Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Watutantrige Fernando, Sara (2018) Caratteristiche clinico molecolari dei carcinomi tiroidei differenziati ad alto rischio. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document - Other
1489Kb

Abstract (italian or english)

Background: Differentiated thyroid carcinoma (DTC) is the most common endocrine malignancy, and its incidence is rapidly increasing. Its prognosis is usually excellent, but some patients exhibit an aggressive tumor with poor clinical outcome. The clinical-molecular features that confer an aggressive phenotype in DTC are object of various studies, being the clinical significance of some of them still uncertain. A greater knowledge of clinical, pathological and molecular features of DTC might improve the diagnostic frame and lead to an individualized therapy.

The objectives of the study: 1) clinical characterization of high-risk DTC cases; 2) molecular characterization with reference on the study of BRAF, RAS, TP53, PTEN and PIK3CA genes and TERT promoter; 3) correlation between clinical and molecular features; 4) comparison of clinical-molecular profile between high- and low risk DTC.

Materials and methods: We studied 119 high-risk patients (max dimension >40mm and/or metastatic) who underwent surgery for diagnosis of DTC between 2007 and 2016. Clinical-molecular features of these patients were compared with those of 144 adult patients, consecutive for molecular study, who underwent surgery for diagnosis of DTC between 2007 and 2010.
Results: subjects with metastatic tumor or both metastatic and tumor size larger than 40mm had worse outcome than subjects with tumor larger than 40mm: during the follow-up they had a persistent disease or were dead in 62% and 79% of cases respect to 13% of the latter (p<0,01), they were also more likely to undergo a second treatment (67% and 86% respect to 8%, p<0,01) and had a reduced Disease-Free Survival (DFS) (p<0,01).
Among patients with high-risk tumors, we detected BRAF mutations in 26% of cases, RAS mutations in 10% of cases, TERT promoter mutations in 18% of cases, TP53 mutations in 1% of cases, PTEN mutations in 2% of cases, PIK3CA in 3% of cases. No link was found between these mutations and outcome, except for TERT promoter mutations that were linked to a more severe disease. Metastatic subjects had a higher prealence of TERT promoter mutations than subjects with larger size tumors (27% vs 11%, p<0,01).
Patients with high-risk cancer had worse clinical-pathological features than low-risk patients, except for the rate of multifocal disease. Regarding the outcome, high-risk patients had poorer clinical outcome, were more likely to have second treatment and had reduced DFS.
BRAF gene mutations were more often found in low-risk carcinomas respect to the high-risk ones (61% vs 26%, p<0,01), while among high-risk cases respect to the low-risk ones, RAS mutations were more common (10% vs 2%, p<0,01), particularly in tumors >40mm, so that TERT mutations (18% vs 3%, p<0,01), particularly among metastatic subjects.
Globally, TERT promoter mutations, even in association with other molecular events, are related to older age (67 years vs 47 years, p<0,01), larger tumor size (43mm vs 17mm, p<0,01), tumor extension (T4: 11% vs 4%, p<0,01), distant metastases (56% vs 18%, p<0,01), advanced stage (stage IV: 41% vs 11%, p<0,01), need for a second treatment (27% vs 17%, p<0,01) and worse outcome (persistence/death 69% vs 18%, p<0,01).
With the multivariate analysis, TERT mutations, lymph node involvement and distant metastatis resulted independent risk factors for predicting a persistent disease.
Conclusions: patients with high-risk tumors, particularly metastatic ones, had a worse outcome. The prognostic value of sex, age, tumor size, multifocality, T, N, M and stage was confirmed; TERT mutations, lymph node involvement and distant metastases were found to be independent risk factors for predicting a persistent disease. Patients carrying TERT promoter mutations were found to have a poorer prognosis: they have aggressive carcinomas and worse clinical outcome. No link was found between BRAF, RAS, TP53, PTEN and PIK3CA gene mutations and the clinical-pathological features analyzed.

Abstract (a different language)

