Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Trevisan, Caterina (2018) Decellularised matrix and stem cells to rebuild damaged muscle: an innovative approach of regenerative medicine. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document (Tesi di dottorato) - Accepted Version
Thesis not accessible until 01 December 2021 for intellectual property related reasons.
Visibile to: nobody

8Mb

Abstract (italian or english)

Skeletal muscle is an essential tissue for several vital functions. It displays an intrinsic regenerative ability in case of injury, thanks to the activation of satellite cells (SCs), the adult skeletal muscle stem cells. In presence of large defects, the renewing capacities of skeletal muscle are compromised. In such situations regenerative medicine may be a promising solution. This project is focused on a neonatal pathology known as congenital diaphragmatic hernia (CDH), in which the diaphragm fails to close during gestation. CDH is a severe anomaly with an incidence of 1 on 2,500-3,000 new-borns and high mortality rate. Currently, the most frequently used material for the surgical CDH repair is polytetrafluoroethylene (Gore-Tex[R]), but its application can lead to several drawbacks, as hernia recurrence and chest deformation. Great interest has been shown in alternative solutions based on tissue engineering approaches. In this regard, the use of decellularised extracellular matrix (ECM) revealed to be encouraging. When transplanted in vivo it can integrate with the native tissue, recruit host stem cells and influence their behaviour towards a regenerative process. The aim of this work is to characterise a novel tissue engineering approach based on the use of diaphragm decellularised ECM (dECM) as an alternative solution to the current CDH clinical options. The final purpose is to close the defect on the diaphragm and to induce its regeneration and functional recovery. In vivo, we created the first surgical CDH mouse model and we repaired the defect on the diaphragm using mouse dECM and expanded-polytetrafluoroethylene (ePTFE) as control. The transplantation of dECM patches did not cause any rejection effect nor hernia recurrence, differently from ePTFE treated mice. Moreover, ePTFE patches induced a foreign body reaction that was absent when dECM patches were used. We further considered three essential aspects of tissue regeneration: new muscle tissue formation, angiogenesis and re-innervation. In all the cases the biologic patch demonstrated to be better compared to ePTFE. The prolonged activation of muscle regeneration together with the angiogenic and re-innervation processes induced by dECM translated into an overall amelioration of diaphragmatic function compared to ePTFE-treated animals. Despite the positive clinical outcome, dECM patches did not activate complete regeneration of the defect. For this reason, we set up a tissue engineering technique to re-create in vitro diaphragmatic muscle tissues recellularising mouse diaphragm dECM and human MPCs cells. The aim was to obtain skeletal muscle-like substitutes for CDH capable to boost myofibers generation and further improve tissue functionality. We demonstrated that human MPCs not only were able to engraft the scaffold and repopulate the dECM in all its thickness, but most importantly, they differentiated giving rise to metabolic active myotubes. Moreover, a subpopulation of cells maintained SCs features, showing the ability to respond to in vitro injury. Given the positive outcomes obtained using dECM, the next step to get closer to clinic would be to use larger animal models. Moreover, the recellularisation could be improved by using mechanical stimulation, perfusion systems and by adding other cell types as endothelial and neural cells, in order to obtain a more complete in vitro construct for pre-clinical and clinical applications. Finally, the two parts of this project could be joined by closing the defect on the diaphragm using recellularised ECM, with the aim to favour tissue regeneration and reduce the drawbacks related to the use of current synthetic patches.

Abstract (a different language)

Il muscolo scheletrico ha un’intrinseca capacità rigenerativa grazie all’attività svolta dalle cellule satelliti. In presenza di danni estesi però tali capacità rigenerative possono essere compromesse. In queste situazioni un approccio di medicina rigenerativa può costituire una soluzione promettente. Questo progetto è focalizzato sull’ernia diaframmatica congenita, patologia neonatale caratterizzata da un’incompleta formazione del diaframma, con incidenza di 1 su 2,500-3,000 neonati e un alto tasso di mortalità. Attualmente, il materiale più usato per il riparo dell’ernia è il politetrafluoroetilene (Gore-Tex[R]), tuttavia il suo utilizzo può causare effetti collaterali, come la ricorrenza dell’ernia e malformazioni della cassa toracica. Grande interesse è stato rivolto a soluzioni di ingegneria tissutale, come l’uso di matrici extracellulari decellularizzate. Quando trapiantate in vivo esse riescono ad integrarsi in maniera fisiologica con il tessuto nativo e reclutano cellule staminali, modulando il loro comportamento verso un processo rigenerativo. Lo scopo di questo progetto è caratterizzare un approccio di ingegneria tissutale basato sull’uso di matrici decellularizzate come soluzione alternativa all’attuale metodo per il riparo l’ernia. L’obiettivo è chiudere il difetto sul diaframma ed indurne la rigenerazione. In vivo, abbiamo creato il primo modello murino di ernia diaframmatica e abbiamo riparato il difetto usando una matrice decellularizzata. Il politetrafluoroetilene espanso (ePTFE) è stato usato come controllo. Il trapianto di matrici decellularizzate non ha causato rigetto o ricorrenza dell’ernia, a differenza degli animali trattati con ePTFE. Inoltre, ePTFE ha indotto una reazione da corpo estraneo che era completamente assente negli animali trattati con la matrice biologica. Ci siamo poi concentrati su tre aspetti fondamentali della rigenerazione: la formazione di nuovo tessuto muscolare, angiogenesi e re-innervazione. In tutti i casi la matrice biologica ha dimostrato di essere migliore di quella sintetica. La prolungata attivazione della rigenerazione muscolare insieme ai processi angiogenici e di re-innervazione indotti dalla matrice extracellulare si sono tradotti in un generale miglioramento delle funzioni diaframmatiche rispetto a quanto ottenuto negli animali con ePTFE. Nonostante i risultati positivi, la matrice extracellulare non era in grado di indurre una completa rigenerazione del difetto. Perciò abbiamo messo a punto una tecnica di ingegneria tissutale per ricreare in vitro tessuti diaframmatici ricellularizzando matrici decellularizzate con precursori muscolari umani. Lo scopo era di ottenere dei possibili costrutti paragonabili al muscolo scheletrico da usare per il riapro dell’ernia in modo da stimolare maggiormente la generazione di nuove miofibre e migliorare la funzionalità tissutale. I precursori muscolari umani erano in grado di attecchire sulla matrice decellularizzata, di ripopolarla in tutto il suo spessore e di differenziare dando origine a miotubi attivi metabolicamente. Inoltre, una sottopopolazione di cellule manteneva le caratteristiche tipiche delle cellule satelliti, dimostrando di saper rispondere in vitro ad un danno. Visti i risultati positivi ottenuti usando la matrice decellularizzata, il passaggio successivo per avvicinarsi alla cinica è rappresentato dall’utilizzo di modelli animali più grandi. Inoltre, la ricellularizzazione potrebbe essere migliorata grazie a stimolazione meccanica, a sistemi di perfusione e all’aggiunta di altri tipi cellulari (cellule endoteliali e neurali) con lo scopo di ottenere un costrutto più completo per possibili applicazioni pre-cliniche e cliniche. Infine, le due parti di questo progetto potrebbero essere unite in futuro riparando il difetto sul diaframma usando matrici biologiche ricellularizzate al fine di favorire la rigenerazione e ridurre gli svantaggi legati all’uso delle matrici sintetiche.

EPrint type:Ph.D. thesis
Tutor:Gamba, Piergiorgio
Supervisor:Pozzobon , Michela and Piccoli, Martina
Ph.D. course:Ciclo 31 > Corsi 31 > MEDICINA DELLO SVILUPPO E SCIENZE DELLA PROGRAMMAZIONE SANITARIA
Data di deposito della tesi:28 November 2018
Anno di Pubblicazione:28 November 2018
Key Words:Skeletal muscle; tissue engineering; congenital diaphragmatic hernia; decellularisation; recellularisation; muscle stem cells; regenerative medicine; extracellular matrix
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/11 Biologia molecolare
Struttura di riferimento:Dipartimenti > Dipartimento di Salute della Donna e del Bambino
Codice ID:11409
Depositato il:06 Nov 2019 12:03
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1]  W. R. Frontera and J. Ochala, “Skeletal Muscle: A Brief Review of Structure and Function,” Calcified Tissue International, vol.96, no.3, pp.183–195, 2015. 
 Cerca con Google

[2]  R. L. Lieber, “Chapter 1: Skeletal Muscle Anatomy,” in Skeletal Muscle Structure, Function & Plasticity, pp.1–41, 1992. 
 Cerca con Google

[3]  H. Yin, F. Price, and M. A. Rudnicki, “Satellite cells and the muscle stem cell niche,” Physiological Reviews, vol.93, no.1, pp.23–67, 2013. 
 Cerca con Google

