Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Ferrazzi, Marta (2018) Unravelling the impact of anthropogenic regulation on river flow regimes. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document (Tesi di dottorato) - Accepted Version
Thesis not accessible until 01 January 2021 for intellectual property related reasons.
Visibile to: nobody

11Mb

Abstract (italian or english)

In the last century, more than 45,000 large dams have been constructed all around the world to sustain population growth and economic development, so that unregulated rivers are now rare in most regions of the Earth. Damming of rivers has produced global-scale alterations of the hydrologic cycle, inducing severe consequences on the ecological and morphological equilibrium of streams. Nevertheless, the construction of new dams has been also proposed to mitigate the risks related to natural and human induced changes in climate drivers, which threaten the sustainability of anthropogenic water uses. The existing literature has documented that hydrological regimes of regulated reaches are typically characterized by a reduced temporal variability and spatial
heterogeneity of streamflows. However, whether specific types of anthropogenic uses of reservoirs could generate distinctive, contrasting impacts on flow regimes has not been disclosed yet. Additionally, very little is known about the combined contribution of river regulation and hydroclimatic variability to flow regime alterations in engineered rivers. In this thesis, extensive hydrologic data and theoretical analyses are used to investigate hydrological alterations downstream of 47 dams in the Central Eastern US, spanning a wide range of climatic conditions and water uses. Results reveal a strong connection between the anthropogenic use and the hydrological impact of dams. Whereas flood control smooths the temporal and spatial heterogeneity of river flows, water supply is able to increase the relative variability and regional heterogeneity of streamflows. Accordingly, the magnitude of hydrological alteration downstream of flood control dams is reduced when these structures are also operated for water supply, because of the compensation effect generated by overlapping uses. Despite the significant and distinct impacts of dams on the frequency distribution of downstream flows, clustering of catchment based on climatic signatures leads to hydrologically coherent classes in term of both regulated and unregulated river flows, thus revealing that climate signatures are typically visible also downstream of dams. Furthermore, the analysis shows that temporal patterns of regulated flow regimes are controlled by the inter-annual variability of natural discharges upstream of dams, as long as reservoirs obey to time-invariant operating schemes driven by the underlying specific water uses. These findings represent a critical step forward for scientists and water managers. In view of the increasing trend of global freshwater demand and the uncertain impact of climate change on human freshwater exploitation, especially reservoirs will help promoting the anthropogenic exploitation of freshwater. Nevertheless, the current patterns of water consumption could generate a shift in the cumulative effects of dams at global scale, reshaping the trajectories of regulated streamflows and of eco-morphological alterations of dammed rivers. Moreover, reservoirs as they are currently operated are not helpful in enhancing the long-term stability of flow regimes in downstream reaches, unless new self-adapting dynamic regulation strategies are implemented.

Abstract (a different language)