Presupposti dello studio: Alcuni pazienti affetti da carcinoma differenziato tiroideo (DTC) esitano in persistenza o decesso. Una maggiore definizione delle caratteristiche clinico-molecolari potrebbe consentire un miglior inquadramento diagnostico e l’esecuzione di una terapia individualizzata.
Scopo dello studio: 1) caratterizzazione clinica dei casi dei DTC ad alto rischio dell’adulto; 2) caratterizzazione molecolare (BRAF, RAS, TP53, PTEN, PIK3CA e di TERT promotore) nei DTC ad alto rischio dell’adulto; 3) correlazione tra gli aspetti clinico/molecolari; 4) confronto tra il profilo clinico/molecolare dei DTC ad alto rischio con quelli a basso rischio.
Materiali e metodi: Abbiamo studiato 119 pazienti con tumore ad alto rischio (dimensione maggiore >40mm e/o metastasi a distanza), sottoposti a intervento chirurgico per DTC tra il 2007 e il 2016. Le caratteristiche clinico/molecolari dei pazienti sono state confrontate con quelle di 144 pazienti adulti consecutivi per studio molecolare.
Risultati: I soggetti con tumore metastatico e metastatico di grosse dimensioni presentavano outcome peggiore dei soggetti con tumore>40mm: risultavano più frequentemente persistenti/deceduti (62% e 79% vs 13%, p<0,01), necessitavano più spesso di secondo trattamento (67% e 86% vs 8%, p<0,01) e presentavano Disease-Free Survival (DFS) ridotta (p<0,01). Nel gruppo dei carcinomi ad alto rischio sono state riscontrate mutazioni puntiformi a carico di BRAF (26%), RAS (10%), TERT promotore (18%), TP53 (1%), PTEN (2%) e PIK3CA (3%). Tra i pazienti mutati e quelli wt non è stata rilevata differenza di outcome fatta eccezione per la mutazione di TERT, che era correlata ad indici di malattia più severi. I soggetti metastatici presentavano una maggior prevalenza di mutazioni a carico di TERT rispetto ai soggetti con tumore>40mm (27% vs 11%, p<0,01).
I pazienti ad alto rischio differivano dai pazienti a basso rischio per tutte le caratteristiche clinico/patologiche analizzate, eccetto la frequenza di multifocalità, risultavano più spesso persistenti/deceduti, presentavano più frequentemente necessità di secondo trattamento e mostravano ridotta DFS.
Le mutazioni di BRAF sono risultate più frequenti nel gruppo di carcinomi a basso rischio (61% vs 26%, p<0,01), mentre nei carcinomi ad alto rischio sono risultate più frequenti le mutazioni di RAS (10% vs 2%, p<0,01), in particolare nei tumori>40mm, e di TERT promotore (18% vs 3%, p<0,01), in particolare nei soggetti metastatici.
Globalmente la mutazione di TERT promotore, anche in associazione con altri eventi molecolari, era correlata ad età avanzata (64aa vs 47aa, p<0,01), dimensione maggiore (43mm vs 17mm, p<0,01), estensione del tumore (T4 11% vs 4%, p<0,01), metastasi a distanza (56% vs 18%, p<0,01), stadio avanzato (stadio IV 41% vs 11%, p<0,01), necessità di secondo trattamento (57% vs 17%, p<0,01) ed outcome peggiore (persistenza/decesso 69% vs 18%, p<0,01).
All’analisi multivariata sono risultati fattori indipendenti di outcome negativo la presenza di mutazioni a carico di TERT, il coinvolgimento linfonodale e la presenza di metastasi a distanza (p<0,05).
Conclusioni: i pazienti con tumore ad alto rischio, in particolare i metastatici, presentano un outcome peggiore. L’impatto prognostico di tutte le caratteristiche cliniche analizzate (sesso, età, dimensioni, multifocalità, T, N, M, stadio) è stato confermato, sebbene siano risultati fattori indipendenti per recidiva o persistenza di malattia la presenza di mutazioni di TERT promotore, il coinvolgimento linfonodale e le metastasi a distanza. La mutazione di TERT è associata ad una prognosi peggiore: i soggetti mutati presentano malattia più aggressiva e un outcome peggiore. Non sono state rilevate differenze di prognosi nei pazienti che presentavano mutazioni puntiformi negli altri geni indagati.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Mian, Caterina
Supervisor:Barollo, Susi and Bertazza, Loris
Ph.D. course:Ciclo 31 > Corsi 31 > SCIENZE CLINICHE E SPERIMENTALI
Data di deposito della tesi:28 November 2018
Anno di Pubblicazione:28 November 2018
Key Words:carcinoma tiroide molecolare alto rischio
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/13 Endocrinologia
Struttura di riferimento:Dipartimenti > Dipartimento di Medicina
Codice ID:11422
Depositato il:05 Nov 2019 17:31
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. GLOBOCAN 2012: Estimated cancer incidence, mortality and prevalence worldwide in 2012. population fact sheets. http://globocan.iarc.fr/Pages/fact_sheets_population.aspx Web site. http://globocan.iarc.fr/Pages/fact_sheets_population.aspx. Accessed Aug 15, 2017. Vai! Cerca con Google

2. Davies L, Welch H. Increasing incidence of thyroid cancer in the united states, 1973-2002. JAMA. 2006;295(18):2164-2167. Cerca con Google

3. Vaccarella S, Dal Maso L, Laversanne M, Bray F, Plummer M, Franceschi S. The impact of diagnostic changes on the rise in thyroid cancer incidence: A population-based study in selected high-resource countries. Thyroid. 2015;25(10):1127-1136. Cerca con Google

4. Vaccarella S, Franceschi S, Bray F, Wild CP, Plummer M, Dal Maso L. Worldwide thyroid-cancer epidemic? the increasing impact of overdiagnosis. N Engl J Med. 2016;375(7):614-617. Cerca con Google

5. Associazione italiana di oncologia medica. I numeri del cancro in italia. 2014. Cerca con Google

6. Davies L, Welch H. Current thyroid cancer trends in the united states. JAMA Otolaryngology–Head & Neck Surgery. 2014;140(4):317-322. Cerca con Google

7. Aschebrook-Kilfoy B, Grogan RH, Ward MH, Kaplan E, Devesa SS. Follicular thyroid cancer incidence patterns in the united states, 1980–2009. Thyroid. 2013;23(8):1015-1021. Cerca con Google

8. Rahbari R, Zhang L, Kebebew E. Thyroid cancer gender disparity. Future oncology (London, England). 2010;6(11):1771-1779. Cerca con Google

9. Zeng Q, Chen GG, Vlantis AC, Van Hasselt CA. Oestrogen mediates the growth of human thyroid carcinoma cells via an oestrogen receptor – ERK pathway. Cell Prolif. 2007;40(6):921-935. Cerca con Google

10. Rajoria S, Suriano R, Shanmugam A, et al. Metastatic phenotype is regulated by estrogen in thyroid cells. Thyroid. 2010;20(1):33-41. Cerca con Google

11. Moysich KB, Menezes RJ, Michalek AM. Chernobyl-related ionising radiation exposure and cancer risk: An epidemiological review. The Lancet Oncology. 2002;3(5):269-279. http://www.sciencedirect.com/science/article/pii/S1470204502007271. doi: //dx.doi.org/10.1016/S1470-2045(02)00727-1. Vai! Cerca con Google

12. Furukawa K, Preston D, Funamoto S, et al. Long-term trend of thyroid cancer risk among japanese atomic-bomb survivors: 60 years after exposure. International journal of cancer.Journal international du cancer. 2012;132(5):1222-1226. Cerca con Google

13. Shore RE, Hildreth N, Dvoretsky P, Andresen E, Moseson M, Pasternack B. Thyroid cancer among persons given X-ray treatment in infancy for an enlarged thymus gland. Am J Epidemiol. 1993;137(10):1068-1080. Cerca con Google

14. Lundell M, Hakulinen T, Holm LE. Thyroid cancer after radiotherapy for skin hemangioma in infancy. Radiat Res. 1994;140(3):334-339. Cerca con Google

15. Paloyan E, Lawrence AM. Thyroid neoplasms after radiation therapy for adolescent acne vulgaris. Arch Dermatol. 1978;114(1):53-55. Cerca con Google