[4]  W. Roman and E. R. Gomes, “Nuclear positioning in skeletal muscle,” Seminars in Cell and Developmental Biology, vol.82, pp.51–56, 2018. 
 Cerca con Google

[5]  R. L. Lieber, “Chapter 2: Skeletal Muscle Physiology,” in Skeletal Muscle Structure, Function & Plasticity, pp.45–109, 1992. 
 Cerca con Google

[6]  A. Mauro, “Satellite Cell of Skeletal Muscle Fibers,” The Journal of Biophysical and Biochemical Cytology, vol.9, no.2, pp.493–495, 1961. 
 Cerca con Google

[7]  L. Boldrin and J. Morgan, “Human satellite cells: identification on human muscle fibres,” PLoS Currents Muscular Dystrophy, vol.3, no.RRN1294, 2012. 
 Cerca con Google

[8]  C. Franzin, M. Piccoli, L. Urbani, C. Biz, P. Gamba, P. D. Coppi, and M. Pozzobon, “Isolation and Expansion of Muscle Precursor Cells from Human Skeletal Muscle Biopsies,” Methods in Molecular Biology, vol.1516, pp.195–204, 2016. 
 Cerca con Google

[9]  P. Seale, L. Sabourin, A. Girgis-Gabardo, A. Mansouri, P. Gruss, and M. Rudnicki, “Pax7 is required for the specification of myogenic satellite cells,” Cell, vol.102, no.6, pp.777–786, 2000. 
 Cerca con Google

[10]  V. F. Gnocchi, R. B. White, Y. Ono, J. A. Ellis, and P. S. Zammit, “Further characterisation of the molecular signature of quiescent and activated mouse muscle satellite cells,” PLoS ONE, vol.4, no.4, pp.1–9, 2009. 
 Cerca con Google

[11]  J. R. Beauchamp, L. Heslop, D. S. W. Yu, S. Tajbakhsh, R. G. Kelly, A. Wernig, M. E. Buckingham, T. A. Partridge, and P. S. Zammit, “Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells,” The Journal of Cell Biology, vol.151, no.6, pp.1221–1233, 2000. 
 Cerca con Google

[12]  M. McKinnell, IW; Parise, G; Rudnicki, “Muscle stem cells and regenerative myogenesis,” Current Topics in Developmental Biology, vol.71, pp.113–130, 2005. 
 Cerca con Google

[13]  Y. Wang and M. Rudnicki, “Satellite cells, the engines of muscle repair,” Nature Reviews Molecular Cell Biology, vol.13, no.2, pp.127–133, 2011. 
 Cerca con Google

[14]  S. Kuang, K. Kuroda, F. Le Grand, and M. A. Rudnicki, “Asymmetric Self- Renewal and Commitment of Satellite Stem Cells in Muscle,” Cell, vol.129, no.5, pp.999–1010, 2007. 
 Cerca con Google

[15]  N. A. Dumont, C. F. Bentzinger, M.-C. Sincennes, and M. A. Rudnicki, “Satellite Cells and Skeletal Muscle Regeneration,” Comprehensive Physiology, vol.5, no.July, pp.1027–1059, 2015. 
 Cerca con Google

[16]  P. S. Zammit, F. Relaix, Y. Nagata, A. P. Ruiz, C. A. Collins, T. A. Partridge, and J. R. Beauchamp, “Pax7 and myogenic progression in skeletal muscle satellite cells,” Journal of Cell Science, vol.119, no.9, pp.1824–1832, 2006. 
 Cerca con Google

[17]  Z. Yablonka-Reuveni and A. J. Rivera, “Temporal Expression of Regulatory and Structural Muscle Proteins during Myogenesis of Satellite Cells on Isolated Adult Rat Fibers,” Developmental Biology, vol.164, no.2, pp.588–603, 1994. 
 Cerca con Google

[18]  M. Cervelli, A. Leonetti, G. Duranti, S. Sabatini, R. Ceci, and P. Mariottini, “Skeletal Muscle Pathophysiology: The Emerging Role of Spermine Oxidase and Spermidine,” Medical Sciences, vol.6, no.1, p.14, 2018. 
 Cerca con Google

[19]  M. Buckingham, L. Bajard, T. Chang, P. Daubas, J. Hadchouel, S. Meilhac, D. Montarras, D. Rocancourt, and F. Relaix, “The formation of skeletal muscle: From somite to limb,” Journal of Anatomy, vol.202, no.1, pp.59–68, 2003. 
 Cerca con Google

[20]  E. N. Olson and W. H. Klein, “bHLH factors in muscle development: Dead lines and commitments, what to leave in and what to leave out,” Genes and Development, vol.8, no.1, pp.1–8, 1994. 
 Cerca con Google

[21]  O. Agbulut, P. Noirez, F. Beaumont, and G. Butler-Browne, “Myosin heavy chain isoforms in postnatal muscle development of mice,” Biology of the Cell, vol.95, no.6, pp.399–406, 2003. Cerca con Google

[22]  L. Boldrin, F. Muntoni, and J. E. Morgan, “Are human and mouse satellite cells really the same?,” Journal of Histochemistry and Cytochemistry, vol.58, no.11, pp.941–955, 2010. 
 Cerca con Google

[23]  J. G. Tidball, K. Dorshkind, and M. Wehling-Henricks, “Shared signaling systems in myeloid cell-mediated muscle regeneration,” Development, vol.141, pp.1184–1196, 2014. 
 Cerca con Google

[24]  J. E. Heredia, L. Mukundan, F. M. Chen, A. A. Mueller, R. Deo, R. M. Locksley, T. A. Rando, and A. Chawla, “Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration,” Cell, vol.153, no.2, pp.376–388, 2013. 
 Cerca con Google

[25]  J. G. Tidball and S. A. Villalta, “Regulatory interactions between muscle and the immune system during muscle regeneration,” American Journal of Physiology. Regulatory, integrative and comparative physiology, vol.298, no.5, pp.R1173–R1187, 2010. 
 Cerca con Google

[26]  M. L. Novak, E. M. Weinheimer-haus, and T. J. Koh, “Macrophage Activation and Skeletal Muscle Healing Following Traumatic Injury,” Journal of Pathology, vol.232, no.3, pp.344–355, 2014. 
 Cerca con Google

[27]  E. M. Sefton, M. Gallardo, and G. Kardon, “Developmental origin and morphogenesis of the diaphragm, an essential mammalian muscle,” Developmental Biology, vol.440, no.2, pp.64–73, 2018. 
 Cerca con Google

[28]  A. J. Merrell and G. Kardon, “Development of the diaphragm - A skeletal muscle essential for mammalian respiration,” FEBS Journal, vol.280, no.17, pp.4026–4035, 2013. 
 Cerca con Google

[29]  G. R. Harrison, J. Fielding, and M. Hallissey, “Chapter 4: The Anatomy and Physiology of the Diaphragm,” in Upper Gastrointestinal Surgery, pp.45–58, 2006. 
 Cerca con Google

[30]  D. R. et al. Anastasi G, Capitani S, Carnazza ML, Cinti S, De Caro R, “Trattato di anatomia umana,” in Trattato di anatomia umana (Edi.Ermes, ed. ), chap. 3, pp.171–172, 4 ed. , 2012. 
 Cerca con Google

[31]  M. R. McGivern, K. E. Best, J. Rankin, D. Wellesley, R. Greenlees, M. C. Addor, L. Arriola, H. De Walle, I. Barisic, J. Beres, F. Bianchi, E. Calzolari, B. Doray, E. S. Draper, E. Garne, M. Gatt, M. Haeusler, B. Khoshnood, K. Klungsoyr, A. Latos-Bielenska, M. O’mahony, P. Braz, B. McDonnell, C. Mullaney, V. Nelen, A. Queisser-Luft, H. Randrianaivo, A. Rissmann, C. Rounding, A. Sipek, R. Thompson, D. Tucker, W. Wertelecki, and C. Martos, “Epidemiology of congenital diaphragmatic hernia in Europe: A register-based study,” Archives of Disease in Childhood: Fetal and Neonatal Edition, vol.100, no.2, pp.F137–F144, 2015. Cerca con Google

[32]  A. J. Merrell, B. J. Ellis, Z. D. Fox, J. a. Lawson, J. a. Weiss, and G. Kardon, “Muscle connective tissue controls development of the diaphragm and is a source of congenital diaphragmatic hernias,” Nature Genetics, vol.47, no.5, pp.496–504, 2015. 
 Cerca con Google

[33]  B. Pober, M. Russell, and K. Ackerman, “Congenital Diaphragmatic Hernia Overview,” GeneReviews®, 2010. 
 Cerca con Google

