Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Miotti, Paolo (2018) Development of spectroscopic instrumentation for Ultrafast pulses in the XUV domain. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document - Submitted Version
10Mb

Abstract (italian or english)

In this dissertation the work performed in the framework of the development of spectroscopic instrumentation for Ultrafast pulses in the XUV domain is presented.
The activities on the installation, development and characterization of ultrafast instrumentation for handling, conditioning and detection of ultrashort pulses are described in detail. Moreover, the technical and scientific advances achieved, as well as the experimental results obtained, are reported and discussed.

Abstract (a different language)

In questa dissertazione viene presentato il lavoro realizzato nell’ambito dello sviluppo di strumentazione spettroscopica per impulsi ultrabrevi nell’XUV. Le attività relative all’installazione, allo sviluppo e alla caratterizzazione di strumentazione ultraveloce per la manipolazione, il condizionamento e la rivelazione di impulsi ultrabrevi sono descritte in dettaglio. Inoltre, i progressi tecnici e scientifici raggiunti e i risultati sperimentali ottenuti sono riportati e discussi.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Poletto, Luca
Ph.D. course:Ciclo 31 > Corsi 31 > INGEGNERIA DELL'INFORMAZIONE
Data di deposito della tesi:27 November 2018
Anno di Pubblicazione:27 November 2018
Key Words:Ultrafast pulses, XUV/Soft x-ray instrumentation, Grating monochromators, Grating compressors, Grating spectrometers, High harmonic generation, Free electron Lasers.
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-INF/01 Elettronica
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Codice ID:11404
Depositato il:08 Nov 2019 09:42
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] Marciak-Kozlowska, J.; Kozlowski, M., From Femto-To Attoscience and Beyond, Nova Science Publisher: Hauppauge, NY, USA, (2009). Cerca con Google

[2] Krausz, F.; Ivanov, M., Attosecond physics, Rev. Mod. Phys. 81, 163–234 (2009) Cerca con Google

[3] Jaeglè, P., Coherent Sources of XUV Radiation, Springer: New York, NY, USA, 277–344 (2006). Cerca con Google

[4] Ackermann, W. et al., Operation of a free-electron laser from the extreme ultraviolet to the water window, Nat.Photonics 1, 336–342 (2007). Cerca con Google

[5] Emma, P. et al., First lasing and operation of an angstrom-wavelength free-electron laser, Nat. Photonics 4, 6641–6647 (2010). Cerca con Google

[6] K. Midorikawa, High-Order Harmonic Generation and Attosecond Science, Japanese J. Appl. Phys., 50 (2011). Cerca con Google

[7] Sansone, G.; Poletto, L.; Nisoli, M., High-energy attosecond light sources, Nat. Photonics 5, 655–663 (2011). Cerca con Google

[8] D. Gauthier, E. Allaria, M. Coreno, I. Cudin, H. Dacasa, M. B. Danailov, A. Demidovich, S. Di Mitri, B. Diviacco, E. Ferrari, P. Finetti, F. Frassetto, D. Garzella, S. Künzel, V. Leroux, B. Mahieu, N. Mahne, M. Meyer, T. Mazza, P. Miotti, G. Penco, L. Raimondi, P. R. Ribiˇc, R. Richter, E. Roussel, S. Schulz, L. Sturari, C. Svetina, M. Trovò, P. A. Walker, M. Zangrando, C. Callegari, M.Fajardo, L. Poletto, P. Zeitoun, L. Giannessi and G. De Ninno, Chirped pulse amplification Cerca con Google

in an extreme-ultraviolet free-electron laser, Nature Communications 7, Article number: 13688 (2016). Cerca con Google

[9] Corkum P. B., Plasma perspective on strong field multiphoton ionization, Phys. Rev.Lett. 71 (1994). Cerca con Google

[10] Kulander K.C., Schafer K.J. and Krause J.L., Proc.Work-shop on Super-Intense Laser Atom Physics (SILAP) III, ed. B. Piraux (New York: Plenum) pp 95–110 (1993). Cerca con Google