16. Acharya S, Sarafoglou K, LaQuaglia M, et al. Thyroid neoplasms after therapeutic radiation for malignancies during childhood or adolescence. Cancer. 2003;97(10):2397-2403. Cerca con Google

17. Bhatti P, Veiga LHS, Ronckers C, et al. Risk of second primary thyroid cancer after radiotherapy for a childhood cancer in a large cohort study: An update from the childhood cancer survivor study. Radiat Res. 2010;174(6):741-752. Cerca con Google

18. Podda MG, Terenziani M, Gandola L, et al. Thyroid carcinoma after treatment for malignancies in childhood and adolescence: From diagnosis through follow-up. Medical Oncology. 2014;31(8):121. Cerca con Google

19. Zhang Y, Chen Y, Huang H, et al. Diagnostic x-ray exposure increases the risk of thyroid microcarcinoma: A population-based case-control study. European journal of cancer prevention : the official journal of the European Cancer Prevention Organisation (ECP). 2015;24(5):439-446. Cerca con Google

20. Xu L, Li G, Wei Q, El-Naggar A, Sturgis EM. Family history of cancer and risk of sporadic differentiated thyroid carcinoma. Cancer. 2011;118(5):1228-1235. Cerca con Google

21. Memon A, Berrington de González A, Luqmani Y, Suresh A. Family history of benign thyroid disease and cancer and risk of thyroid cancer. European Journal of Cancer. 2004;40(5):754-760. http://www.sciencedirect.com/science/article/pii/S0959804904000024. doi: //dx.doi.org/10.1016/j.ejca.2003.12.011. Vai! Cerca con Google

22. Goldgar DE, Easton DF, Cannon-Albright LA, Skolnick MH. Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. J Natl Cancer Inst. 1994;86(21):1600-1608. Cerca con Google

23. Nose V. Familial thyroid cancer: A review. Mod Pathol. 2011;24 Suppl 2:19. Cerca con Google

24. Francis GL, Waguespack SG, Bauer AJ, et al. Management guidelines for children with thyroid nodules and differentiated thyroid cancer. Thyroid. 2015;25(7):716-759. https://doi.org/10.1089/thy.2014.0460. doi: 10.1089/thy.2014.0460. Vai! Cerca con Google

25. Jankovic B, Le KT, Hershman JM. Hashimoto's thyroiditis and papillary thyroid carcinoma: Is there a correlation? The Journal of Clinical Endocrinology & Metabolism. 2013;98(2):474-482. Cerca con Google

26. Mazokopakis EE, Tzortzinis AA, Dalieraki-Ott EI, et al. Coexistence of hashimoto's thyroiditis with papillary thyroid carcinoma. A retrospective study. Hormones (Athens). 2010;9(4):312-317. Cerca con Google

27. Anil C, Goksel S, Gursoy A. Hashimoto's thyroiditis is not associated with increased risk of thyroid cancer in patients with thyroid nodules: A single-center prospective study. Thyroid. 2010;20(6):601-606. Cerca con Google

28. Repplinger D, Bargren A, Zhang Y, Adler JT, Haymart M, Chen H. Is hashimoto's thyroiditis a risk factor for papillary thyroid cancer? Journal of Surgical Research. 2008;150(1):49-52. http://www.sciencedirect.com/science/article/pii/S0022480407005926. doi: //dx.doi.org/10.1016/j.jss.2007.09.020. Vai! Cerca con Google

29. Larson SD, Jackson LN, Riall TS, et al. Increased incidence of well-differentiated thyroid cancer associated with hashimoto’s thyroiditis and the role of the pi3k/akt pathway. J Am Coll Surg. 2007;204(5):764-775. Cerca con Google

30. Azizi G, Malchoff C. Autoimmune thyroid disease: A risk factor for thyroid cancer. Endocrine Practice. 2011;17(2):201-209. Cerca con Google

31. Lee J, Kim Y, Choi J, Kim Y. The association between papillary thyroid carcinoma and histologically proven hashimoto's thyroiditis: A meta-analysis. European Journal of Endocrinology. 2013;168(3):343-349. Cerca con Google

32. Resende dP, Grønhøj C, Feldt-Rasmussen U, von Buchwald C. Association between hashimoto’s thyroiditis and thyroid cancer in 64,628 patients. Frontiers in Oncology. 2017;7:53. Cerca con Google

33. AXELRAD AA, LEBLOND CP. Induction of thyroid tumors in rats by a low iodine diet. Cancer. 1955;8(2):339-367. Cerca con Google

34. Kanno J, Onodera H, Furuta K, Maekawa A, Kasuga T, Hayashi Y. Tumor-promoting effects of both iodine deficiency and iodine excess in the rat thyroid. Toxicol Pathol. 1992;20(2):226-235. doi: 10.1177/019262339202000209 [doi]. Cerca con Google

35. Zimmermann MB, Galetti V. Iodine intake as a risk factor for thyroid cancer: A comprehensive review of animal and human studies. Thyroid Research. 2015;8(1):8. Cerca con Google

36. Zhang Y, Guo GL, Han X, et al. Do polybrominated diphenyl ethers (PBDE) increase the risk of thyroid cancer? Bioscience Hypotheses. 2008;1(4):195-199. http://www.sciencedirect.com/science/article/pii/S1756239208000657. doi: //dx.doi.org/10.1016/j.bihy.2008.06.003. Vai! Cerca con Google

37. Zeng F, Lerro C, Lavoué J, et al. Occupational exposure to pesticides and other biocides and risk of thyroid cancer. Occup Environ Med. 2017;74(7):502. Cerca con Google

38. Asioli S, Erickson LA, Sebo TJ, et al. Papillary thyroid carcinoma with prominent hobnail features: A new aggressive variant of moderately differentiated papillary carcinoma. A clinicopathologic, immunohistochemical, and molecular study of eight cases. Am J Surg Pathol. 2010;34(1):44-52. doi: 10.1097/PAS.0b013e3181c46677 [doi]. Cerca con Google