[34]  J. Wynn, L. Yu, and W. K. Chung, “Genetic causes of congenital diaphragmatic hernia,” Seminars in Fetal and Neonatal Medicine, vol.19, no.6, pp.324–330, 2014. 
 Cerca con Google

[35]  R. D. Clugston, W. Zhang, S. Álvarez, A. R. De Lera, and J. J. Greer, “Understanding abnormal retinoid signaling as a causative mechanism in congenital diaphragmatic hernia,” American Journal of Respiratory Cell and Molecular Biology, vol.42, no.3, pp.276–285, 2010. 
 Cerca con Google

[36]  L. Leeuwen and D. a. Fitzgerald, “Congenital diaphragmatic hernia,” Journal of Paediatrics and Child Health, vol.50, no.9, pp.667–673, 2014. 
 Cerca con Google

[37]  G. Kardon, K. G. Ackerman, D. J. McCulley, Y. Shen, J. Wynn, L. Shang, E. Bogenschutz, X. Sun, and W. K. Chung, “Congenital diaphragmatic hernias: from genes to mechanisms to therapies,” Disease Models & Mechanisms, vol.10, no.8, pp.955–970, 2017. 
 Cerca con Google

[38]  P. D. Losty, “Congenital Diaphragmatic Hernia Where and What is the Evidence ?,” Seminars in Pediatric Surgery, vol.23, no.5, pp.278–282, 2014. 
 Cerca con Google

[39]  M. Dingeldein, “Congenital Diaphragmatic Hernia: Management & Outcomes,” Advances in Pediatrics, vol.65, no.1, pp.241–247, 2018. 
 Cerca con Google

[40]  G. S. Dhillon, S. A. Maskatia, R. W. Loar, J. L. Colquitt, A. R. Mehollin-Ray, R. Ruano, M. A. Belfort, O. O. Olutoye, and J. A. Kailin, “The Impact of Fetal Endoscopic Tracheal Occlusion in Isolated Left- Sided Congenital Diaphragmatic Hernia on Left-Sided Cardiac Dimensions,” Prenatal Diagnosis, no.doi.10.1002/pd.5333, 2018. Cerca con Google

[41]  P. De Coppi and J. Deprest, “Regenerative medicine solutions in congenital diaphragmatic hernia,” Seminars in Pediatric Surgery, vol.26, no.3, pp.171– 177, 2017. 
 Cerca con Google

[42]  A. K. Saxena, “Surgical perspectives regarding application of biomaterials for the management of large congenital diaphragmatic hernia defects,” Pediatric Surgery International, vol.34, no.5, pp.475–489, 2018. 
 Cerca con Google

[43]  W. B. Jawaid, E. Qasem, M. O. Jones, N. J. Shaw, and P. D. Losty, “Outcomes following prosthetic patch repair in newborns with congenital diaphragmatic hernia,” British Journal of Surgery, vol.100, no.13, pp.1833–1837, 2013. 
 Cerca con Google

[44]  A. C. Gasior and S. D. St. Peter, “A review of patch options in the repair of congenital diaphragm defects,” Pediatric Surgery International, vol.28, no.4, pp.327–333, 2012. 
 Cerca con Google

[45]  R. L. P. Romao, A. Nasr, P. P. L. Chiu, and J. C. Langer, “What is the best prosthetic material for patch repair of congenital diaphragmatic hernia? Comparison and meta-analysis of porcine small intestinal submucosa and polytetrafluoroethylene,” Journal of Pediatric Surgery, vol.47, no.8, pp.1496– 1500, 2012. 
 Cerca con Google

[46]  D. O. Fauza, “Tissue engineering in congenital diaphragmatic hernia,” Seminars in Pediatric Surgery, vol.23, no.3, pp.135–140, 2014. 
 Cerca con Google

[47]  C. Mason and E. Manzotti, “Regenerative medicine cell therapies: numbers of units manufactured and patients treated between 1988 and 2010,” Regenerative Medicine, vol.5, no.3, pp.307–313, 2010. 
 Cerca con Google

[48]  B. M. Sicari, C. L. Dearth, and S. F. Badylak, “Tissue engineering and regenerative medicine approaches to enhance the functional response to skeletal muscle injury,” The Anatomical record, vol.297, no.1, pp.51–64, 2014. 
 Cerca con Google

[49]  S. F. Badylak, D. Taylor, and K. Uygun, “Whole Organ Tissue Engineering: Decellularization and Recellularization of Three-Dimensional Matrix Scaffolds,” Annual Review of Biomedical Engineering, vol.13, no.1, pp.27–53, 2011. 
 Cerca con Google

[50]  J. M. Fishman, A. Tyraskis, P. Maghsoudlou, L. Urbani, G. Totonelli, M. A. Birchall, and P. De Coppi, “Skeletal Muscle Tissue Engineering: Which Cell to Use?,” Tissue Engineering Part B: Reviews, vol.19, no.6, pp.503–515, 2013. 
 Cerca con Google

[51]  L. A. Boyer, T. I. Lee, M. Cole, S. E. Johnstone, S. S. Levine, J. P. Zucker, M. G. Guenther, R. M. Kumar, H. L. Murray, R. G. Jenner, D. K. Gifford, D. A. Melton, R. Jaenisch, and R. A. Young, “Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells,” Cell, vol.122, no.6, pp.947–956, 2005. 
 Cerca con Google

[52]  A. M. Wobus and K. R. Boheler, “Embryonic Stem Cells: Prospects for Developmental Biology and Cell Therapy,” Physiological Reviews, vol.85, no.2, pp.635–678, 2005. 
 Cerca con Google

[53]  K. Takahashi and S. Yamanaka, “Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors,” Cell, vol.126, no.4, pp.663–676, 2006. 
 Cerca con Google

[54]  T. Zhao, Z. N. Zhang, Z. Rong, and Y. Xu, “Immunogenicity of induced pluripotent stem cells,” Nature, vol.474, no.7350, pp.212–216, 2011. 
 Cerca con Google

[55]  L. Rao, Y. Qian, A. Khodabukus, T. Ribar, and N. Bursac, “Engineering human pluripotent stem cells into a functional skeletal muscle tissue,” Nature Communications, vol.9, no.126, pp.1–12, 2018. 
 Cerca con Google

[56]  P. De Coppi, G. Bartsch, M. M. Siddiqui, T. Xu, C. C. Santos, L. Perin, G. Mostoslavsky, A. C. Serre, E. Y. Snyder, J. J. Yoo, M. E. Furth, S. Soker, and A. Atala, “Isolation of amniotic stem cell lines with potential for therapy,” Nature Biotechnology, vol.25, no.1, pp.100–106, 2007. 
 Cerca con Google

[57]  M. Piccoli, C. Franzin, E. Bertin, L. Urbani, B. Blaauw, A. Repele, E. Taschin, A. Cenedese, G. F. Zanon, I. André-Schmutz, A. Rosato, J. Melki, M. Cavazzana-Calvo, M. Pozzobon, and P. De Coppi, “Amniotic fluid stem cells restore the muscle cell niche in a HSA-Cre, SmnF7/F7 mouse model,” Stem Cells, vol.3, no.8, pp.1675–1684, 2012. 
 Cerca con Google

[58]  A. Zani, M. Cananzi, F. Fascetti-Leon, G. Lauriti, V. V. Smith, S. Bollini, M. Ghionzoli, A. D’Arrigo, M. Pozzobon, M. Piccoli, A. Hicks, J. Wells, B. Siow, N. J. Sebire, C. Bishop, A. Leon, A. Atala, M. F. Lythgoe, A. Pierro, S. Eaton, and P. De Coppi, “Amniotic fluid stem cells improve survival and enhance repair of damaged intestine in necrotising enterocolitis via a COX-2 dependent mechanism,” Gut, vol.63, no.2, pp.300–309, 2014. 
 Cerca con Google

[59]  S. M. Kunisaki, “Amniotic Fluid Stem Cells for the Treatment of Surgical Disorders in the Fetus and Neonate,” Stem Cells Translational Medicine, no.doi:10.1002/sctm.18-0018, 2018. 
 Cerca con Google

[60]  A. Wagers and I. Weissman, “Plasticity of adult stem cells,” Cell, vol.116, no.5, pp.639–648, 2004. 
 Cerca con Google

[61]  L. Partridge, TA; Morgan, JE; Coulton, GR; Hoffman, EP; Kunkel, “Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts,” Nature, vol.337, no.6203, pp.176–179, 1989. 
 Cerca con Google

[62]  D. Montarras, J. Morgan, C. Collins, F. Relaix, S. Zaffran, A. Cumano, T. Partridge, and M. Buckingham, “Direct Isolation of Satellite Cells for Skeletal Muscle Regeneration,” Science, vol.309, no.5743, pp.2064–2067, 2005. 
 Cerca con Google