Nel corso del XX secolo, più di 45000 grandi dighe sono state costruite in tutto il mondo per supportare l’aumento demografico e lo sviluppo economico. In tal modo i corsi d’acqua naturali sono diventati rari nella maggior parte delle regioni del mondo. La
costruzione di dighe ha comportato l’alterazione del ciclo idrologico a scala globale, con significative conseguenze sull’equilibrio ecologico e geomorfologico dei fiumi. Tuttavia, la messa in opera di nuove infrastrutture idrauliche è stata anche proposta per mitigare i rischi collegati al cambiamento climatico, il quale rappresenta una seria minaccia per la sostenibilità dello sfruttamento antropico della risorsa idrica. La letteratura esistente ha evidenziato come il regime idrologico in corsi d’acqua regolati sia tipicamente caratterizzato da una ridotta variabilità temporale e eterogeneità spaziale dei deflussi.
Ciononostante, ad oggi, non è noto se esista una relazione tra l’utilizzo antropico dei serbatoi e l’impatto che essi generano sui regimi idrologici. Inoltre, non si conosce come la regolazione antropica e le fluttuazioni idroclimatiche interagiscano nel modellare il regime dei deflussi a valle delle dighe. In questo studio, l’analisi delle serie temporali di portata è stata combinata ad analisi modellistiche e teoriche al fine di investigare le alterazioni idrologiche a valle di 47 dighe situate nella parte centro-orientale degli Stati Uniti. Tali strutture abbracciano diverse zone climatiche e diversi utilizzi della risorsa idrica. I risultati rivelano che esiste un’importante connessione tra le funzioni per cui è utilizzato un serbatoio e l’impatto che esso genera sul regime idrologico. La laminazione delle piene determina una riduzione della variabilità temporale e spaziale dei deflussi; al contrario, l’approvvigionamento idrico favorisce l’aumento della variabilità temporale dei regimi idrologici, generando un processo di diversificazione del grado di variabilità delle portate in alveo. A causa dell’effetto distinto e compensatore della laminazione delle piene e dell’approvvigionamento idrico, l’entità delle alterazioni dovute a strutture per la laminazione delle piene si riduce quando tra gli utilizzi è presente anche l’approvvigionamento idrico. Nonostante l’impatto delle dighe sui regimi idrologici sia tutt’altro che trascurabile, la classificazione sulla base di caratteristiche climatiche dei siti oggetto di studio permette di ottenere gruppi idrologicamente omogenei considerando sia i regimi naturali sia a valle dei serbatoi, sottolineando dunque come l’impronta climatica sia visibile anche a valle delle dighe. Inoltre, l’analisi mostra che le dinamiche temporali dei regimi regolati vengono controllate dalla variabilità inter-annuale tipica dei deflussi naturali a monte delle dighe. Questo è dovuto agli schemi statici a cui è soggetta la regolazione antropica, che dipendono unicamente dall’utilizzo del serbatoio. I risultati ottenuti in questa tesi assumono particolare rilievo nell’ambito di una corretta gestione della risorsa idrica. A fronte del costante aumento del fabbisogno mondiale d’acqua e dell’incontrollabile impatto dei cambiamenti climatici sullo sfruttamento della risorsa idrica, le dighe acquisiranno un ruolo strategico. Tuttavia, la crescente domanda d’acqua potrebbe rimodellare l’impatto antropico sui regimi idrologici, favorendo un potenziale cambiamento dell’effetto cumulativo delle dighe a scala globale. Inoltre, l’attuale gestione dei serbatoi sembra essere inadatta al fine di mitigare le fluttuazioni dei regimi idrologici, al cui scopo sarebbe necessario attuare delle strategie di regolazione dinamica.

EPrint type:Ph.D. thesis
Tutor:Botter, Gianluca
Ph.D. course:Ciclo 31 > Corsi 31 > SCIENZE DELL'INGEGNERIA CIVILE E AMBIENTALE
Data di deposito della tesi:28 November 2018
Anno di Pubblicazione:27 November 2018
Key Words:dams river regulation anthropogenic water uses streamflow variability hydroclimatic fluctuations climate signatures
Settori scientifico-disciplinari MIUR:Area 08 - Ingegneria civile e Architettura > ICAR/02 Costruzioni idrauliche e marittime e idrologia
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Civile, Edile e Ambientale
Codice ID:11414
Depositato il:06 Nov 2019 09:41
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Abatzoglou, J., Barbero, R., and Wolf, J. W. Tracking Interannual Streamflow Variability with Drought Indices in the U.S. Pacific Northwest. J Hydrometeorol, 15:1900–1912, 2014. Cerca con Google

Allan, D. W. Statistics of atomic frequency standards. Proceedings of the IEEE, 54(2):221–230, 1966. Cerca con Google

Ashley, R. and Cashman, A. Infrastructure to 2030: telecom, land transport, water and electricity. Technical report, Organization for Economic Cooperation and Development,Paris, 2006. Cerca con Google