39. Watutantrige-Fernando S, Vianello F, Barollo S, Bertazza L, Galuppini F, Cavedon E, Censi S, Benna C, Ide EC, Parisi A, Nacamulli D, Iacobone M, Pennelli G, Mian C. The Hobnail Variant of Papillary Thyroid Carcinoma: Clinical/Molecular Characteristics of a Large Monocentric Series and Comparison with Conventional Histotypes. Thyroid. 2018; 28: 96-103. Cerca con Google

40. Maitra A. The endocrine system. In: Kumar V, Abbas A, Fausto N, Aster J, eds. Robbins and cotran pathologic basis of disease. Philadelphia: Elsevier; 2009:1119-1124. Cerca con Google

41. LiVolsi VA. Papillary thyroid carcinoma: An update. Mod Pathol. 2011;24:S9. Cerca con Google

42. Sobrinho-Simoes M, Eloy C, Magalhaes J, Lobo C, Amaro T. Follicular thyroid carcinoma. Mod Pathol. 2011;24:S18. Cerca con Google

43. Schlumberger M, Filetti S, Alexander EK, Hay ID. Nontoxic diffuse goiter, nodular thyroid disorders, and thyroid malignancies. In: Melmed S, Polonsky K, Larsen R, Kronenberg H, eds. Williams textbook of endocrinology 13th edition. Philadelphia: Elsevier; 2015:453-481. Cerca con Google

44. Haugen BR, Alexander EK, Bible KC, et al. 2015 american thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The american thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1-133. Cerca con Google

45. Rago T, Santini F, Scutari M, Pinchera A, Vitti P. Elastography: New developments in ultrasound for predicting malignancy in thyroid nodules. The Journal of Clinical Endocrinology & Metabolism. 2007;92(8):2917-2922. Cerca con Google

46. Bhatia KSS, Tong CSL, Cho CCM, Yuen EHY, Lee YYP, Ahuja AT. Shear wave elastography of thyroid nodules in routine clinical practice: Preliminary observations and utility for detecting malignancy. Eur Radiol. 2012;22(11):2397-2406. Cerca con Google

47. Deandreis D, Al Ghuzlan A, Auperin A, et al. Is (18)F-fluorodeoxyglucose-PET/CT useful for the presurgical characterization of thyroid nodules with indeterminate fine needle aspiration cytology? Thyroid. 2012;22(2):165-172. Cerca con Google

48. Bertagna F, Treglia G, Piccardo A, Giubbini R. Diagnostic and clinical significance of F-18-FDG-PET/CT thyroid incidentalomas. The Journal of Clinical Endocrinology & Metabolism. 2012;97(11):3866-3875. Cerca con Google

49. Bongiovanni M, Spitale A, Faquin WC, Mazzucchelli L, Baloch ZW. The bethesda system for reporting thyroid cytopathology: A meta-analysis. Acta Cytologica. 2012;56(4):333-339. Cerca con Google

50. Cibas ES, Ali S,Z. The bethesda system for reporting thyroid cytopathology. American Journal of Clinical Pathology. 2015;132(5):658-665. Cerca con Google

51. Straccia P, Rossi ED, Bizzarro T, et al. A meta-analytic review of the bethesda system for reporting thyroid cytopathology: Has the rate of malignancy in indeterminate lesions been underestimated? Cancer Cytopathology. 2015;123(12):713-722. Cerca con Google

52. Namba H, Nakashima M, Hayashi T, et al. Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. The Journal of Clinical Endocrinology & Metabolism. 2003;88(9):4393-4397. doi: 10.1210/jc.2003-030305 [doi]. Cerca con Google

53. Kim KH, Kang DW, Kim SH, Seong IO, Kang DY. Mutations of the BRAF gene in papillary thyroid carcinoma in a korean population. Yonsei Med J. 2004;45(5):818-821. doi: 200410818 [pii]. Cerca con Google

54. Hyeon J, Ahn S, Shin JH, Oh YL. The prediction of malignant risk in the category “atypia of undetermined significance/follicular lesion of undetermined significance” of the bethesda system for reporting thyroid cytopathology using subcategorization and BRAF mutation results. Cancer Cytopathology. 2014;122(5):368-376. Cerca con Google

55. Nikiforov YE, Ohori NP, Hodak SP, Carty SE, LeBeau SO, Ferris RL. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: A prospective analysis of 1,056 FNA samples. J Clin Endocrinol Metab. 2011;96. Cerca con Google

56. Nardi F, Basolo F, Crescenzi A, et al. Italian consensus for the classification and reporting of thyroid cytology. J Endocrinol Invest. 2014;37(6):593-599. Cerca con Google

57. Lin JD, Hsieh SH, Chang HY, Huang CC, Chao TC. Outcome after treatment for papillary thyroid cancer. Head Neck. 2001;23(2):140-146. Cerca con Google

58. Lo C, Chan W, Lam K, Wan K. Follicular thyroid carcinoma: The role of histology and staging systems in predicting survival. Ann Surg. 2005;242(5):708-715. Cerca con Google

59. Tuttle M, Morris LF, Haugen B, Shah J, Sosa JA, Rohren E, Subramaniam RM, Hunt JL, Perrier ND. Thyroid 2017. Differentiated and Anaplastic Carcinoma (Chapter 73). In: Amin MB, Edge SB, Greene F, Byrd D, Brookland RK, Washington MK, Gershenwald JE, Compton CC, Hess KR, Sullivan DC, Jessup JM, Brierley J, Gaspar LE, Schilsky RL, Balch CM, Winchester DP, Asare EA, Madera M, Gress DM, Meyer LR (eds) AJCC Cancer Staging Manual. 8th ed. Springer International Publishing, New York City Cerca con Google

60. Oyer SL, Smith VA, Lentsch EJ. Reevaluating the prognostic significance of age in differentiated thyroid cancer. Otolaryngol Head Neck Surg. 2012;147(2):221-226. Cerca con Google

61. Bischoff LA, Curry J, Ahmed I, Pribitkin E, Miller JL. Is above age 45 appropriate for upstaging well-differentiated papillary thyroid cancer? Endocr Pract. 2013;19(6):995-997. Cerca con Google

