.A. Aznárez, J.A. Méndez, A.M. Malvezzi, Advances In FUV Coatings For Space Instrumentation, 2016. Cerca con Google

[35] Z.-Y. Guo, S.-B. Xi, J.-T. Zhu, Y.-D. Zhao, L. Zheng, C.-H. Hong, K. Tang, D.-L. Yang, M.-Q. Cui, Measurement of the polarization for soft X-ray magnetic circular dichroism at the BSRF beamline 4B7B, Chin. Phys. C. 37 (2013) 018001. doi:10.1088/1674-1137/37/1/018001. Cerca con Google

[36] M.F. Tesch, M.C. Gilbert, H.-C. Mertins, D.E. Bürgler, U. Berges, C.M. Schneider, X-ray magneto-optical polarization spectroscopy: an analysis from the visible region to the x-ray regime., Appl. Opt. 52 (2013) 4294–310. doi:10.1364/AO.52.004294. Cerca con Google

[37] N.-E. Raouafi, P. Lemaire, S. Sahal-Bréchot, Detection of the O VI 103.2 nm line polarization by the SUMER spectrometer on the SOHO spacecraft, Astron. Astrophys. 345 (1999) 999–1005. Cerca con Google

[38] H. Peter, L. Abbo, V. Andretta, F. Auchère, A. Bemporad, F. Berrilli, V. Bommier, A. Braukhane, R. Casini, W. Curdt, J. Davila, H. Dittus, S. Fineschi, A. Fludra, A. Gandorfer, D. Griffin, B. Inhester, A. Lagg, E.L. Degl’Innocenti, V. Maiwald, R.M. Sainz, V.M. Pillet, S. Matthews, D. Moses, S. Parenti, A. Pietarila, D. Quantius, N.E. Raouafi, J. Raymond, P. Rochus, O. Romberg, M. Schlotterer, U. Schühle, S. Solanki, D. Spadaro, L. Teriaca, S. Tomczyk, J.T. Bueno, J.C. Vial, Solar magnetism eXplorer (SolmeX): Exploring the magnetic field in the upper atmosphere of our closest star, Exp. Astron. 33 (2012) 271–303. doi:10.1007/s10686-011-9271-0. Cerca con Google

[39] F. Snik, Astronomical Polarimtery, 2009. Cerca con Google

[40] N.-E. Raouafi, J.W. Harvey, S.K. Solanki, Properties of solar polar coronal plumes constrained by ultraviolet coronagraph spectrometer data, Astrophys. J. 658 (2007) 643. Cerca con Google

[41] Spectroscopic ellipsometry: a historical overview, Thin Solid Films. 313–314 (1998) 1–9. doi:10.1016/S0040-6090(97)00762-1. Cerca con Google

[42] J. Jung, J. Bork, T. Holmgaard, N. a. Kortbek, Ellipsometry, 2004. Cerca con Google

[43] R.M. a Azzam, Ellipsometry, in: Handb. Opt., n.d.: p. 27.1-27.27. Cerca con Google

[44] M. Schledermann, M.Skibowski, Determination of the Ellipticity of Light and of Optical Constants by Use of Two Reflection Polarizers, Appl. Opt. 10 (1971) 321. Cerca con Google

[45] J. Barth, R.L. Johnson, S. Logothetidis, M. Cardona, D. Fuchs, A.M. Bradshaw, Spectroscopic Ellipsometry with Synchrotron Radiation: Latest Developments, in: 1986: pp. 733–737. Cerca con Google

[46] H. Onuki, N. Saito, T. Saito, Undulator generating any kind of elliptically polarized radiation, Appl. Phys. Lett. 52 (1988) 173–175. doi:10.1063/1.99510. Cerca con Google

[47] K. Dorywalski, I. Maciejewski, T. Krzyżyński, Spectroscopic ellipsometry technique as a materials characterization tool for mechatronic systems—The case of composition and doping concentration monitoring in SBN crystals, Mechatronics. 37 (2015) 33–41. doi:10.1016/j.mechatronics.2015.11.005. Cerca con Google

[48] A. Kumar, A.K. Ghatak, Polarization of light with applications in optical fibers, SPIE Press, 2011. Cerca con Google

[49] R.C. Jones, I . Description and Discussion of the Calculus, J.O.S.A. 31 (1941) 488–493. doi:http://dx.doi.org/10.1364/JOSA.31.000488. Vai! Cerca con Google

[50] H.G.H.G. Tompkins, E.A.E.A. Irene, C. Hill, N. Carolina, Handbook of Ellipsometry, 2005. doi:10.1007/3-540-27488-X. Cerca con Google

[51] Http://www.sjuts.com, for more detalis about the detector, (n.d.). Vai! Cerca con Google

[52] http://www.hamamatsu.com, for more details about the lamp, (2018). Vai! Cerca con Google