Asnar, A., Flyvbjerg, B., Budzier, A., and Lunn, D. Should we build more large dams? The actual costs of hydropower megaproject development. Energy Polic, 69:43–56, 2014. Cerca con Google

Baldingo, B. P. and Schuler, K., G. E. Riva-Murray. Mussel community composition in relation to macrohabitat, water quality, and impoundments in the Neversink river,New York. Technical report, United States Geological Survey (USGS), 2002. Cerca con Google

Barnett, T. P., Pierce, D. W., Hidalgo, H. G., Bonfils, C., Santer, B. D., Das, T., Bala, G., Wood, A. W., Nozawa, T., Mirin, A. A., Cayan, D. R., and Dettinger, M. D. Human-induced changes in the hydrology of the western United States. Science, 319(5866):1080–1083, 2008. Cerca con Google

Berghuijs, W. R., Sivapalan, M., Woods, R. A., and Savenjie, H. H. G. Patterns of similarity of seasonal water balances: a window into streamflow variability over a range of time scales. Water Resour Res, 50(7):5638–5661, 2014. Cerca con Google

Biswal, B. and Marani, M. Geomorphological origin of recession curves. Geophys Res Lett, 37(24):L24403, 2010. Cerca con Google

Biswal, B. and Marani, M. Universal recession curves and their geomorphological interpretation. Adv Water Res, 65:34–42, 2014. Cerca con Google

Biswal, B. and Nagesh Kumar, D. A general geomorphological recession flow model for river basins. Water Resour Res, 49(8):4900–4906, 2013. Cerca con Google

Botter, G. Flow regime shifts in the Little Piney creek. Adv Water Resour, 71:44–54, 2014. Cerca con Google

Botter, G., Porporato, A., Rodriguez-Iturbe, I., and Rinaldo, A. Basin-scale soil moisture dynamics and the probabilistic characterization of carrier hydrologic flows: slow leaching-prone components and of the hydrologic response. Water Resour Res, 43(2): W02417, 2007. Cerca con Google

Botter, G., Porporato, A., Rodriguez-Iturbe, I., and Rinaldo, A. Non-linear storage discharge relations and catchment streamflow regimes. Water Resour Res, 45(10): W10427, 2009. Cerca con Google

Botter, G., Basso, S., Porporato, A., Rodriguez-Iturbe, I., and Rinaldo, A. Natural streamflow regime alterations: damming of the Piave river basin (Italy). Water Resour Res, 46(6):W06522, 2010. Cerca con Google

Botter, G., Basso, S., Rodriguez-Iturbe, I., and Rinaldo, A. Resilience of river flow regimes. Proc Natl Acad Sci USA, 110(32):12925–12930, 2013. Cerca con Google

Budiko, M. I. Climate and life. Academic Press, 1974. Cerca con Google

Carey, S. K., Tetzlaff, D., Seibert, J., Soulsby, C., Buttle, J., Laudon, H., McDonnell, J., McGuire, K., Caissie, D., Shanley, J., Kennedy, M., Devito, K., and Pomeroy, J. W. Inter-comparison of hydro-climatic regimes across northern catchments: synchronicity, resistance and resilience. Hydrol Process, 24:3591–3602, 2010. Cerca con Google

Carmona, A. M., Sivapalan, M., Yaeger, M. A., and G., P. Regional patterns of interannual variability of catchment water balances across the continental U.S.: A Budyko framework. Water Resour Res, 50(12):9177–9193, 2014. Cerca con Google

Chen, W. and Olden, J. D. Designing flows to resolve human and environmental water needs in a dam-regulated river. Nat Commun, 8:2158, 2017. Cerca con Google

Chezik, K. A., Anderson, S. C., and Moore, J. W. River networks dampen long-term hydrological signals of climate change. Geophys Res Lett, 44:7256–7264, 2010. Cerca con Google

Coopersmith, E., Yaeger, M. A., Ye, S., Cheng, L., and Sivapalan, M. Exploring the physical controls of regional patterns of flow duration curves - Part 3: a catchment classification system based on regime curves indicators. Hydrol Earth Syst Sci, 16(11): 4467–4482, 2012. Cerca con Google