[11] Salièeres P., L’Huillier A. and Lewenstein M., Coherence Control of High-Order Harmonics, Phys. Rev. Lett. 74, 3776 (1995). Cerca con Google

[12] Lewenstein M., Salièeres P. and L’Huillier A., Phase of the atomic polarization in high-order harmonic generation, Phys. Rev. A 52, 4747 (1995). Cerca con Google

[13] Salièeres P et al., Feynman’s Path-Integral Approach for Intense-Laser-Atom Interactions, Science 292, 902 (2001). Cerca con Google

[14] Nisoli M. et al., High-Brightness High-Order Harmonic Generation by Truncated Bessel Beams in the Sub-10-fs Regime, Phys. Rev. Lett. 88, 033902 (2002). Cerca con Google

[15] Zhou J. et al. Enhanced High-Harmonic Generation Using 25 fs Laser Pulses, Phys. Rev. Lett. 76, 752 (1996). Cerca con Google

[16] Nisoli M. et al., Spectral analysis of high-order harmonics generated by 30-fs and sub-10-fs laser pulses, Appl. Phys. B 70, 215 (2000). Cerca con Google

[17] Tamaki Y. et al., Highly Efficient, Phase-Matched High-Harmonic Generation by a Self-Guided Laser Beam, Phys. Rev. Lett. 82, 1422 (1999). Cerca con Google

[18] Tosa V., Takahashi E., Nabekawa Y. and Midorikawa K., Generation of high-order harmonics in a self-guided beam, Phys. Rev. A 67, 063817 (2003). Cerca con Google

[19] Strickland, D. and Mourou, G., Compression of amplified chirped optical pulses, Opt. Commun. 56, 219 (1985). Cerca con Google

[20] Zholents A. A. and Fawley W.M., Proposal for Intense Attosecond Radiation from an X-Ray Free-Electron Laser, Phys. Rev. Lett. 92, 224801 (2004) Cerca con Google

[21] Emma, P. et al., Femtosecond and Subfemtosecond X-Ray Pulses from a Self-Amplified Spontaneous EmissionBased Free-Electron Laser, Phys. Rev. Lett. 92, 074801 (2004). Cerca con Google

[22] Saldin E.L., Schneidmiller E. A., Yurkov M. V., Self-amplified spontaneous emission FEL with energy-chirped electron beam and its application for generation of attosecond x-ray pulses, Phys. Rev. ST Accel. Beams 9, 050702 (2006). Cerca con Google

[23] Thompson N.R. and McNeil B.W.J, Mode Locking in a Free-Electron Laser Amplifier, Phys. Rev. Lett. 100, 20390 (2008). Cerca con Google

[24] Prat E. and Reiche S. , Simple Method to Generate Terawatt-Attosecond X-Ray Free-Electron-Laser Pulses, Phys.Rev. Lett. 100, 203901 (2008). Cerca con Google

[25] Gauthier D. et al., Spectro-temporal shaping of seeded free-electron laser pulses, Phys. Rev. Lett. 98, 115 (2015). Cerca con Google

[26] Yu L.H., Johnson E., Li D., Umstadter D. , Femtosecond free-electron laser by chirped pulse amplification, Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(5), 4480-4486 (1994). Cerca con Google

[27] Moore, G. T., Frequency chirping of the free-electron laser, Phys. Rev. Lett. 60, 1825 (1988). Cerca con Google

[28] E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov, The Physics of Free Electron Lasers, Springer, Berlin-Heidelberg (2000) Cerca con Google

[29] K.J. Kim, Three-Dimensional Analysis of Coherent Amplification and Self-Amplified Spontaneous Emission in Free-Electron Lasers, Phys. Rev. Lett. 57, 1871 (1986). Cerca con Google

[30] S. Krinsky and L.H. Yu, Output power in guided modes for amplified spontaneous emission in a single-pass free-electron laser, Phys. Rev. A35, 3406 (1987). Cerca con Google

