Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Chiuso, Alessandro and Schenato, Luca (2008) Information fusion strategies from distributed filters in packet-drop networks. [Technical Report] (Inedito)

Full text disponibile come:

[img]
Preview
Documento PDF
148Kb

Abstract (english)

In this paper we study different distributed estimation schemes for stochastic discrete time linear systems where the communication between the sensors and the estimation center is subject to random packet loss. Sensors are provided with computational and memory resources so that they can potentially perform data processing of the measurements before sending their information. In particular, we explore three different strategies. The first, named measurement
fusion (MF), optimally fuses the raw measurements received so far from all sensors. The second strategy, named optimal partial
estimate fusion (OPEF), optimally fuses at the central node the last local state estimates received from each sensor. The last strategy, named open loop partial estimate fusion (OLPEF), simply sums local state estimates received from each sensor and replace the lost ones with their open loop prediction. We provide some analytical results about the performance of these three schemes in special regimes conditions, namely low and high process noise. We also show through numerical simulations that, although none of the three schemes achieves the ideal performance of a scheme with infinite bandwidth
communication between sensors and the central node, the OPEF scheme provides almost ideal performance.


Statistiche Download - Aggiungi a RefWorks
EPrint type:Technical Report
Anno di Pubblicazione:02 September 2008
Key Words:packet loss, distributed sensor fusion, kalman filtering, local filters
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-INF/04 Automatica
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Codice ID:1138
Depositato il:03 Sep 2008
Simple Metadata
Full Metadata
EndNote Format

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record