Cowell, C. M. and Stoudt, R. T. Dam induced modifications to upper Allegneny river streamflow patterns and their biodiversity implications. JAWRA, 38(1):87–96, 2002. Cerca con Google

Dai, A. Increasing drought under global warming in observations and models. Nat Clim Change, 3:52–58, 2013. Cerca con Google

Destouni, G., Jaramillo, F., and Prieto, C. Hydroclimatic shifts driven by human water use for food and energy production. Nat Clim Change, 3(3):213–217, 2013. Cerca con Google

Dewson, Z. S., James, A. B. W., and Death, R. G. Stream ecosystems functioning under reduced flow conditions. Ecological Applications, 17(6):1797–1808, 2007. Cerca con Google

D’Odorico, P., Ridolfi, L., Porporato, A., and Rodriguez-Iturbe, I. Preferential states of seasonal soil moisture: the impact of climate fluctuations. Water Resour Res, 36: 2209–2219, 2000. Cerca con Google

Döll, P., Fiedler, K., and Zhang, J. Global-scale analysis of river flow alterations due to water withdrawals and reservoirs. Hydrol Earth Syst Sci, 13(12):2413–2432, 2009. Cerca con Google

Dooge, J. C. I. Hydrologic models and climate change. J Geophys Res, 97(D3):2677–2686, 1992. Cerca con Google

Doulatyari, B., Betterle, A., Basso, S., Biswal, B., Shirmer, M., and Botter, G. Predicting streamflow distributions and flow duration curves from landscape and climate. Adv Water Res, 83:285–298, 2015. Cerca con Google

Doulatyari, B., Betterle, A., Radny, D., Celegon, E. A., Fanton, P., Schirmer, M., and Botter, G. Patterns of streamflow regimes along the river network: the case of the Thur river. Environmental Modeling & Software, 93:42–58, 2017. Cerca con Google

Doyle, M. W., Stanley, E. H., Straier, D. L., Jacobson, R. B., and Schmidt, J. C. Effective discharge analysis of ecological processes in streams. Water Resour Res, 41(11):W11411, 2005. Cerca con Google

Dunne, T. and Leopold, L. B. Water in environmental planning. W.H.Freeman and Co Ltd, 1978. Cerca con Google

Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R., and Mearns, L. O. Climate extremes: observations, modeling, and impacts. Science, 288: 2068–2074, 2000. Cerca con Google

Ehsani, N., Vörösmarty, C. J., Fekete, B. M., and Stakhiv, E. Z. Reservoirs operation under climate change: storage capacity options to mitigate risk. Journal of Hydrology, 555:435–446, 2017. Cerca con Google

Fabris, L., Malcolm, I. A., Buddendorf, W. B., Millidine, K. J., Tetzlaff, D., and Soulsby, C. Hydraulic modelling of the spatial and temporal variability in Atlantic salmon parr habitat availability in an upland stream. Sci Total Environ, 601:1046–1059, 2017. Cerca con Google

Fabris, L., Lazzaro, G., Buddendorf, W. B., Botter, G., and Soulsby, C. A general analytical approach for assessing the effects of hydroclimatic variability on fish habitat. Journal of Hydrology, 566:520–530, 2018. Cerca con Google

Ficklin, D. L., Robeson, S. M., and Knouft, J. H. Impacts of recent climate change on trends in baseflow and stormflow in United States watersheds. Geophys Res Lett, 43(10):5079–5088, 2016. Cerca con Google

Ficklin, D. L., Abatzoglou, J. T., Robeson, S. M., Null, S. E., and Knouft, J. H. Natural and managed watersheds show similar responses to recent climate change. Proc Natl Acad Sci USA, 115(34):8553–8557, 2018. Cerca con Google