[31] R. Bonifacio, C. Pellegrini and L.M. Narducci, Collective instabilities and high-gain regime in a free electron laser, Opt. Commun. 50, 373 (1984). Cerca con Google

[32] S. Reiche, Overview of seeding methods, Proceedings of IPAC2013, Shanghai, China (2013). Cerca con Google

[33] Shu, X. et al., Chirped pulse amplification in a free electron laser amplifier, Journal of Electron Spectroscopy and Related Phenomena 184, 350 (2011). Cerca con Google

[34] Ratner, D. et al. , Laser phase errors in seeded free electron lasers, Phys. Rev. ST Accel. Beams 15, 030702 (2012). Cerca con Google

[35] Gauthier, D. et al., Direct spectrotemporal characterization of femtosecond extremeultraviolet pulses, Phys. Rev. A 88, 033849 (2013). Cerca con Google

[36] U. Bergmann and P. Glatzel, X-ray emission spectroscopy, Photosynth. Res. 102, 255 (2009). Cerca con Google

[37] J. Yano and V. K. Yachandra, X-ray absorption spectroscopy, Photosynth. Res. 102, 241 (2009). Cerca con Google

[38] W. Schuelke, Electron Dynamics by Inelastic X-Ray Scattering, Oxford University Press, Oxford (2007). Cerca con Google

[39] F. De Groot and A. Kotani, Core Level Spectroscopy of Solids, CRC Press (2008). Cerca con Google

[40] M. Beye, F. Sorgenfrei, W. F. Schlotter, W. Wurth, and A. Föhlisch, The liquid -liquid phase transition in silicon revealed by snapshots of valence electrons, Proc. Natl. Acad. Sci. U.S.A. 107, 16772 (2010). Cerca con Google

[41] M. Altarelli, Opportunities for resonant elastic X-ray scattering at X-ray free-electron lasers, Eur. Phys. J.: Spec. Top. 208, 351 (2012). Cerca con Google

[42] D. Zhu, M. Cammarata, J. M. Feldkamp, D. M. Fritz, J. B. Hastings, S. Lee, H. T. Lemke, A. R. James, L. Turner, and Y. Feng, A single-shot transmissive spectrometer for hard x-ray free electron lasers, Appl. Phys. Lett. 101, 034103 (2012). Cerca con Google

[43] K. Kunnus, I. Rajkovic, S. Schreck, W. Quevedo, S. Eckert, M. Beye, E. Suljoti, C.Weniger, C. Kalus, S. Grübel, M. Scholz, D. Nordlund,W. Zhang, R.W. Hartsock, K. J. Gaffney,W. F. Schlotter, J. J. Turner, B. Kennedy, F. Hennies, S. Techert, P.Wernet, and A. Föhlisch, A setup for resonant inelastic soft x-ray scattering on liquids Cerca con Google

at free electron laser light sources, Rev. Sci. Instrum. 83, 123109 (2012). Cerca con Google

[44] T. Katayama, T. Anniyev, M. Beye, R. Coffee, M. Dell’Angela, A. Föhlisch, J. Gladh, S. Kaya, O. Krupin, A. Nilsson, D. Nordlund,W. F. Schlotter, J. A. Sellberg, F. Sorgenfrei, J. J. Turner, W. Wurth, H. Öström, and H.Ogasawara, Ultrafast soft X-ray emission spectroscopy of surface adsorbates using an X-ray free electron Cerca con Google

laser, J. Electron Spectrosc. Relat. Phenom. 187, 9–14 (2013). Cerca con Google

[45] W. Zhang, V. Carravetta, O. Plekan, V. Feyer, R. Richter, M. Coreno, and K. C. Prince, J. , Electronic structure of aromatic amino acids studied by soft x-ray spectroscopy, Chem. Phys. 131, 035103 (2009). Cerca con Google