62. Amphlett B, Lawson Z, Abdulrahman GO,Jr, et al. Recent trends in the incidence, geographical distribution, and survival from thyroid cancer in wales, 1985-2010. Thyroid. 2013;23(11):1470-1478. Cerca con Google

63. Cho JS, Yoon JH, Park MH, et al. Age and prognosis of papillary thyroid carcinoma: Retrospective stratification into three groups. Journal of the Korean Surgical Society. 2012;83(5):259-266. Cerca con Google

64. Nixon IJ, Kuk D, Wreesmann V, et al. Defining a valid age cutoff in staging of well-differentiated thyroid cancer. Annals of surgical oncology. 2015;23(2):410-415. Cerca con Google

65. Papaleontiou M, Haymart MR. New insights in risk stratification of differentiated thyroid cancer. Curr Opin Oncol. 2014;26(1):1-7. Cerca con Google

66. Machens A, Holzhausen H, Dralle H. The prognostic value of primary tumor size in papillary and follicular thyroid carcinoma. Cancer. 2005;103(11):2269-2273. Cerca con Google

67. Arora N, Turbendian HK, Scognamiglio T, et al. Extrathyroidal extension is not all equal: Implications of macroscopic versus microscopic extent in papillary thyroid carcinoma. Surgery. 2008;144(6):8. Cerca con Google

68. Jung SP, Kim M, Choe JH, Kim JS, Nam SJ, Kim JH. Clinical implication of cancer adhesion in papillary thyroid carcinoma: Clinicopathologic characteristics and prognosis analyzed with degree of extrathyroidal extension. World J Surg. 2013;37(7):1606-1613. Cerca con Google

69. Wang LY, Nixon IJ, Patel SG, et al. Operative management of locally advanced, differentiated thyroid cancer. Surgery. 2016;160(3):738-746. Cerca con Google

70. Wang LY, Ghossein R, Palmer FL, et al. Microscopic positive margins in differentiated thyroid cancer is not an independent predictor of local failure. Thyroid. 2015;25(9):993-998. Cerca con Google

71. Randolph GW, Duh QY, Heller KS, et al. The prognostic significance of nodal metastases from papillary thyroid carcinoma can be stratified based on the size and number of metastatic lymph nodes, as well as the presence of extranodal extension. Thyroid. 2012;22(11):1144-1152. Cerca con Google

72. Schneider DF, Chen H, Sippel RS. Impact of lymph node ratio on survival in papillary thyroid cancer. Ann Surg Oncol. 2013;20(6):1906-1911. Cerca con Google

73. Bardet S, Malville E, Rame J, et al. Macroscopic lymph-node involvement and neck dissection predict lymph-node recurrence in papillary thyroid carcinoma. European Journal of Endocrinology. 2008;158(4):551-560. Cerca con Google

74. Bardet S, Ciappuccini R, Quak E, et al. Prognostic value of microscopic lymph node involvement in patients with papillary thyroid cancer. The Journal of Clinical Endocrinology & Metabolism. 2015;100(1):132-140. Cerca con Google

75. Zaydfudim V, Feurer ID, Griffin MR, Phay JE. The impact of lymph node involvement on survival in patients with papillary and follicular thyroid carcinoma. Surgery. 2008;144(6):8. Cerca con Google

76. Ruegemer JJ, Hay ID, Bergstralh EJ, Ryan JJ, Offord KP, Gorman CA. Distant metastases in differentiated thyroid carcinoma: A multivariate analysis of prognostic variables. The Journal of Clinical Endocrinology & Metabolism. 1988;67(3):501-508. Cerca con Google

77. Shoup M, Stojadinovic A, Nissan A, et al. Prognostic indicators of outcomes in patients with distant metastases from differentiated thyroid carcinoma. Journal of the American College of Surgeons. 2003;197(2):191-197. http://www.sciencedirect.com/science/article/pii/S1072751503003326. doi: //dx.doi.org/10.1016/S1072-7515(03)00332-6. Vai! Cerca con Google

78. Durante C, Haddy N, Baudin E, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: Benefits and limits of radioiodine therapy. The Journal of Clinical Endocrinology & Metabolism. 2006;91(8):2892-2899. Cerca con Google

79. Macedo FIB, Mittal VK. Total thyroidectomy versus lobectomy as initial operation for small unilateral papillary thyroid carcinoma: A meta-analysis. Surgical Oncology. 2015;24(2):117-122. http://www.sciencedirect.com/science/article/pii/S0960740415000274. doi: //dx.doi.org/10.1016/j.suronc.2015.04.005. Vai! Cerca con Google

80. Rosato L, Avenia N, Bernante P, et al. Complications of thyroid surgery: Analysis of a multicentric study on 14,934 patients operated on in italy over 5 years. World J Surg. 2004;28(3):271-276. Cerca con Google

81. Verloop H, Louwerens M, Schoones JW, Kievit J, Smit JW, Dekkers OM. Risk of hypothyroidism following hemithyroidectomy: Systematic review and meta-analysis of prognostic studies. J Clin Endocrinol Metab. 2012;97(7):2243-2255. Cerca con Google

82. Polachek A, Hirsch D, Tzvetov G, et al. Prognostic value of post-thyroidectomy thyroglobulin levels in patients with differentiated thyroid cancer. J Endocrinol Invest. 2011;34(11):855-860. Cerca con Google

83. Park H, Gerard SK. Stunning by 131I scanning: Untoward effect of 131I thyroid imaging prior to radioablation therapy. In: Wartofsky L, Van Nostrand D, eds. Thyroid cancer: A comprehensive guide to clinical management. New York, NY: Springer New York; 2016:225-235. https://doi.org/10.1007/978-1-4939-3314-3_16. 10.1007/978-1-4939-3314-3_16. Vai! Cerca con Google

84. Schlumberger M, Catargi B, Borget I, et al. Strategies of radioiodine ablation in patients with low-risk thyroid cancer. N Engl J Med. 2012;366(18):1663-1673. Cerca con Google