Field, C., Barros, V., Dokken, D., Mach, K., Mastrandrea, M., Bilir, T., Chatterjee, M., Ebi, K., Estrada, Y., Genova, R., Girma, B., Kissel, E., Levy, A., MacCracken, S., Mastrandrea, P., and White, L. e. Climate change 2014: impacts, adaptation, and vulnerability. Cambridge University Press, 2014. Cerca con Google

Finger, D., Heinrich, G., Gobiet, A., and Bauder, A. Projections of future water resources and their uncertainty in a glacierized catchment in the Swiss Alps and the subsequent effects on hydropower production during the 21st century. Water Resour Res, 48(2):W02521, 2012. Cerca con Google

Fitzhugh, T. W. and Richter, B. D. Quenching urban thirst: growing cities and their impacts on freshwater ecosystems. BioScience, 54(8):741–754, 2004. Cerca con Google

Gleick, P. H. The changing water paradigm: a look at twenty-first century water resources development. Water International, 25(1):127–138, 2000. Cerca con Google

Graff, W. L. Dam nation: a geographic census of American dams and their large-scale hydrologic impacts. Water Resour Res, 35(4):1305–1311, 1999. Cerca con Google

Graff, W. L. Downstream hydrologic and geomorphologic effects of large dams on American rivers. Geomorphology, 79(3–4):336–360, 2006. Cerca con Google

Groisman, P. Y., Knight, R. W., and Karl, T. R. Heavy precipitation and high streamflow in the contiguous United States: trend in the twentieth century. Bull Am Meteorol Soc, 82:219–246, 2001. Cerca con Google

Groisman, P. Y., Knight, R. W., Karl, T. R., Easterling, D. R., Sun, B., and Lawrimore, J. H. Contemporary changes of the hydrological cycle over the contiguous United States: trends derived from in situ observations. J. Hydrometeorol., 5:64–85, 2004. Cerca con Google

Harman, W. N. the effect of reservoirs construction and canalization on the mollusks of the upper Delaware watershed. Bulletin Am Malac Union, 39:12–14, 1974. Cerca con Google

ICOLD. Annual Meeting of International Commission on Large Dams: final bulletin. Technical report, International Commission on Large Dams, 2014. Cerca con Google

IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 2014. Cerca con Google

Jaramillo, F. and Destouni, G. Local flow regulation and irrigation raise global human water consumption and footprint. Science, 350(6265):1248–1251, 2015. Cerca con Google

Katul, G. G. and Parlange, M. B. Analysis of land surface heat fluxes using the orthonormal wavelet approach. Water Resour Res, 31(11):2743–2749, 1995. Cerca con Google

Kirchner, J. W. Catchments as simple dynamical systems: Catchment characterization, rainfall-runoff modeling, and doing hydrology backward. Water Resour Res, 45(2): W02429, 2009. Cerca con Google

Kirchner, J. W. and Neal, C. Universal fractal scaling in stream chemistry and its implications for solute transport and water quality trend detection. Proc Natl Acad Sci USA, 110(30):12213–12218, 2013. Cerca con Google

Kundzewicz, Z. W., Mata, L. J., Arnell, N. W., Döll, P., Jimenez, B., Miller, K., Oki, T., ŞEN, Z., and Shiklomanov, I. The implications of projected climate change for freshwater resources and their management. Hydrological Sciences Journal, 53:3–10, 2008. Cerca con Google

Laio, F., Porporato, A., Ridolfi, L., and Rodriguez-Iturbe, I. Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress. ii probabilistic soil moisture dynamics. Adv Water Res, 24(7):703–723, 2001. Cerca con Google

Lazzaro, G., Basso, S., Schirmer, M., and Botter, G. Water management strategies for run-of-river power plant: profitability and hydrologic impact between the intake and the outflow. Water Resour Res, 49(12):WR014210, 2013. Cerca con Google

Lebel, L., Garden, P., and Imamura, M. The politics of scale, position, and place in the governance of water resources in the Mekong region. Ecology and Society, 10(2):18, 2005. Cerca con Google