[63]  M. Sampaolesi, S. Blot, G. D’Antona, N. Granger, R. Tonlorenzi, A. Innocenzi, P. Mognol, J. L. Thibaud, B. G. Galvez, I. Barthélémy, L. Perani, S. Mantero, M. Guttinger, O. Pansarasa, C. Rinaldi, M. G. Cusella De Angelis, Y. Torrente, C. Bordignon, R. Bottinelli, and G. Cossu, “Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs,” Nature, vol.444, no.7119, pp.574–579, 2006. 
 Cerca con Google

[64]  K. K. Tanaka, J. K. Hall, A. a. Troy, D. D. W. Cornelison, S. M. Majka, and B. B. Olwin, “Syndecan-4-Expressing Muscle Progenitor Cells in the SP Engraft as Satellite Cells during Muscle Regeneration,” Cell Stem Cell, vol.4, no.3, pp.217–225, 2009. 
 Cerca con Google

[65]  M. N. Pantelic Ms, L. M. Larkin Phd, and L. Larkin, “Stem Cells for Skeletal Muscle Tissue Engineering,” Tissue Engineering, no.doi: 10.1089/ten.TEB.2017.0451, 2018. 
 Cerca con Google

[66]  A. Urciuolo and P. De Coppi, “Decellularized Tissue for Muscle Regeneration,” International Journal of Molecular Sciences, vol.19, no.2392, pp.1–11, 2018. 
 Cerca con Google

[67]  P. M. Crapo, T. W. Gilbert, and S. F. Badylak, “An overview of tissue and whole organ decellularization processes,” Biomaterials, vol.32, no.12, pp.3233– 3243, 2011. 
 Cerca con Google

[68]  H. C. Ott, T. S. Matthiesen, S.-K. Goh, L. D. Black, S. M. Kren, T. I. Netoff, and D. a. Taylor, “Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart,” Nature Medicine, vol.14, no.2, pp.213–221, 2008. 
 Cerca con Google

[69]  T. Petersen, E. Calle, L. Zhao, E. Lee, L. Gui, M. Raredon, K. Gavrilov, T. Yi, Z. Zhuang, C. Breuer, E. Herzog, and L. Niklason, “Tissue-Engineered Lungs for in Vivo Implantation,” Science, vol.329, no.5991, pp.538–541, 2010. 
 Cerca con Google

[70]  A. P. Price, K. a. England, A. M. Matson, B. R. Blazar, and A. Panoskaltsis- Mortari, “Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded,” Tissue engineering Part A, vol.16, no.8, pp.2581–2591, 2010. 
 Cerca con Google

[71]  T. Shupe, M. Williams, A. Brown, B. Willenberg, and B. E. Petersen, “Method for the decellularization of intact rat liver,” Organogenesis, vol.6, no.2, pp.134– 136, 2010. 
 Cerca con Google

[72]  P. Maghsoudlou, F. Georgiades, H. Smith, A. Milan, P. Shangaris, L. Urbani, S. P. Loukogeorgakis, B. Lombardi, A. Olivo, J. Godovac-zimmermann, M. Pinzani, and P. Gissen, “Optimization of Liver Decellularization Maintains Extracellular Matrix Micro- Architecture and Composition Predisposing to Effective Cell Seeding,” PLoS ONE, vol.11, no.5, pp.1–19, 2016. 
 Cerca con Google

[73]  B. J. Jank, L. Xiong, P. T. Moser, J. P. Guyette, X. Ren, C. L. Cetrulo, D. a. Leonard, L. Fernandez, S. P. Fagan, and H. C. Ott, “Engineered composite tissue as a bioartificial limb graft,” Biomaterials, vol.61, pp.246–256, 2015. 
 Cerca con Google

[74]  M. F. Gerli, J. P. Guyette, D. Evangelista-Leite, B. B. Ghoshhajra, and H. C. Ott, “Perfusion decellularization of a human limb a novel platform for composite tissue engineering and reconstructive surgery,” PLoS ONE, vol.13, no.1, pp.1–18, 2018. 
 Cerca con Google

[75]  M. Piccoli, C. Trevisan, E. Maghin, C. Franzin, and M. Pozzobon, “Mouse Skeletal Muscle Decellularization,” Methods in Molecular Biology, no.doi: 10.1007/7651, 2017. 
 Cerca con Google

[76]  A. R. Gillies, L. R. Smith, R. L. Lieber, and S. Varghese, “Method for decellularizing skeletal muscle without detergents or proteolytic enzymes,” Tissue Engineering Part C: Methods, vol.17, no.4, pp.383–389, 2011. 
 Cerca con Google

[77]  M. Piccoli, L. Urbani, M. Alvarez-Fallas, C. Franzin, A. Dedja, E. Bertin, G. Zuccolotto, A. Rosato, P. Pavan, N. Elvassore, P. De Coppi, and M. Pozzobon, “Improvement of diaphragmatic performance through orthotopic application of decellularized extracellular matrix patch,” Biomaterials, vol.74, pp.245–255, 2016. 
 Cerca con Google

[78]  S. R. Meyer, B. Chiu, T. A. Churchill, L. Zhu, J. R. Lakey, and D. B. Ross, “Comparison of aortic valve allograft decellularization techniques in the rat,” Journal of Biomedical Materials Research Part A, vol.79, no.2, pp.254–262, 2006. 
 Cerca con Google

[79]  C. R. Deeken, A. K. White, S. L. Bachman, B. J. Ramshaw, D. S. Cleveland, T. S. Loy, and S. A. Grant, “Method of preparing a decellularized porcine tendon using tributyl phosphate,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.96, no.2, pp.199–206, 2011. 
 Cerca con Google

[80]  H. Ozeki, Masayasu; Narita, Yuji; Kagami, Hideaki; Ohmiya, Naoki; Itoh, Akihiro; Hirooka, Yoshiki; Niwa, Yasumasa; Ueda, Minoru; Goto, “Evaluation of decellularized esophagus as a scaffold for cultured esophageal epithelial cells,” Journal of Biomedical Materials Research Part A, vol.79, no.4, pp.771– 778, 2006. 
 Cerca con Google

[81]  S. Reing, JE; Brown, BN; Daly, KA; Freund, JM; Gilbert, TW; Hsiong, SX; Huber, A; Kullas, KE; Tottey, S; Wolf, MT; Badylak, “The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds,” Biomaterials, vol.31, no.33, pp.8626– 8633, 2010. 
 Cerca con Google

[82]  S. Freytes, DO; Stoner, RM; Badylak, “Uniaxial and Biaxial Properties of Terminally Sterilized Porcine Urinary Bladder Matrix Scaffolds,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.84, no.2, pp.408–414, 2008. 
 Cerca con Google

[83]  S. F. Badylak, “Xenogeneic extracellular matrix as a scaffold for tissue reconstruction,” Transplant Immunology, vol.12, no.3-4, pp.367–377, 2004. 
 Cerca con Google

[84]  S. F. Badylak, D. O. Freytes, and T. W. Gilbert, “Extracellular matrix as a biological scaffold material: Structure and function,” Acta Biomaterialia, vol.5, no.1, pp.1–13, 2009. 
 Cerca con Google

[85]  W. P. Daley, S. B. Peters, and M. Larsen, “Extracellular matrix dynamics in development and regenerative medicine,” Journal of Cell Science, vol.121, pp.255–264, 2008. 
 Cerca con Google

[86]  B. M. Sicari, V. Agrawal, B. F. Siu, C. J. Medberry, C. L. Dearth, N. J. Turner, and S. F. Badylak, “A Murine Model of Volumetric Muscle Loss and a Regenerative Medicine Approach for Tissue Replacement,” Tissue Engineering Part A, vol.18, no.19-20, pp.1941–1948, 2012. 
 Cerca con Google

[87]  B. M. Sicari, J. P. Rubin, C. L. Dearth, M. T. Wolf, F. Ambrosio, M. Boninger, N. J. Turner, D. J. Weber, T. W. Simpson, A. Wyse, E. H. P. Brown, J. L. Dziki, L. E. Fisher, S. Brown, and S. F. Badylak, “An Acellular Biologic Scaffold Promotes Skeletal Muscle Formation in Mice and Humans with Volumetric Muscle Loss,” Biomaterials, vol.6, no.234, pp.1–12, 2014. Cerca con Google

[88]  A. Aurora, J. L. Roe, B. T. Corona, and T. J. Walters, “An acellular biologic scaffold does not regenerate appreciable de novo muscle tissue in rat models of volumetric muscle loss injury,” Biomaterials, vol.67, pp.393–407, 2015. 
 Cerca con Google