85. Luster M, Clarke SE, Dietlein M, et al. Guidelines for radioiodine therapy of differentiated thyroid cancer. European Journal of Nuclear Medicine and Molecular Imaging. 2008;35(10):1941. Cerca con Google

86. Sherman SI. Cytotoxic chemotherapy for differentiated thyroid carcinoma. Clinical Oncology. 2010;22(6):464-468. http://www.sciencedirect.com/science/article/pii/S0936655510001263. doi: //dx.doi.org/10.1016/j.clon.2010.03.014. Vai! Cerca con Google

87. Ito Y, Uruno T, Nakano K, et al. An observation trial without surgical treatment in patients with papillary microcarcinoma of the thyroid. Thyroid. 2003;13(4):381-387. Cerca con Google

88. Eustatia-Rutten CFA, Smit JWA, Romijn JA, et al. Diagnostic value of serum thyroglobulin measurements in the follow-up of differentiated thyroid carcinoma, a structured meta-analysis. Clin Endocrinol (Oxf). 2004;61(1):61-74. Cerca con Google

89. Han JM, Kim WB, Yim JH, et al. Long-term clinical outcome of differentiated thyroid cancer patients with undetectable stimulated thyroglobulin level one year after initial treatment. Thyroid. 2012;22(8):784-790. Cerca con Google

90. Klubo-Gwiezdzinska J, Burman KD, Van Nostrand D, Wartofsky L. Does an undetectable rhTSH-stimulated tg level 12 months after initial treatment of thyroid cancer indicate remission? Clin Endocrinol (Oxf). 2011;74(1):111-117. Cerca con Google

91. Krahn J, Dembinski T. Thyroglobulin and anti-thyroglobulin assays in thyroid cancer monitoring. Clinical Biochemistry. 2009;42(4):416-419. http://www.sciencedirect.com/science/article/pii/S0009912008006449. doi: //dx.doi.org/10.1016/j.clinbiochem.2008.12.017. Vai! Cerca con Google

92. Chung J-, Park YJ, Kim TY, et al. Clinical significance of elevated level of serum antithyroglobulin antibody in patients with differentiated thyroid cancer after thyroid ablation. Clin Endocrinol (Oxf). 2002;57(2):215-221. Cerca con Google

93. Ringel M,D., Nabhan F. Approach to follow-up of the patient with differentiated thyroid cancer and positive anti-thyroglobulin antibodies. The Journal of Clinical Endocrinology & Metabolism. 2013;98(8):3104-3110. Cerca con Google

94. de Meer, Siegrid G A, Vorselaars, Wessel M C M, Kist JW, et al. Follow-up of patients with thyroglobulin-antibodies: Rising tg-ab trend is a risk factor for recurrence of differentiated thyroid cancer. Endocr Res. 2017:1-9. Cerca con Google

95. Kalender E, Elboga U, Celen YZ, Demi HD, Sahin E, Yilmaz M. Is it necessary to perform control diagnostic 131I whole body scan after remmant ablation in differentiated thyroid carcinoma patients who have stimulated tg levels under 2 ng/ml? Internal Medicine Inside. 2013;1(1). Cerca con Google

96. Lamartina L, Deandreis D, Durante C, Filetti S. Endocrine tumours: Imaging in the follow-up of differentiated thyroid cancer: Current evidence and future perspectives for a risk-adapted approach. Eur J Endocrinol. 2016;175(5):185. Cerca con Google

97. Ma C. Differentiated thyroid carcinoma with elevated thyroglobulin and negative radioiodine whole-body scan metastases. In: Ahmadzadehfar H, ed. Thyroid cancer - advances in diagnosis and therapy. Rijeka: InTech; 2016:Ch. 08. http://dx.doi.org/10.5772/64356. 10.5772/64356. Vai! Cerca con Google

98. Caetano R, Bastos CR, de Oliveira IA, et al. Accuracy of positron emission tomography and positron emission tomography-CT in the detection of differentiated thyroid cancer recurrence with negative (131) I whole-body scan results: A meta-analysis. Head Neck. 2016;38(2):316-327. Cerca con Google

99. Xing M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer. 2013;13. Cerca con Google

100. Tanaka TN, Alloju SK, Oh DK, Cohen EE. Thyroid cancer: Molecular pathogenesis, tyrosine kinase inhibitors, and other new therapies. American Journal of Hematology/Oncology®. 2015;11(4). Cerca con Google

101. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Signaling through enzyme-coupled cell-surface receptors. In: Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P, eds. Molecular biology of the cell, 5th edition. New York: Garland Science; 2007:921-944. Cerca con Google

102. Weinberg R. Growth factors, receptors and cancer. In: Weinberg R, ed. The biology of cancer, 2nd edition. New York: Garland Science; 2013:131-174. Cerca con Google

103. Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer. 2003;3(1):11-22. Cerca con Google

104. Vara JÁF, Casado E, de Castro J, Cejas P, Belda-Iniesta C, González-Barón M. PI3K/akt signalling pathway and cancer. Cancer Treatment Reviews. 2004;30(2):193-204. http://www.sciencedirect.com/science/article/pii/S0305737203001622. doi: //dx.doi.org/10.1016/j.ctrv.2003.07.007. Vai! Cerca con Google

105. Nikiforov YE. Molecular analysis of thyroid tumors. Mod Pathol. 2011;24:S43. Cerca con Google

106. Cantwell-Dorris ER, O'Leary JJ, Sheils OM. BRAFV600E: Implications for carcinogenesis and molecular therapy. Mol Cancer Ther. 2011;10(3):385-394. http://mct.aacrjournals.org/content/10/3/385.abstract. doi: 10.1158/1535-7163.MCT-10-0799. Vai! Cerca con Google

107. Garnett MJ, Marais R. Guilty as charged. Cancer Cell. 2004;6(4):313-319. http://www.sciencedirect.com/science/article/pii/S153561080400279X. doi: //dx.doi.org/10.1016/j.ccr.2004.09.022. Vai! Cerca con Google