Lehener, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., Döll, P., Endejan, M., Frenken, K., Magome, J., Nillson, C., Robertson, J. C., Rodel, R., Sindorf, N., and Wisser, D. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front Ecol Environ, 9(9):494–502, 2011. Cerca con Google

Lettenmaier, D. P., Wood, E. F., and Wallis, J. R. Hydro-climatological trends in the continenetal United States, 1948-88. Journal of Climate, 7:586–607, 1994. Cerca con Google

Lytle, D. H. and Poff, N. L. Adaptation to natural flow regimes. Trends in Ecology and Evolution, 19:94–100, 2004. Cerca con Google

MacDonald, G. M. Water, climate change and sustainability in the southwest. Proc Natl Acad Sci USA, 107:21256–21262, 2010. Cerca con Google

Magilligan, F. J. and Nislow, K. H. Changes in hydrologic regimes by dams. Geomorphology, 71(1–2):61–78, 2005. Cerca con Google

Magilligan, F. J., Nislow, K. H., and Graber, B. E. Scale-indipendent assessment of discharge reduction and riparian disconnectivity following flow regulation by dams. Geology, 31(7):569–572, 2003. Cerca con Google

Majone, B., Bovolo, C. I., Bellin, A., Blenkinsop, S., and Fowler, H. J. Modeling the impacts of future climate change on water resources for the Gállego river basin (Spain). Water Resour Res, 48(1): WR0120985, 2012. Cerca con Google

Majone, B., Villa, F., Deidda, R., and Bellin, A. Impact of climate change and water use policies on hydropower potential in the south-eastern Alpine region. Science of Total Environment, 543:965–980, 2016. Cerca con Google

Mallakpour, I. and Villarini, G. The changing nature of flooding across the central United States. Nat Clim Change, 5:250–254, 2015. Cerca con Google

Milly, P. C. D. An analytic solution of the stochastic storage problem applicable to soil water. Water Resour Res, 29(11):3755–3758, 1993. Cerca con Google

Milly, P. C. D. Climate, soil water storage, and the average annula water balance. Water Resour Res, 30(7):2143–2156, 1994. Cerca con Google

Milly, P. C. D. and Dunne, K. A. Macroscale water fluxes 2. Water and energy supply control of their inter-annual variability. Water Resour Res, 38(10):WR000760, 2002. Cerca con Google

Milly, P. C. D., Dunne, K. A., and Vecchia, A. V. Global pattern of trends in streamflow and water availability in a changing climate. Nature, 438(7066):347–350, 2005. Cerca con Google

Milly, P. C. D., Betancourt, J., Fankelmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P., and Stouffer, R. J. Stationarity is dead: whither water management? Science, 319:573–574, 2008. Cerca con Google

Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, L. R., Harmel, R. D., and Veith, T. L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE, 50(3):885–900, 2007. Cerca con Google

Moyle, P. B. and Mount, J. F. Homogenous rivers, homogenous faunas. Proc Natl Acad Sci, 104(14):5711–5712, 2007. Cerca con Google

Müller, M. F. and Levy, M. C. Complementary vantage points: integrating hydrology and economics for sociohydrologic knowledge generation. Water Resour Res, Submitted. Cerca con Google

Müller, M. F., Dralle, D. N., and Thompson, S. E. Analytical model for flow duration curves in seasonallydry climates. Water Resour Res, 50(7):5510–5531, 2014. Cerca con Google

NCA. Climate change impact in the United States: the third national climate assessment. U.S. Global Change Research Program, 2014. Cerca con Google

NRC. Global change and extreme hydrology: testing conventional wisdom. The National Academies Press, Washington, D.C., 2011. Cerca con Google

Olden, J. D. and Poff, N. L. Redundancy and the choice of hydrologic indices for characterizing streamflow regimes. River Res Applic, 19(2):101–121, 2003. Cerca con Google