[53] K. Brodie, S. Neate, Features and Operation of Hollow Cathode Lamps and Deuterium Lamps, (1988) 1–6. Cerca con Google

[54] G. Bonanno, G. Naletto, G. Tondello, A test facility to calibrate EUV detectors, in: ESA Symp. Phot. Detect. Sp. Instrumentations, 1992: pp. 233–236. Cerca con Google

[55] G. Monaco, High reflective optics for different spectral region, University of Padova, 2009. Cerca con Google

[56] A.J. Corso, Ground calibaration of PHEBUS spectrormeter on board of BEPICOLOMBO mission, 2012. Cerca con Google

[57] E.D. Palik, Handbook of optical constants of solids II, 1985. Cerca con Google

[58] J.I. Larruquert, A.M. Malvezzi, A. Giglia, J.A. Aznárez, L. Rodríguez-de Marcos, J.A. Méndez, P. Miotti, F. Frassetto, G. Massone, S. Nannarone, G. Crescenzio, G. Capobianco, S. Fineschi, Reflective and transmissive broadband coating polarizers in a spectral range centered at 121.6nm, J. Opt. (United Kingdom). 16 (2014) 125713. doi:10.1088/2040-8978/16/12/125713. Cerca con Google

[59] https://www.physikinstrumente.com, for more details about the rotation stage, (2016). Vai! Cerca con Google

[60] Z. Wang, H. Wang, J. Zhu, Z. Zhang, F. Wang, Y. Xu, S. Zhang, W. Wu, L. Chen, A.G. Michette, S.J. Pfauntsch, A.K. Powell, F. Schäfers, A. Gaupp, M. Cui, L. Sun, M. MacDonald, Complete polarization analysis of extreme ultraviolet radiation with a broadband phase retarder and analyzer, Appl. Phys. Lett. 90 (2007) 3–5. doi:10.1063/1.2678973. Cerca con Google

[61] T. Kihara, Measurement method of Stokes parameters using a quarter-wave plate with phase difference errors., Appl. Opt. 50 (2011) 2582–7. doi:10.1364/AO.50.002582. Cerca con Google

[62] E. Garcia-Caurel, A. De Martino, J.P. Gaston, L. Yan, Application of spectroscopic ellipsometry and mueller ellipsometry to optical characterization, Appl. Spectrosc. 67 (2013) 1–21. doi:10.1366/12-06883. Cerca con Google

[63] H.G. Berry, G. Gabrielse, a E. Livingston, Measurement of the Stokes parameters of light., Appl. Opt. 16 (1977) 3200–3205. doi:10.1364/AO.16.003200. Cerca con Google

[64] A.E.H. Gaballah, P. Nicolosi, N. Ahmed, K. Jimenez, G. Pettinari, A. Gerardino, P. Zuppella, EUV polarimetry for thin film and surface characterization and EUV phase retarder reflector development, Rev. Sci. Instrum. 89 (2018) 015108. doi:10.1063/1.5010786. Cerca con Google

[65] T. Saito, A. Ejiri, H. Onuki, Polarization properties of an evaporated aluminum mirror in the VUV region, Appl. Opt. 29 (1990) 4538–4540. doi:10.1364/AO.29.004538. Cerca con Google

[66] http://www.rxollc.com/idl/, x-ray optics software, (n.d.). Vai! Cerca con Google

[67] J.H. Weaver, C. Krafka, D.W. Lynch, E.E. Koch, Optical properties of metals. Pt. 2, Phys. Data. Vol. 18-1, (1981). Cerca con Google

[68] R.P. MADDEN, L.R. CANFIELD, G. HASS, On the Vacuum-Ultraviolet Reflectance of Evaporated Aluminum before and during Oxidation, J. Opt. Soc. Am. 53 (1963) 620. doi:10.1364/JOSA.53.000620. Cerca con Google

[69] W.B. Westerveld, K. Becker, P.W. Zetner, J.J. Corr, J.W. McConkey, Production and measurement of circular polarization in the VUV, Appl. Opt. 24 (1985) 2256–2262. doi:10.1364/AO.24.002256. Cerca con Google

[70] D. Wilson, D. Rudolf, C. Weier, R. Adam, G. Winkler, R. Frömter, S. Danylyuk, K. Bergmann, D. Detlev Grützmacher, C.M. Schneider, L. Juschkin, Generation of circularly polarized radiation from a compact plasma-based extreme ultraviolet light source for tabletop X-ray magnetic circular dichroism studies, Rev. Sci. Instrum. 85 (2014). doi:10.1063/1.4897491. Cerca con Google

[71] C. Lin, S. Chen, Z. Chen, Y. Ding, Design of reflective quarter-wave plates in extreme ultraviolet, Opt. Commun. 347 (2015) 98–101. doi:10.1016/j.optcom.2015.03.010. Cerca con Google