[46] M. Coreno, M. de Simone, R. Coates, M. S. Denning, R. G. Denning, J. C. Green, C. Hunston, N. Kaltsoyannis, and A. Sella, Variable Photon Energy Photoelectron Spectroscopy and Magnetism of YbCp3 and LuCp3, Organometallics 29, 4752 (2010). Cerca con Google

[47] L. Ravagnan, T. Mazza, G. Bongiorno, M. Devetta, M. Amati, P. Milani, P.Piseri, M. Coreno, C. Lenardi, F. Evangelista, and P. Rudolf, sp hybridization in free carbon nanoparticles—presence and stability observed by near edge X-ray absorption fine structure spectroscopy, Chem. Commun. 47, 2952 (2011). Cerca con Google

[48] P. Glatzel, M. Sikora, and M. Fernandez-Garcia, Resonant X-ray spectroscopy to study K absorption pre-edges in 3d transition metal compounds, Eur. Phys. J.: Spec. Top. 169, 207 (2009). Cerca con Google

[49] T. Kita, T. Harada, N. Nakano, and H. Kuroda, Mechanically ruled aberrationcorrected concave gratings for a flat-field grazing-incidence spectrograph, Appl. Opt. 22, 512 (1983). Cerca con Google

[50] J.H. Underwood, Spectrographs and monochromators using varied line spacing gratings, Vacuum Ultraviolet Spectroscopy II, J.A. Samson and D.L. Ederer editors, 55-72 Elsevier (1999). Cerca con Google

[51] J. F.Wu, Y. Y. Chen, and T. S.Wang, Flat field concave holographic grating with broad spectral region and moderately high resolution, Appl. Opt. 51(4), 509–514 (2012). Cerca con Google

[52] P. A. Franken, A. E. Hill, C.W. Peters, and G. Weinreich, Generation of Optical Harmonics, Phys. Rev. Lett. 7, 118 (1961). Cerca con Google

[53] Y.-R. Shen, Fundamentals of Sum-Frequency Spectroscopy, Cambridge University Press, Cambridge, England (2016). Cerca con Google

[54] T. E. Glover, D.M. Fritz, M. Cammarata, T. K. Allison, S.Coh, J. M. Feldkamp, H. Lemke, D. Zhu, Y. Feng, R. N.Coffee, M. Fuchs, S. Ghimire, J. Chen, S. Shwartz, D. A.Reis, S. E. Harris, and J. B. Hastings, X-ray and optical wave mixing, Nature (London) 488, 603 (2012). Cerca con Google

[55] R.K. Lam, S.L. Raj, T.A. Pascal, C.D. Pemmaraju, L. Foglia, A. Simoncig, N. Fabris, P. Miotti, C.J. Hull, A.M. Rizzuto, J.W. Smith, R. Mincigrucci, C. Masciovecchio, A. Gessini, E. Allaria, G. De Ninno, B. Diviacco, E. Roussel, S. Spampinati, G. Penco, S. Di Mitri, M. Trovò, M. Danailov, S.T. Christensen, D. Sokaras, T.-C. Weng, M. Coreno, L. Poletto, W.S. Drisdell, D. Prendergast, L. Giannessi, E. Principi, D. Nordlund, R.J. Saykally, C.P. Schwartz, Soft X-ray Second Harmonic Cerca con Google

Generation as an Interfacial Probe, Phys. Rev. Lett. 120, 023901 (2018). Cerca con Google

[56] A. Damascelli, Z. Hussain, and Z. X. Shen, Angle-resolved photoemission studies of the cuprate superconductors, Rev. Mod. Phys. 75, 473 (2003). Cerca con Google

[57] M. Hajlaoui, E. Papalazarou, J. Mauchain, Z. Jiang, I. Miotkowski, Y.P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, Time resolved ultrafast ARPES for the study of topological insulators: The case of Bi2Te3, Eur. Phys. J. Special Topics 222, 1271–1275 (2013). Cerca con Google