O’Neill, P. L., Nicolaides, D., Honnery, D., and Soria, J. Autocorrelation functions and the determination of integral length with reference to experimental and numerical data. In Proceedings of the Fifteenth Australasian Fluid Mechanics Conference, volume 1, pages CD–ROM. University of Sydney, 2004. Cerca con Google

Patterson, L. A., Lutz, B., and Doyle, M. W. Streamflow changes in the South Atlantic United States during the mid and late 20th centur. J Am Water Resour Assoc, 8: 1126–1138, 2012. Cerca con Google

Patterson, L. A., Lutz, B., and Doyle, M. W. Climate and direct human contributions to changes in mean annual streamflow in the South Atlantic, USA. Water Resour Res, 49:7278–7291, 2013. Cerca con Google

Petchey, O. L., Gonzalez, A., and Wilson, H. B. Effects on population persistence: the interaction between environmental noise colour, intraspecific competition and space. Proc R Soc Lond B, 264(1389):1841–1847, 1997. Cerca con Google

Petts, G. E. Complex response of river channel morphology subsequent to reservoir construction. Progress in Physical Geography, 3(3):329–362, 1979. Cerca con Google

Petts, G. E. Impounded rivers: perspectives for ecological management. Chichester, John Wiley, 1994. Cerca con Google

Pike, J. G. The estimation of annual runoff from metereological data in a tropical climate. J Hydrol, 2(2):116–123, 1964. Cerca con Google

Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., Sparks, R. E., and Stromberg, J. C. The natural flow regime: a paradigm for river conservation and restoration. BioScience, 47(11):769–784, 1997. Cerca con Google

Poff, N. L., Olden, J. D., Merritt, D. M., and Pepin, D. M. Homogenization of regional river dynamics by dams and global biodiversity implications. Proc Natl Acad Sci USA, 104(14):5732–5737, 2007. Cerca con Google

Poff, N. L., Brown, C. M., Grantham, T. E., Matthews, J. H., Palmer, M. A., Spence, C. M., Wilby, R. L., Haasnoot, M., Mendoza, G. F., Dominique, K. C., and Baeza, A. Sustainable water management under future uncertainties with eco-engineering decision scaling. Nat Clim Change, 6:25–34, 2015. Cerca con Google

Porporato, A. and Ridolfi, L. Detecting determinism and non-linearity in river flow time series. Hydrological Sciences Journal, 48(5):763–780, 2003. Cerca con Google

Porporato, A., Daly, E., and Rodriguez-Iturbe, I. Soil water balance and ecosystem response to climate change. Am Nat, 164(5):625–632, 2004. Cerca con Google

Porporato, A., Vico, G., and Fay, A. Superstatistics of hydroclimatic fluctuations and interannual ecosystems productivity. Geophys Res Lett, 33:L15402, 2006. Cerca con Google

Potter, N. J., Zhang, L., Milly, P. C. D., McMahon, T. A., and Jakeman, A. J. Effects of rainfall seasonality and soil moisture capacity on mean annual water balance for Australian catchments. Water Resour Res, 41(6):W06007, 2005. Cerca con Google

Resh, V. H., Brown, A. V., Covich, A. P., Gurtz, M. E., Li, H. W., Minshall, G. W., Reice, S. R., Sheldon, A. L., Wallace, J. B., and Wissnar, R. C. The role of disturbance in stream ecology. Journal of the North American Benthological Society, 7:433–455, 1988. Cerca con Google

Richter, B. D., Baumgartner, J. V., Powell, J., and Braun, D. P. A method for assessing hydrological alterations within ecosystems. Conservation Biology, 10:1–12, 1996. Cerca con Google

Riley, W. J. Handbook of frequency stability analysis. NIST Special Publication, 2008. Cerca con Google

Sabo, J. L. and Post, D. M. Quantifying periodic, stochastic, and catastrophic environmental variation. Ecological Monographs, 78(1):19–40, 2008. Cerca con Google