[89]  A. Urciuolo, L. Urbani, S. Perin, P. Maghsoudlou, F. Scottoni, A. Gjinovci, H. Collins-Hooper, S. Loukogeorgakis, A. Tyraskis, S. Torelli, E. Germinario, M. E. A. Fallas, C. Julia-Vilella, S. Eaton, B. Blaauw, K. Patel, and P. De Coppi, “Decellularised skeletal muscles allow functional muscle regeneration by promoting host cell migration,” Scientific Reports, vol.8, no.1, pp.1–20, 2018. 
 Cerca con Google

[90]  M. Beldjilali-Labro, A. Garcia Garcia, F. Farhat, F. Bedoui, J.-F. Grosset, M. Dufresne, and C. Legallais, “Biomaterials in Tendon and Skeletal Muscle Tissue Engineering: Current Trends and Challenges,” Materials, vol.11, no.7, pp.1–49, 2018. 
 Cerca con Google

[91]  M. J. Elliott, P. De Coppi, S. Speggiorin, D. Roebuck, C. R. Butler, E. Samuel, C. Crowley, C. McLaren, A. Fierens, D. Vondrys, L. Cochrane, C. Jephson, S. Janes, N. J. Beaumont, T. Cogan, A. Bader, A. M. Seifalian, J. J. Hsuan, M. W. Lowdell, and M. A. Birchall, “Stem-cell-based, tissue engineered tracheal replacement in a child: A 2-year follow-up study,” The Lancet, vol.380, no.9846, pp.994–1000, 2012. 
 Cerca con Google

[92]  A. M. Raya-Rivera, D. Esquiliano, R. Fierro-Pastrana, E. López-Bayghen, P. Valencia, R. Ordorica-Flores, S. Soker, J. J. Yoo, and A. Atala, “Tissue- engineered autologous vaginal organs in patients: A pilot cohort study,” The Lancet, vol.384, no.9940, pp.329–336, 2014. 
 Cerca con Google

[93]  D. Steffens, D. I. Braghirolli, N. Maurmann, and P. Pranke, “Update on the main use of biomaterials and techniques associated with tissue engineering,” Drug Discovery Today, vol.23, no.8, pp.1474–1488, 2018. 
 Cerca con Google

[94]  F. J. O’Brien, “Biomaterials & scaffolds for tissue engineering,” Materials Today, vol.14, no.3, pp.88–95, 2011. 
 Cerca con Google

[95]  M. Quarta, M. Cromie, R. Chacon, J. Blonigan, V. Garcia, I. Akimenko, M. Hamer, M. Stok, and T. A. Rando, “Bionengineered constructs combined with exercise enhance stem cell treatment of volumetric muscle loss,” Nature Communications, vol.8, no.15613, pp.1–17, 2017. Cerca con Google


[96]  M. T. Conconi, S. Bellini, D. Teoli, P. De Coppi, D. Ribatti, B. Nico, E. Simonato, P. G. Gamba, G. G. Nussdorfer, M. Morpurgo, and P. P. Parnigotto, “In vitro and in vivo evaluation of acellular diaphragmatic matrices seeded with muscle precursors cells and coated with VEGF silica gels to repair muscle defect of the diaphragm,” Journal of Biomedical Materials Research - Part A, vol.89, no.2, pp.304–316, 2009. 
 Cerca con Google

[97]  S. M. Kunisaki, J. R. Fuchs, A. Kaviani, J. T. Oh, D. a. LaVan, J. P. Vacanti, J. M. Wilson, and D. O. Fauza, “Diaphragmatic repair through fetal tissue engineering: A comparison between mesenchymal amniocyte- and myoblast- based constructs,” Journal of Pediatric Surgery, vol.41, no.1, pp.34–39, 2006. 
 Cerca con Google

[98]  L. Shi and V. Ronfard, “Biochemical and biomechanical characterization of porcine small intestinal submucosa (SIS): a mini review,” International Journal of Burns and Trauma, vol.3, no.4, pp.173–179, 2013. 
 Cerca con Google

[99]  E. J. Grethel, R. a. Cortes, A. J. Wagner, M. S. Clifton, H. Lee, D. L. Farmer, M. R. Harrison, R. L. Keller, and K. K. Nobuhara, “Prosthetic patches for congenital diaphragmatic hernia repair: Surgisis vs Gore-Tex,” Journal of Pediatric Surgery, vol.41, no.1, pp.29–33, 2006. 
 Cerca con Google

[100]  A. Mitchell, IC; Garcia, NM; Barber, R; Ahmad; Hicks, BA; Fischer, “Permacol: a potential biologic patch alternative in congenital diaphragmatic hernia repair,” Journal of Pediatric Surgery, vol.43, no.12, pp.2161–2164, 2008. 
 Cerca con Google

[101]  R. M. Brouwer, Katrien M; Daamen, Willeke F; Reijnen, Daphne; Verstegen, Ruud H; Lammers, Gerwen; Hafmans, Theo G; Wismans, Ronnie G; van Kuppevelt, Toin H; Wijnen, “Repair of surgically created diaphragmatic defect in rat with use of a crosslinked porous collagen scaffold,” Journal of Tissue Engineering and Regenerative Medicine, vol.7, no.7, pp.552–561, 2013. 
 Cerca con Google

[102]  G. P. Liao, Y. Choi, K. Vojnits, H. Xue, K. Aroom, F. Meng, H. Y. Pan, R. A. Hetz, C. J. Corkins, T. G. Hughes, F. Triolo, A. Johnson, K. J. Moise, K. P. Lally, C. S. Cox, and Y. Li, “Tissue Engineering to Repair Diaphragmatic Defect in a Rat Model,” Stem Cells International, vol.2017, pp.1–12, 2017. 
 Cerca con Google

[103]  X. Y. Zhang, Y. Yanagi, Z. Sheng, K. Nagata, K. Nakayama, and T. Taguchi, “Regeneration of diaphragm with bio-3D cellular patch,” Biomaterials, vol.167, pp.1–14, 2018. 
 Cerca con Google

[104]  B. S. Mallon, H. E. Shick, G. J. Kidd, and W. B. Macklin, “Proteolipid promoter activity distinguishes two populations of NG2-positive cells throughout neonatal cortical development,” The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.22, no.3, pp.876–885, 2002. Cerca con Google

[105]  L. Marcucci, C. Reggiani, A. N. Natali, and P. G. Pavan, “From single muscle fiber to whole muscle mechanics: a finite element model of a muscle bundle with fast and slow fibers,” Biomechanics and Modeling in Mechanobiology, vol.16, no.6, pp.1833–1843, 2017. 
 Cerca con Google

[106]  C. J. Chuong, M. S. Sacks, R. L. Johnson, and R. Reynolds, “On the anisotropy of the canine diaphragmatic central tendon,” Journal of Biomechanics, vol.24, no.7, pp.563–576, 1991. 
 Cerca con Google

[107]  S. M. Greising, D. C. Sieck, and C. B. Mantilla, “Novel method for transdiaphragmatic pressure measurements in mice,” Respiratory Physiology and Neurobiology, vol.188, no.1, pp.56–59, 2013. 
 Cerca con Google

[108]  L. Zuo, W. J. Roberts, and K. D. Evans, “Diagnostic Ultrasound Imaging of Mouse Diaphragm Function,” Journal of Visualized Experiments, no.86, pp.1– 5, 2014. 
 Cerca con Google

[109]  G. Zanetti, S. Negro, M. Pirazzini, and P. Caccin, “Mouse Phrenic Nerve Hemidiaphragm Assay (MPN),” Bio-Protocol, vol.8, no.5, pp.1–12, 2018. 
 Cerca con Google

[110]  K. L. Spiller, E. A. Wrona, S. Romero-Torres, I. Pallotta, P. L. Graney, C. E. Witherel, L. M. Panicker, R. A. Feldman, A. M. Urbanska, L. Santambrogio, G. Vunjak-Novakovic, and D. O. Freytes, “Differential gene expression in human, murine, and cell line-derived macrophages upon polarization,” Experimental Cell Research, vol.347, no.1, pp.1–13, 2016. 
 Cerca con Google

[111]  V. Parazzi, L. Lazzari, and P. Rebulla, “Platelet gel from cord blood: a novel tool for tissue engineering,” Platelets, vol.21, no.7, pp.549–554, 2010. 
 Cerca con Google

[112]  W. Kenneth Ward, “A review of the foreign-body response to subcutaneously- implanted devices: the role of macrophages and cytokines in biofouling and fibrosis,” Journal of diabetes science and technology, vol.2, no.5, pp.768–77, 2008. 
 Cerca con Google