108. Kebebew E, Weng J, Bauer J, et al. The prevalence and prognostic value of BRAF mutation in thyroid cancer. Ann Surg. 2007;246(3):466-471. Cerca con Google

109. Murugan AK, Qasem E, Al-Hindi H, Shi Y, Alzahrani AS. Classical V600E and other non-hotspot BRAF mutations in adult differentiated thyroid cancer. Journal of Translational Medicine. 2016;14:204. Cerca con Google

110. Alzahrani AS, Murugan AK, Qasem E, Alswailem M, Al-Hindi H, Shi Y. Single point mutations in pediatric differentiated thyroid cancer. Thyroid. 2017;27(2):189-196. Cerca con Google

111. Kim TH, Park YJ, Lim JA, et al. The association of the BRAF(V600E) mutation with prognostic factors and poor clinical outcome in papillary thyroid cancer: A meta-analysis. Cancer. 2012;118(7):1764-1773. Cerca con Google

112. Czarniecka A, Oczko-Wojciechowska M, Barczyński M. BRAF V600E mutation in prognostication of papillary thyroid cancer (PTC) recurrence. Gland Surgery. 2016;5(5):495-505. Cerca con Google

113. Xing M. BRAF mutation in papillary thyroid cancer: Pathogenic role, molecular bases, and clinical implications. Endocrine Reviews. 2007;28(7):742-762. Cerca con Google

114. Xing M, Alzahrani AS, Carson KA, Viola D, Elisei R, Bendlova B. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA. 2013;309. Cerca con Google

115. Li J, Zhang S, Zheng S, Zhang D, Qiu X. The BRAF V600E mutation predicts poor survival outcome in patients with papillary thyroid carcinoma: A meta analysis. International Journal of Clinical and Experimental Medicine. 2015;8(12):22246-22253. Cerca con Google

116. Prior IA, Lewis PD, Mattos C. A comprehensive survey of ras mutations in cancer. Cancer Res. 2012;72(10):2457-2467. Cerca con Google

117. Howell GM, Hodak SP, Yip L. RAS mutations in thyroid cancer. Oncologist. 2013;18. Cerca con Google

118. Xing M. Clinical utility of RAS mutations in thyroid cancer: A blurred picture now emerging clearer. BMC Medicine. 2016;14:12. Cerca con Google

119. Fukahori M, Yoshida A, Hayashi H, Yoshihara M, Matsukuma S, Sakuma Y. The associations between RAS mutations and clinical characteristics in follicular thyroid tumors: New insights from a single center and a large patient cohort. Thyroid. 2012;22. Cerca con Google

120. Hara H, Fulton N, Yashiro T, Ito K, DeGroot LJ, Kaplan EL. N-ras mutation: An independent prognostic factor for aggressiveness of papillary thyroid carcinoma. Surgery. 1994;116(6):1010-1016. Cerca con Google

121. Medici M, Kwong N, Angell TE, Marqusee E, Kim MI, Frates MC. The variable phenotype and low-risk nature of RAS-positive thyroid nodules. BMC Med. 2015;13. Cerca con Google

122. Weinberg R. Eternal life: Cell immortalization and tumorigenesis. In: Weinberg R, ed. The biology of cancer, 2nd edition. ; 2013:391-437. Cerca con Google

123. Sandin S, Rhodes D. Telomerase structure(). Curr Opin Struct Biol. 2014;25(100):104-110. Cerca con Google

124. Liu R, Xing M. TERT promoter mutations in thyroid cancer. Endocr Relat Cancer. 2016;23(3):R155. Cerca con Google

125. Xing M, Liu R, Liu X, Murugan AK, Zhu G, Zeiger MA. BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. J Clin Oncol. 2014;32. Cerca con Google

126. Xing M, Liu R, Bishop J. TERT promoter and BRAF mutations cooperatively promote papillary thyroid cancer-related mortality. Thyroid. 2014;24. Cerca con Google

127. Vu-Phan D, Koenig RJ. Genetics and epigenetics of sporadic thyroid cancer. Molecular and Cellular Endocrinology. 2014;386(1):55-66. http://www.sciencedirect.com/science/article/pii/S0303720713003250. doi: //dx.doi.org/10.1016/j.mce.2013.07.030. Vai! Cerca con Google

128. Min HS, Lee C, Jung KC. Correlation of immunohistochemical markers and BRAF mutation status with histological variants of papillary thyroid carcinoma in the korean population. J Korean Med Sci. 2013;28(4):534-541. Cerca con Google

129. Beg S, Siraj AK, Jehan Z, et al. PTEN loss is associated with follicular variant of middle eastern papillary thyroid carcinoma. Br J Cancer. 2015;112(12):1938-1943. Cerca con Google

130. Xing M. Genetic alterations in the phosphatidylinositol-3 kinase/akt pathway in thyroid cancer. Thyroid. 2010;20. Cerca con Google

131. Abubaker J, Jehan Z, Bavi P, et al. Clinicopathological analysis of papillary thyroid cancer with PIK3CA alterations in a middle eastern population. J Clin Endocrinol Metab. 2008;93(2):611-618. doi: jc.2007-1717 [pii]. Cerca con Google

132. Santoro M, Carlomagno F. Central role of RET in thyroid cancer. Cold Spring Harbor Perspectives in Biology. 2013;5(12):a009233. Cerca con Google

133. Zhu Z, Ciampi R, Nikiforova MN, Gandhi M, Nikiforov YE. Prevalence of RET/PTC rearrangements in thyroid papillary carcinomas: Effects of the detection methods and genetic heterogeneity. J Clin Endocrinol Metab. 2006;91(9):3603-3610. Cerca con Google

134. Nikiforov YE, Rowland JM, Bove KE, Monforte-Munoz H, Fagin JA. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res. 1997;57(9):1690-1694. Cerca con Google

135. Romei C, Elisei R. RET/PTC translocations and clinico-pathological features in human papillary thyroid carcinoma. Frontiers in Endocrinology. 2012;3:54. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3356050/. doi: 10.3389/fendo.2012.00054. Vai! Cerca con Google