Sankarasubramanian, A., Sabo, J., Larson, K., Seo, S., Sinha, T., Bhowmik, R., Ruhi Vidal, A., Kunkel, K., Mahinthakumar, G., Berglund, E., and Kominoski, J. Synthesis of public water supply use in the United States: spatio-temporal patterns and socioeconomic controls. Earth’s Future, 5(7):771–788, 2017. Cerca con Google

Sawicz, K., Wagener, T., Sivapalan, M., Troch, P. A., and Carrillo, G. Catchment classification: empirical analysis of hydrologic similarity based on catchment function in the eastern USA. Hydrol Earth Syst Sci, 15:2895–2911, 2011. Cerca con Google

Schaefli, B., Rinaldo, A., and Botter, G. Analytic probability distributions for snowdominated streamflow. Water Resour Res, 49(5):2701–2713, 2013. Cerca con Google

Schwager, M., Johst, K., and Jeltsch, F. Does red noise increase or decrease extinction risk? Single extreme events versus series of unfavorable conditions. Am Nat, 167(6): 879–888, 2006. Cerca con Google

Settin, T., Botter, G., Rodriguez-Iturbe, I., and Rinaldo, A. Numerical studies on soil moisture distributions in heterogeneous catchments. Water Resour Res, 43(5): WR005737, 2007. Cerca con Google

Stoer, J. and Bulirsch, R. Introduction to numerical analysis. Springer Verlag, 1993. Cerca con Google

Trewartha, G. T. An introduction to climate. Kogakusha Company Ltd, 1954. Cerca con Google

USACE. Annual report of the secretary of the army on civil works activities. Technical report, U.S. Army Corps of Engineers, 1980–2010. Cerca con Google

USGS. Estimated use of water in the United States. Technical report, United States Geological Survey (USGS), 1950–2010. Cerca con Google

Van Vliet, M. T. H., Jarsley, J. R., Ludwig, F., Vogele, S., Lettenmaier, D. P., and Kabat, P. Vulnerability of US and European electricity supply to climate change. Nat Clim Change, 2:676–681, 2012. Cerca con Google

Vezza, P., Parasiewicz, P., Spairani, M., and Comoglio, C. Habitat modeling in highgradient streams: the mesoscale approach and application. Ecological Applications, 24(4):844–861, 2014. Cerca con Google

Watts, R. J., Richter, B. D., Opperman, J. J., and Bowmer, K. H. Dam reoperation in an era of climate change. Marine and Freshwater Research, 62:321–327, 2011. Cerca con Google

WCD. Dams and Development: a new framework for decision making. Technical report, Earthscan Publications Ltd, London and Sterling, VA, 2000. Cerca con Google

Wilks, D. S. Statistical Methods in the Atmospheric Science. Elsevier, 2011. Cerca con Google

Woods, R. A. Analytical model of seasonal climate impacts on snow hydrology: continuous snowpacks. Adv Water Resour, 32(10):1465–1481, 2009. Cerca con Google

Ye, S., Yaeger, M. A., Coopersmith, E., Cheng, L., and Sivapalan, M. Exploring the physical controls of regional patterns of flow duration curves - Part 2: role of seasonality, the regime curve, and the associated process controls. Hydrol Earth Syst Sci, 16(11):4447–4465, 2012. Cerca con Google

Zarfl, C., Lumsdon, A., Berlekamp, J., Tydecks, J., and Tockner, K. A global boom in hydropower dam construction. Aquat Sci, 77:161–170, 2014. Cerca con Google

Ziv, G., Baran, E., Nam, S., Rodriguez-Iturbe, I., and Levin, S. A. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proc Natl Acad Sci USA, 109(15):5609–5614, 2012. Cerca con Google

Zolezzi, G., Bellin, A., Bruno, M. C., B., M., and Siviglia, A. Assessing hydrological alterations at multiple temporal scales: Adige River, Italy. Water Resour Res, 45(12): W12421, 2009. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record