[113]  C. D. T. Anderson James M, Rodriguez Analiz, “Foreign Body Reaction To Biomaterials,” Seminars in Immunology, vol.20, no.2, pp.86–100, 2008. 
 Cerca con Google

[114]  N. de Cesare, C. Trevisan, E. Maghin, M. Piccoli, and P. G. Pavan, “A finite element analysis of diaphragmatic hernia repair on an animal model,” Journal of the Mechanical Behavior of Biomedical Materials, vol.86, pp.33–42, 2018. 
 Cerca con Google

[115] S. Levenberg, J. Rouwkema, M. Macdonald, E. S. Garfein, D. S. Kohane, D. C. Darland, R. Marini, C. A. Van Blitterswijk, R. C. Mulligan, P. A. D’Amore, and R. Langer, “Engineering vascularized skeletal muscle tissue,” Nature Biotechnology, vol.23, no.7, pp.879–884, 2005. Cerca con Google

[116] M. E. Alvarèz Fallas, M. Piccoli, C. Franzin, A. Sgrò, A. Dedja, L. Urbani, E. Bertin, C. Trevisan, P. Gamba, A. J. Burns, P. D. Coppi, and M. Pozzobon, “Decellularized Diaphragmatic Muscle Drives a Constructive Angiogenic Response In Vivo,” International Journal of Molecular Sciences, vol.19, no.5, pp.1–19, 2018. Cerca con Google

[117] N. E. Gentile, K. M. Stearns, E. H. Brown, J. P. Rubin, M. L. Boninger, C. L. Dearth, F. Ambrosio, and S. F. Badylak, “Targeted Rehabilitation after extracellular matrix scaffold transplantation for the treatment of volumetric muscle loss,” American Journal of Physical Medicine and Rehabilitation, vol.93, no.11, pp.S79–S87, 2014. Cerca con Google

[118] C. Balbi, M. Piccoli, L. Barile, A. Papait, A. Amirotti, E. Principi, D. Reverberi, L. Pasucci, P. Becherini, L. Varesio, M. Mogni, D. Coviello, T. Bandiera, M. Pozzobon, R. Cancedda, and S. Bollini, “First Characterization of Human Amniotic Fluid Stem Cell Extracellular Vesicles as a Powerful Paracrine Tool Endowed With Regenerative Potential,” Stem Cells Translational Medicine, vol.6, no.5, pp.1340–1355, 2017. Cerca con Google

[119] K. L. Capkovic, S. Stevenson, M. C. Johnson, J. J. Thelen, and D. D. Cornelison, “Neural cell adhesion molecule (NCAM) marks adult myogenic cells committed to differentiation,” Experimental Cell Research, vol.314, no.7, pp.1553–1565, 2008. Cerca con Google

[120] F. Joe, AW; Yi, L; Natarajan, A; Le Grand, F; So, L; Wang, J; Rudnicki, MA; Rossi, “Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis,” Nature Cell Biology, vol.12, no.2, pp.153–163, 2010. Cerca con Google

[121] V. Longo, P. Rebulla, S. Pupella, L. Zolla, and S. Rinalducci, “Proteomic characterization of platelet gel releasate from adult peripheral and cord blood,” Proteomics - Clinical Applications, vol.10, no.8, pp.870–882, 2016. Cerca con Google

[122] S. S. Rayagiri, D. Ranaldi, A. Raven, N. I. F. Mohamad Azhar, O. Lefebvre, P. S. Zammit, and A. G. Borycki, “Basal lamina remodeling at the skeletal muscle stem cell niche mediates stem cell self-renewal,” Nature Communications, vol.9, no.1075, pp.1–12, 2018. Cerca con Google

[123] M. A. Mir, “Introduction to Costimulation and Costimulatory Molecules,” in Developing Costimulatory Molecules for Immunotherapy of Diseases, pp.1–43, 2015. Cerca con Google

[124] M. Stein, S. Keshav, N. Harris, and S. Gordon, “Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation,” Journal of Experimental Medicine, vol.176, no.1, pp.287–292, 1992. Cerca con Google

[125] J. MacMicking, Q.-w. Xie, and C. Nathan, “Nitric Oxide and Macrophage Function,” Annual Review of Immunology, vol.15, no.1, pp.323–350, 1997. Cerca con Google

[126] M. Hesse, M. Modolell, A. C. La Flamme, M. Schito, J. M. Fuentes, A. W. Cheever, E. J. Pearce, and T. A. Wynn, “Differential Regulation of Nitric Oxide Synthase-2 and Arginase-1 by Type 1/Type 2 Cytokines In Vivo: Granulomatous Pathology Is Shaped by the Pattern of L-Arginine Metabolism,” The Journal of Immunology, vol.167, no.11, pp.6533–6544, 2001. Cerca con Google

[127] J. P. Edwards, X. Zhang, K. A. Frauwirth, and D. M. Mosser, “Biochemical and functional characterization of three activated macrophage populations,” Journal of leukocyte biology, vol.80, no.6, pp.1298–1307, 2006. Cerca con Google

[128] M. Saclier, M. Theret, R. Mounier, and B. Chazaud, “Effects of Macrophage Conditioned-Medium on Murine and Human Muscle Cells: Analysis of Proliferation, Differentiation, and Fusion,” in Methods in Molecular Biology, vol.1556, pp.317–327, 2017. Cerca con Google

[129] J. G. Tidball, “Regulation of muscle growth and regeneration by the immune system,” Nature Reviews Immunology, vol.17, no.3, pp.165–178, 2017. Cerca con Google

[130] C. L. Holness, R. P. Da Silva, J. Fawcett, S. Gordon, and D. L. Simmons, “Macrosialin, a mouse macrophage-restricted glycoprotein, is a member of the lamp/lgp family,” Journal of Biological Chemistry, vol.268, no.13, pp.9661– 9666, 1993. Cerca con Google

[131] C. L. Holness and D. L. Simmons, “Molecular cloning of CD68, a human macrophage marker related to lysosomal glycoproteins,” Blood, vol.81, no.6, pp.1607–1613, 1993. Cerca con Google

[132] G. L. Badylak SF, Lantz GC, Coffey A, “Small intestinal submucosa as a large diameter vascular graft in the dog,” Journal of Surgical Research, vol.47, no.1, pp.74–80, 1989. Cerca con Google

[133] S. F. Badylak, B. Kropp, T. McPherson, H. Liang, and P. W. Snyder, “Small intestional submucosa: a rapidly resorbed bioscaffold for augmentation cystoplasty in a dog model,” Tissue engineering, vol.4, no.4, pp.379–387, 1998. Cerca con Google

[134] N. L. James, L. A. Poole-Warren, K. Schindhelm, B. K. Milthorpe, R. M. Mitchell, R. E. Mitchell, and C. R. Howlett, “Comparative evaluation of treated bovine pericardium as a xenograft for hernia repair,” Biomaterials, vol.12, no.9, pp.801–809, 1991. Cerca con Google

[135] M. P. Eastwood, W. F. Daamen, L. Joyeux, S. Pranpanus, R. Rynkevic, L. Hympanova, M. W. Pot, D. J. Hof, G. Gayan-Ramirez, T. H. van Kuppevelt, E. Verbeken, and J. Deprest, “Providing Direction Improves Function: Comparison of a Radial Pore Orientated Acellular Collagen Scaffold to Clinical Alternatives in a Surgically Induced Rabbit Diaphragmatic Tissue Defect Model,” Journal of Tissue Engineering and Regenerative Medicine, no.doi: 10.1002/term.2734, 2018. Cerca con Google

[136] B. Perniconi, A. Costa, P. Aulino, L. Teodori, S. Adamo, and D. Coletti, “The pro-myogenic environment provided by whole organ scale acellular scaffolds from skeletal muscle,” Biomaterials, vol.32, no.31, pp.7870–7882, 2011. Cerca con Google

[137] S. Shojaie, L. Ermini, C. Ackerley, J. Wang, S. Chin, B. Yeganeh, M. Bilodeau, M. Sambi, I. Rogers, J. Rossant, C. E. Bear, and M. Post, “Acellular lung scaffolds direct differentiation of endoderm to functional airway epithelial cells: Requirement of matrix-bound HS proteoglycans,” Stem Cell Reports, vol.4, no.3, pp.419–430, 2015. Cerca con Google

[138] P. M. Gilbert, K. L. Havenstrite, K. E. G. Magnusson, A. Sacco, N. a. Leonardi, P. Kraft, N. K. Nguyen, S. Thrun, M. P. Lutolf, and H. M. Blau, “Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture,” Science, vol.329, no.5995, pp.1078–1081, 2010. Cerca con Google