[58] Wieland M., Frueke R.,Wilhein T., Spielmann C., Pohl M., Kleinenberg U., Submicron extreme ultraviolet imaging using high-harmonic radiation, Appl. Phys. Lett. 81, 2520–2522 (2002). Cerca con Google

[59] Bartels R., Backus S., Zeek E., Misoguti L., Vdovin G., Christov I.P., Murnane M.M., Kapteyn H.C., Shaped-pulse optimization of coherent emission of highharmonic soft X-rays, Nature 406, 164–166. (2000). Cerca con Google

[60] Gaudin J., Rehbein S., Guttmann P., Godé S., Schneider G.,Wernet P., Eberhardt W., Selection of a single femtosecond high-order harmonic using a zone plate based monochromator, J. Appl. Phys. 104, 033112 (2008). Cerca con Google

[61] Sekikawa T., Gratings for ultrashort coherent pulses in the extreme ultraviolet, Optical Technologies for Extreme-Ultraviolet and Soft X-ray Coherent Sources 1st ed.; Canova, F., Poletto, L., Eds.; Springer: Berlin, Germany, pp. 175–193 (2015). Cerca con Google

[62] T. Sekikawa, T. Okamoto, E. Haraguchi, M. Yamashita, and T. Nakajima, Twophoton resonant excitation of a doubly excited state in He atoms by high-harmonic pulses, Opt. Express 16, 21922–21929 (2008). Cerca con Google

[63] W. Cash, Echelle spectrographs at grazing incidence, Appl. Opt. 21, 710–717 (1982). Cerca con Google

[64] L. Poletto and F. Frassetto, Time-preserving monochromators for ultrafast extremeultraviolet pulses, Appl. Opt. 49, 5465–5473 (2010) Cerca con Google

[65] L. Poletto, G. Tondello, and P. Villoresi Optical design of a spectrometer–monochromator for the extreme-ultraviolet and soft-xray emission of high-order harmonics, Appl. Opt. 42, 6367–6373 (2003). Cerca con Google

[66] W.Werner, X-ray efficiencies of blazed gratings in extreme off-plane mountings, Appl. Opt. 16, 2078–2080 (1977). Cerca con Google

[67] M. Pascolini, S. Bonora, A. Giglia, N. Mahne, S. Nannarone, L. Poletto, Gratings in the conical diffraction mounting for an EUV time-delay compensated monochromator, Appl. Opt. 45, 3253-3262 (2006). Cerca con Google

[68] L. Poletto, N. Fabris, F. Frassetto P. Miotti, Design Study of Time-Preserving Grating Monochromators for Ultrashort Pulses in the Extreme-Ultraviolet and Soft XRays, Photonics 4(1):14 (2017). Cerca con Google

[69] F. Cilento, A. Crepaldi, G. Manzoni, A. Sterzi, M. Zacchigna, Ph. Bugnon, H. Berger, and F. Parmigiani, Advancing non-equilibrium ARPES experiments by a 9.3 eV coherent ultrafast photon source, J. Electr. Spectrosc. Relat. Phenom. 207, 7 (2016). Cerca con Google

[70] T. Pincelli, V. N. Petrov, G. Brajnik, R. Ciprian, V. Lollobrigida, P. Torelli, D. Krizmancic, F. Salvador, A. De Luisa, R. Sergo, A. Gubertini, G. Cautero, S. Carrato, G. Rossi, and G. Panaccione, Design and optimization of a modular setup for measurements of three-dimensional spin polarization with ultrafast pulsed sources, Cerca con Google

Rev. Sci. Instrum. 87, 035111 (2016). Cerca con Google

[71] Poletto L., Boscolo A., and Tondello G., Characterization of a Charge-Coupled-Device detector in the 1100-0.14 nm (1-eV to 9-keV) spectral region., Appl. Opt. 38, 29-36 (1999). Cerca con Google