[72] L.R. Canfield, G. Hass, J.E. Waylonis, Further Studies on MgF2 Overcoated Aluminum Mirrors with Highest Reflectance in the Vacuum Ultraviolet, Appl. Opt. 5 (1966) 45. doi:10.1364/AO.5.000045. Cerca con Google

[73] J.I. Larruquert, R.A.M. Keski-Kuha, Far ultraviolet optical properties of MgF2 films deposited by ion-beam sputtering and their application as protective coatings for Al, Opt. Commun. 215 (2002) 93–99. doi:10.1016/S0030-4018(02)02229-0. Cerca con Google

[74] E.T. Hutcheson, G. Hass, J.T. Cox, Effect of Deposition Rate and Substrate Temperature on the Vacuum Ultraviolet Reflectance of MgF(2)- and LiF-Overcoated Aluminum Mirrors., Appl. Opt. 11 (1972) 2245–2248. doi:10.1364/AO.11.002245. Cerca con Google

[75] J. Hennessy, K. Balasubramanian, C.S. Moore, A.D. Jewell, S. Nikzad, K. France, M. Quijada, Performance and prospects of far ultraviolet aluminum mirrors protected by atomic layer deposition, J. Astron. Telesc. Instruments, Syst. 2 (2016) 041206. doi:10.1117/1.JATIS.2.4.041206. Cerca con Google

[76] L. V. Rodríguez-de Marcos, J.I. Larruquert, J.A. Méndez, J.A. Aznárez, Self-consistent optical constants of MgF2, LaF3, and CeF3 films, Opt. Mater. Express. 7 (2017) 989. doi:10.1364/OME.7.000989. Cerca con Google

[77] B. Ellis, The spectral response of Pb/SnTe detectors, Infrared Phys. 17 (1977) 365–374. doi:10.1016/0020-0891(77)90038-0. Cerca con Google

[78] R. Ishikawa, T. Yamaguchi, Y. Ohtaki, R. Akiyama, S. Kuroda, Thin film growth of a topological crystal insulator SnTe on the CdTe (111) surface by molecular beam epitaxy, J. Cryst. Growth. 453 (2016) 124–129. doi:10.1016/j.jcrysgro.2016.08.027. Cerca con Google

[79] Y.Y. Wang, K.F. Cai, X. Yao, Facile synthesis and characterization of SnTe films, Appl. Surf. Sci. 258 (2011) 919–922. doi:10.1016/j.apsusc.2011.09.027. Cerca con Google

[80] L. Walmsley, L. Waxer, C. Dorrer, The role of dispersion in ultrafast optics, Rev. Sci. Instrum. 72 (2001) 1–29. doi:10.1063/1.1330575. Cerca con Google

[81] A. Aquila, F. Salmassi, E. Gullikson, Metrologies for the phase characterization of attosecond extreme ultraviolet optics., Opt. Lett. 33 (2008) 455–457. doi:10.1364/OL.33.000455. Cerca con Google

[82] https://www.elettra.trieste.it, Elettra Sincrotrone Trieste, Science (80-. ). (2014) 13–14. Vai! Cerca con Google

[83] J.I. Larruquert, R.A.. Keski-Kuha, Reflectance measurements and optical constants in the extreme ultraviolet of thin films of ion-beam-deposited carbon, Opt. Commun. 183 (2000) 437–443. doi:10.1016/S0030-4018(00)00884-1. Cerca con Google

[84] F. Wang, L. Liu, W. Duan, L. Jiang, W. Li, Z. Wang, J. Zhu, Z. Zhang, L. Chen, H. Zhou, T. Huo, Reflective phase shift measurement of the Mo/Si multilayer mirror in extreme ultraviolet region, Optik (Stuttg). 124 (2013) 5003–5006. doi:10.1016/j.ijleo.2013.03.088. Cerca con Google

[85] R.B. Schoolar, J.R. Dixon, Optical properties of tin telluride in the visible and infrared regions, Josa. 58 (1968) 119–124. doi:10.1364/JOSA.58.000119. Cerca con Google

[86] V.S. Neudachina, T.B. Shatalova, V.I. Shtanov, L. V. Yashina, T.S. Zyubina, M.E. Tamm, S.P. Kobeleva, XPS study of SnTe(1 0 0) oxidation by molecular oxygen, Surf. Sci. 584 (2005) 77–82. doi:10.1016/j.susc.2005.01.061. Cerca con Google

[87] Cao. Guozhong, Two-Dimensional Nanostructures: Thin Films, in: Nanostructures Nanomater., publidhed by Imperial College Press and distributed by World Scientific Publishing Co., 2004: pp. 173–228. doi:10.1142/9781860945960_0005. Cerca con Google

[88] M. Ohring, Materials science of thin films, Academic press, 2001. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record