[139] J. M. Fishman, M. W. Lowdell, L. Urbani, T. Ansari, A. J. Burns, M. Turmaine, J. North, P. Sibbons, A. M. Seifalian, K. J. Wood, M. a. Birchall, and P. De Coppi, “Immunomodulatory effect of a decellularized skeletal muscle scaffold in a discordant xenotransplantation model,” Proceedings of the National Academy of Sciences of the United States of America, vol.110, no.35, pp.14360–14365, 2013. Cerca con Google

[140] K. Sadtler, K. Estrellas, B. W. Allen, M. T. Wolf, H. Fan, A. J. Tam, C. H. Patel, B. S. Luber, H. Wang, K. R. Wagner, J. D. Powell, F. Housseau, D. M. Pardoll, and J. H. Elisseeff, “Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells,” Science Report, vol.352, no.6283, pp.366–370, 2016. Cerca con Google

[141] C. J. Mann, E. Perdiguero, Y. Kharraz, S. Aguilar, P. Pessina, A. L. Serrano, and P. Muñoz-Cánoves, “Aberrant repair and fibrosis development in skeletal muscle,” Skeletal Muscle, vol.1, no.21, pp.1–20, 2011. Cerca con Google

[142] Z. Sheikh, P. J. Brooks, O. Barzilay, N. Fine, and M. Glogauer, “Macrophages, Foreign Body Giant Cells and Their Response to Implantable Biomaterials,” Materials, vol.8, pp.5671–5701, 2015. Cerca con Google

[143] T. Mori, S. Kawara, M. Shinozaki, N. Hayashi, T. Kakinuma, A. Igarashi, M. Takigawa, T. Nakanishi, and K. Takehara, “Role and interaction of connective tissue growth factor with transforming growth factor-beta in persistent fibrosis: A mouse fibrosis model,” Journal of cellular physiology, vol.181, no.1, pp.153–159, 1999. Cerca con Google

[144] H. S. Alameddine and J. E. Morgan, “Matrix Metalloproteinases and Tissue Inhibitor of Metalloproteinases in Inflammation and Fibrosis of Skeletal Muscles,” Journal of Neuromuscular Diseases, vol.3, no.4, pp.455–473, 2016. Cerca con Google

[145] L. Arnold, A. Henry, F. Poron, Y. Baba-amer, N. V. Rooijen, A. Plonquet, R. K. Gherardi, and B. Chazaud, “Inflammatory monocytes recruited after skeletal muscle injury switch into antiinfl ammatory macrophages to support myogenesis,” Journal of Experimental Medicine, vol.204, no.5, pp.1057–1069, 2007. Cerca con Google

[146] M. Saclier, S. Cuvellier, M. Magnan, R. Mounier, and B. Chazaud, “Monocyte/macrophage interactions with myogenic precursor cells during skeletal muscle regeneration,” FEBS Journal, vol.280, no.17, pp.4118–4130, 2013. Cerca con Google

[147] T. Varga, R. Mounier, A. Patsalos, P. Gogolák, M. Peloquin, A. Horvath, A. Pap, B. Daniel, G. Nagy, E. Pintye, S. Poliska, S. Cuvellier, S. Ben Larbi, B. E. Sansbury, M. Spite, C. W. Brown, B. Chazaud, and L. Nagy, “Macrophage PPARγ, a Lipid Activated Transcription Factor Controls the Growth Factor GDF3 and Skeletal Muscle Regeneration,” Immunity, vol.45, no.5, pp.1038–1051, 2016. Cerca con Google

[148] J. E. Reing, L. Zhang, J. Myers-Irvin, K. E. Cordero, D. O. Freytes, E. Heber- Katz, K. Bedelbaeva, D. McIntosh, A. Dewilde, S. J. Braunhut, and S. F. Badylak, “Degradation products of extracellular matrix affect cell migration and proliferation,” Tissue engineering Part A, vol.15, no.3, pp.605–614, 2009. Cerca con Google

[149] A. Szade, A. Grochot-Przeczek, U. Florczyk, A. Jozkowicz, and J. Dulak, “Cellular and molecular mechanisms of inflammation-induced angiogenesis,” IUBMB Life, vol.67, no.3, pp.145–159, 2015. Cerca con Google

[150] C. Latroche, M. Weiss-Gayet, L. Muller, C. Gitiaux, P. Leblanc, S. Liot, S. Ben-Larbi, R. Abou-Khalil, N. Verger, P. Bardot, M. Magnan, F. Chrétien, R. Mounier, S. Germain, and B. Chazaud, “Coupling between Myogenesis and Angiogenesis during Skeletal Muscle Regeneration Is Stimulated by Restorative Macrophages,” Stem Cell Reports, vol.9, pp.2018–2033, 2017. Cerca con Google

[151] N. Arsic, S. Zacchigna, L. Zentilin, G. Ramirez-Correa, L. Pattarini, A. Salvi, G. Sinagra, and M. Giacca, “Vascular endothelial growth factor stimulates skeletal muscle regeneration in vivo,” Molecular Therapy, vol.10, no.5, pp.844– 854, 2004. Cerca con Google

[152] C. Borselli, H. Storrie, F. Benesch-Lee, D. Shvartsman, C. Cezar, J. W. Lichtman, H. H. Vandenburgh, and D. J. Mooney, “Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors,” Proceedings of the National Academy of Sciences, vol.107, no.8, pp.3287–3292, 2010. Cerca con Google

[153] M. L. Conerly, Z. Yao, J. W. Zhong, M. Groudine, and S. J. Tapscott, “Distinct Activities of Myf5 and MyoD Indicate Separate Roles in Skeletal Muscle Lineage Specification and Differentiation,” Developmental Cell, vol.36, no.4, pp.375–385, 2016. Cerca con Google

[154] V. Agrawal, B. N. Brown, A. J. Beattie, T. W. Gilbert, and S. F. Badylak, “Evidence of innervation following extracellular matrix scaffold- mediated remodelling of muscular tissues,” Journal of tissue engineering and regenerative medicine, vol.9, pp.590–600, 2009. Cerca con Google

[155] I. K. Ko, B. K. Lee, S. J. Lee, K. E. Andersson, A. Atala, and J. J. Yoo, “The effect of in vitro formation of acetylcholine receptor (AChR) clusters in engineered muscle fibers on subsequent innervation of constructs in vivo,” Biomaterials, vol.34, no.13, pp.3246–3255, 2013. Cerca con Google

[156] S. Mosole, U. Carraro, H. Kern, S. Loefler, H. Fruhmann, M. Vogelauer, S. Burggraf, W. Mayr, M. Krenn, T. Paternostro-Sluga, D. Hamar, J. Cvecka, M. Sedliak, V. Tirpakova, N. Sarabon, A. Musarò, M. Sandri, F. Protasi, A. Nori, A. Pond, and S. Zampieri, “Long-term high-level exercise promotes muscle reinnervation with age,” Journal of Neuropathology and Experimental Neurology, vol.73, no.4, pp.284–294, 2014. Cerca con Google

[157] C. H. Lin, Y. T. Lin, J. T. Yeh, and C. T. Chen, “Free functioning muscle transfer for lower extremity posttraumatic composite structure and functional defect,” Plastic and Reconstructive Surgery, vol.119, no.7, pp.2118–2126, 2007. Cerca con Google

[158] A. Aurora, K. Garg, B. T. Corona, and T. J. Walters, “Physical rehabilitation improves muscle function following volumetric muscle loss injury,” BMC Sports Science, Medicine and Rehabilitation, vol.6, no.1, pp.1–10, 2014. Cerca con Google

[159] K. R. Jessen and R. Mirsky, “The repair Schwann cell and its function in regenerating nerves,” Journal of Physiology, vol.594, no.13, pp.3521–3531, 2016. Cerca con Google

[160] A. Boerboom, V. Dion, A. Chariot, and R. Franzen, “Molecular Mechanisms Involved in Schwann Cell Plasticity,” Frontiers in Molecular Neuroscience, vol.10, no.38, pp.1–18, 2017. Cerca con Google

[161] S. Belin, K. L. Zuloaga, and Y. Poitelon, “Influence of Mechanical Stimuli on Schwann Cell Biology,” Frontiers in Cellular Neuroscience, vol.11, no.347, pp.1–11, 2017. Cerca con Google

[162] M. B. Bunge, A. K. Williams, P. M. Wood, J. Uitto, and J. J. Jeffrey, “Comparison of nerve cell and nerve cell plus Schwann cells cultures, with a particular emphasis on basal lamina and collagen formation,” Journal of Cell Biology, vol.84, pp.184–202, 1980. Cerca con Google