[72] D. Desiderio, S.Difonzo, B. Dlviacco, W. Jark, J. Krempasky, R. Krempaska, F. Lama, M. Luce, H. C. Mertins, M. Placentini, T.Prosperi, S. Rinaldi, G. Soullie, F. Schäfers, F. Schmolle, L. Stichauer, S. Turchini, R. P.Walker and N. Zema, The Cerca con Google

elettra circular polarization beamline and electromagnetic elliptical wiggler insertion device, Synchrotron Radiation News Vol. 12 , Iss. 4, (1999). Cerca con Google

[73] Paola Zuppella, Elisabetta Pasqualotto, Sara Zuccon, Francesca Gerlin, Alain Jody Corso, Matteo Scaramuzza, Alessandro De Toni, Alessandro Paccagnella, and Maria Guglielmina Pelizzo, Palladium on Plastic Substrates for Plasmonic Devices, Sensors (Basel). 15(1): 1138–1147 (2015). Cerca con Google

[74] Maquet A. and Taleb R. Two-colour IR+XUV spectroscopies: the soft-photon approximation, Journal of Modern Optics 54, 1487 (2007). Cerca con Google

[75] Ratner D. et al., Laser phase errors in seeded free electron lasers, Phys. Rev. ST Accel. Beams 15, 030702 (2012). Cerca con Google

[76] L. Foglia, M. Kiskinova, C. Masciovecchio, R. Mincigrucci, D. Naumenko, E. Pedersoli, A. Simoncig and F. Bencivenga, Characterization of ultrafast freeelectron laser pulses using extreme-ultraviolet transient gratings, J. Synchrotron Rad. 25, 32-38 (2018). Cerca con Google

[77] A. Simoncig, R. Mincigrucci, E. Principi, F. Bencivenga, A.Calvi, L. Foglia, G. Kurdi, L. Raimondi, M. Manfredda, N.Mahne, R. Gobessi, S. Gerusina, C. Fava, M. Zangrando, A.Matruglio, S. Dal Zilio, V. Masciotti, and C. Masciovecchio, The EIS beamline at the seeded free-electron laser FERMI, Proc. SPIE Int. Soc. Opt. Eng. 10243, 102430L (2017). Cerca con Google

[78] C. Masciovecchio et al., EIS: the scattering beamline at FERMI, J. Synchrotron Radiat. 22, 553 (2015). Cerca con Google

[79] T. Kita, T. Harada, N. Nakano, and H. Kuroda, Mechanically ruled aberrationcorrected concave gratings for a flat-field grazing-incidence spectrograph, Appl. Opt. 22, 512 (1983). Cerca con Google

[80] R. R. Blyth, R. Delaunay, M. Zitnik, J. Krempasky, R. Krempaska, J.Slezak, K. C. Prince, R. Richter, M. Vondracek, R. Camilloni, L. Avaldi, M. Coreno, G. Stefani, C. Furlani, M. de Simone, S. Stranges, and M.-Y.Adam, The high resolution Gas Phase Photoemission beamline, Elettra, Electron Spectrosc. Relat. Phenom. Cerca con Google

101–103, 959 (1999). Cerca con Google

[81] J. A. Carlisle, A. Chaiken, R. P. Michel, L. J. Terminello, J. J. Jia, T. A. Callcott, and D. L. Ederer, Soft-x-ray fluorescence study of buried silicides in antiferromagnetically coupled Fe/Si multilayers, Phys. Rev. B 53, R8824 (1996). Cerca con Google

[82] Y. Muramatsu, M. Oshima, and H. Kato, Resonant x-ray Raman scattering in B K alpha emission spectra of boron oxide (B2O3) excited by undulator radiation, Phys. Rev. Lett. 71, 448 (1993). Cerca con Google

[83] K.-H. Schartner, B. Zimmermann, S. Kammer, S. Mickat, H. Schmoranzer, A. Ehresmann, H. Liebel, R. Follath, and G. Reichardt, Radiative cascades from doubly excited He states, Phys. Rev. A 64,040501 (2001). Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record