[163] M. A. Fox, J. R. Sanes, D. B. Borza, V. P. Eswarakumar, R. Fässler, B. G. Hudson, S. W. John, Y. Ninomiya, V. Pedchenko, S. L. Pfaff, M. N. N. Rheault, Y. Sado, Y. Segal, M. J. Werle, and H. Umemori, “Distinct Target- Derived Signals Organize Formation, Maturation, and Maintenance of Motor Nerve Terminals,” Cell, vol.129, no.1, pp.179–193, 2007. Cerca con Google

[164] A. H. Williams, G. Valdez, V. Moresi, X. Qi, J. McAnally, J. L. Elliott, R. Bassel-Duby, J. R. Sanes, and E. N. Olson, “MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice,” Science, vol.326, no.1549, pp.1549–1554, 2009. Cerca con Google

[165] W. Liu, L. Wei-LaPierre, A. Klose, R. T. Dirksen, and J. V. Chakkalakal, “Inducible depletion of adult skeletal muscle stem cells impairs the regeneration of neuromuscular junctions,” eLife, vol.4, pp.1–20, 2015. Cerca con Google

[166] D. O. Freytes, R. S. Tullius, and S. F. Badylak, “Effect of Storage Upon Material Properties of Lyophilized Porcine Extracellular Matrix Derived From the Urinary Bladder,” Journal of biomedical materials research. Part B, Applied biomaterials, vol.78, no.2, pp.327–333, 2006. Cerca con Google

[167] L. Urbani, P. Maghsoudlou, A. Milan, M. Menikou, C. K. Hagen, G. Totonelli, C. Camilli, S. Eaton, A. Burns, A. Olivo, and P. De Coppi, “Long-term cryopreservation of decellularised oesophagi for tissue engineering clinical application,” PLoS ONE, vol.12, no.6, pp.1–14, 2017. Cerca con Google

[168] L. Madden, M. Juhas, W. E. Kraus, G. a. Truskey, and N. Bursac, “Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs,” eLife, vol.4, pp.1–14, 2015. Cerca con Google

[169] J. H. Kim, Y.-J. Seol, I. K. Ko, H.-W. Kang, Y. K. Lee, J. J. Yoo, A. Atala, and S. J. Lee, “3D Bioprinted Human Skeletal Muscle Constructs for Muscle Function Restoration,” Scientific Reports, vol.8, no.12307, pp.1–15, 2018. Cerca con Google

[170] M. Shelton, J. Metz, J. Liu, R. Carpenedo, S. P. Demers, W. Stanford, and I. Skerjanc, “Derivation and Expansion of PAX7-Positive Muscle Progenitors from Human and Mouse Embryonic Stem Cells,” Stem Cell Reports, vol.3, no.3, pp.516–529, 2014. Cerca con Google

[171] G. Giacomazzi, B. Holvoet, S. Trenson, E. Caluwé, B. Kravic, H. Grosemans, Á. Cortés-Calabuig, C. M. Deroose, D. Huylebroeck, S. Hashemolhosseini, S. Janssens, E. McNally, M. Quattrocelli, and M. Sampaolesi, “MicroRNAs promote skeletal muscle differentiation of mesodermal iPSC-derived progenitors,” Nature Communications, vol.8, no.1249, pp.1–14, 2017. Cerca con Google

[172] K. Higashioka, N. Koizumi, H. Sakurai, C. Sotozono, and T. Sato, “Myogenic Differentiation from MYOGENIN-Mutated Human iPS Cells by CRISPR/Cas9,” Stem Cells International, pp.1–9, 2017. Cerca con Google

[173] C. Lepper, S. J. Conway, and C. M. Fan, “Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements,” Nature, vol.460, no.7255, pp.627–631, 2009. Cerca con Google

[174] C. A. Rossi, M. Flaibani, B. Blaauw, M. Pozzobon, E. Figallo, C. Reggiani, L. Vitiello, N. Elvassore, and P. De Coppi, “In vivo tissue engineering of functional skeletal muscle by freshly isolated satellite cells embedded in a photopolymerizable hydrogel,” The FASEB journal, vol.25, no.7, pp.2296– 2304, 2011. Cerca con Google

[175] A. Sacco, R. Doyonnas, P. Kraft, S. Vitorovic, and H. M. Blau, “Self-renewal and expansion of single transplanted muscle stem cells,” Nature, vol.456, no.7221, pp.502–506, 2008. Cerca con Google

[176] A. L. Mescher, “Macrophages and fibroblasts during inflammation and tissue repair in models of organ regeneration,” Regeneration, vol.4, no.2, pp.39–53, 2017. Cerca con Google

[177] C. D. Mills, K. Kincaid, J. M. Alt, M. J. Heilman, and A. M. Hill, “M-1/M- 2 Macrophages and the Th1/Th2 Paradigm,” The Journal of Immunology, vol.164, no.12, pp.6166–6173, 2000. Cerca con Google

[178] S. Gordon and F. O. Martinez, “Alternative Activation of Macrophages : Mechanism and Functions,” Immunity Review, vol.32, no.5, pp.593–604, 2010. Cerca con Google

[179] F. Porcheray, S. Viaud, A. C. Rimaniol, C. Léone, B. Samah, N. Dereuddre- Bosquet, D. Dormont, and G. Gras, “Macrophage activation switching: An asset for the resolution of inflammation,” Clinical and Experimental Immunology, vol.142, no.3, pp.481–489, 2005. Cerca con Google

[180] A. Sica, “Macrophage plasticity and polarization: in vivo veritas,” Journal of Clinical Investigation, vol.122, no.3, pp.787–795, 2012. Cerca con Google

[181] K. L. Spiller and T. J. Koh, “Macrophage-based therapeutic strategies in regenerative medicine,” Advanced Drug Delivery Reviews, vol.122, pp.74–83, 2017. Cerca con Google

[182] V. Rybalko, P.-L. Hsieh, M. Merscham-Banda, L. J. Suggs, and R. P. Farrar, “The Development of Macrophage-Mediated Cell Therapy to Improve Skeletal Muscle Function after Injury,” Plos One, vol.10, no.12, pp.1–19, 2015. Cerca con Google

[183] K. A. Alexander, M. K. Chang, E. R. Maylin, T. Kohler, R. Müller, A. C. Wu, N. Van Rooijen, M. J. Sweet, D. A. Hume, L. J. Raggatt, and A. R. Pettit, “Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model,” Journal of Bone and Mineral Research, vol.26, no.7, pp.1517–1532, 2011. Cerca con Google

[184] Z. Julier, A. J. Park, P. S. Briquez, and M. M. Martino, “Promoting tissue regeneration by modulating the immune system,” Acta Biomaterialia, vol.53, pp.13–28, 2017. Cerca con Google

[185] J. L. Dziki, B. M. Sicari, M. T. Wolf, M. C. Cramer, and S. F. Badylak, “Immunomodulation and Mobilization of Progenitor Cells by Extracellular Matrix Bioscaffolds for Volumetric Muscle Loss Treatment,” Tissue Engineering Part A, vol.22, no.19-20, pp.1129–1139, 2016. Cerca con Google

[186] M. Bartneck, K. H. Heffels, Y. Pan, M. Bovi, G. Zwadlo-Klarwasser, and J. Groll, “Inducing healing-like human primary macrophage phenotypes by 3D hydrogel coated nanofibres,” Biomaterials, vol.33, no.16, pp.4136–4146, 2012. Cerca con Google

[187] B. M. Sicari, J. L. Dziki, B. F. Siu, C. J. Medberry, C. L. Dearth, and S. F. Badylak, “The promotion of a constructive macrophage phenotype by solubilized extracellular matrix,” Biomaterials, vol.35, no.30, pp.8605–8612, 2014. Cerca con Google

[188] M. Bencze, E. Negroni, D. Vallese, H. Y. Youssef, S. Chaouch, A. Wolff, A. Aamiri, J. P. D. Santo, B. Chazaud, G. Butler-browne, W. Savino, V. Mouly, and I. Riederer, “Proinflammatory Macrophages Enhance the Regenerative Capacity of Human Myoblasts by Modifying Their Kinetics of Proliferation and Differentiation,” Molecular Therapy, vol.20, no.11, pp.2168– 2179, 2012. Cerca con Google

[189] L. Urbani, M. Piccoli, C. Franzin, M. Pozzobon, and P. de Coppi, “Hypoxia Increases Mouse Satellite Cell Clone Proliferation Maintaining both In Vitro and In Vivo Heterogeneity and Myogenic Potential,” PLoS ONE, vol.7, no.11, pp.1–13, 2012. Cerca con Google

[190] R. Tatsumi, S. M. Sheehan, H. Iwasaki, A. Hattori, and R. E. Allen, “Mechanical stretch induces activation of skeletal muscle satellite cells in vitro,” Experimental Cell Research, vol.267, no.1, pp.107–114, 2001. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record