136. Kato Y, Ying H, Zhao L, et al. PPARgamma insufficiency promotes follicular thyroid carcinogenesis via activation of the nuclear factor-kappaB signaling pathway. Oncogene. 2006;25(19):2736-2747. doi: 1209299 [pii]. Cerca con Google

137. Raman P, Koenig RJ. PAX8-PPARγ fusion protein in thyroid carcinoma. Nature reviews.Endocrinology. 2014;10(10):616-623. Cerca con Google

138. Boos LA, Dettmer M, Schmitt A, et al. Diagnostic and prognostic implications of the PAX8-PPARgamma translocation in thyroid carcinomas-a TMA-based study of 226 cases. Histopathology. 2013;63(2):234-241. Cerca con Google

139. Weinberg R. p53 and apoptosis: Master guardian and executioner. In: Weinberg R, ed. The biology of cancer, 2nd edition. New York: Garland Science; 2013:331-390. Cerca con Google

140. Malaguarnera R, Vella V, Vigneri R, Frasca F. P53 family proteins in thyroid cancer. Endocrine-Related Cancer. 2007;14(1):43-60. Cerca con Google

141. Park, Koh, Kim, et al. Prevalences of gsα, ras, p53 mutations and ret/PTC rearrangement in differentiated thyroid tumours in a korean population. Clin Endocrinol (Oxf). 1998;49(3):317-323. http://dx.doi.org/10.1046/j.1365-2265.1998.00515.x. doi: 10.1046/j.1365-2265.1998.00515.x. Vai! Cerca con Google

142. Pollina L, Pacini F, Fontanini G, Vignati S, Bevilacqua G, Basolo F. Bcl-2, P53 and proliferating cell nuclear antigen expression is related to the degree of differentiation in thyroid carcinomas. Br J Cancer. 1996;73(2):139-143. Cerca con Google

143. Soares P, Cameselle-Teijeiro J, Sobrinho-Simoes M. Immunohistochemical detection of p53 in differentiated, poorly differentiated and undifferentiated carcinomas of the thyroid. Histopathology. 1994;24(3):205-210. Cerca con Google

144. Omar E, Madhavan M, Othman NH. Immunohistochemical localisation of RET and p53 mutant protein of thyroid lesions in a north-eastern malaysian population and its prognostic implications. Pathology. 2004;36(2):152-159. Cerca con Google

145. Bachmann K, Pawliska D, Kaifi J, et al. P53 is an independent prognostic factor for survival in thyroid cancer. Anticancer Res. 2007;27(6B):3993-3997. Cerca con Google

146. Morita N, Ikeda Y, Takami H. Clinical significance of P53 protein expression in papillary thyroid carcinoma. World J Surg. 2008;32(12):2617. Cerca con Google

147. Charles RP, Silva J, Iezza G, Phillips WA, McMahon. M. Activating BRAF, PIK3CA Mutations Cooperate to Promote Anaplastic Thyroid Carcinogenesis. Mol Cancer Res. 2014; 12:979–86. https://doi.org/10.1158/1541-7786. Vai! Cerca con Google

148. American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer1, Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ, Mazzaferri EL, McIver B, Pacini F, Schlumberger M, Sherman SI, Steward DL, Tuttle RM. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2009 Nov;19(11):1167-214. doi: 10.1089/thy.2009.0110. Cerca con Google

149. Nilubol N, Zhang L, Kebebew E. Multivariate analysis of the relationship between male sex, disease-specific survival, and features of tumor aggressiveness in thyroid cancer of follicular cell origin. Thyroid. 2013;23(6):695-702. Cerca con Google

150. Jonklaas J, Sarlis NJ, Litofsky D, et al. Outcomes of patients with differentiated thyroid carcinoma following initial therapy. Thyroid. 2006;16(12):1229-1242. Cerca con Google

151. Xue S, Wang P, Liu J, Chen G. Total thyroidectomy may be more reasonable as initial surgery in unilateral multifocal papillary thyroid microcarcinoma: A single-center experience. World Journal of Surgical Oncology. 2017;15(1):62. https://doi.org/10.1186/s12957-017-1130-7. doi: 10.1186/s12957-017-1130-7. Vai! Cerca con Google

152. Papageorgiou MS, Liratzopoulos N, Efremidou EI, Karanikas M, Minipoulos G, Manolas KJ. Multifocality of thyroid carcinomas: A "privilege" of papillary tumors or not? G Chir. 2010;31(1-2):20-23. doi: 4014 [pii]. Cerca con Google

153. Kuo S, Lin S, Chao T, Hsueh C, Lin K, Lin J. Prognosis of multifocal papillary thyroid carcinoma. International Journal of Endocrinology. 2013;2013:6. http://dx.doi.org/10.1155/2013/809382. Vai! Cerca con Google

154. Ibrahimpasic T, Xu B, Landa I, Dogan S, Middha S, Seshan V, Deraje S, Carlson DL, Migliacci J, Knauf JA, Untch B, Berger MF, Morris L, Tuttle RM, Chan T, Fagin JA, Ghossein R, Ganly I. Genomic Alterations in Fatal Forms of Non-Anaplastic Thyroid Cancer: Identification of MED12 and RBM10 as Novel Thyroid Cancer Genes Associated with Tumor Virulence. Clin Cancer Res. 2017 Oct 1;23(19):5970-5980. doi: 10.1158/1078-0432.CCR-17-1183. Cerca con Google

155. Agrawal N et al. Integrated genomic characterization of papillary thyroid carcinoma. Cancer Genome Atlas Research Network1. Cell. 2014 Oct 23;159(3):676-90. doi: 10.1016/j.cell.2014.09.050. Cerca con Google

156. Charles RP, Silva J, Iezza G, Phillips WA, McMahon. M. Activating BRAF, PIK3CA Mutations Cooperate to Promote Anaplastic Thyroid Carcinogenesis. Mol Cancer Res. 2014; 12:979–86. https://doi.org/10.1158/1541-7786. Vai! Cerca con Google

157. Melo M, Gaspar da Rocha A, Batista R, Vinagre J, Martins MJ, Costa G, Ribeiro C, Carrilho F, Leite V, Lobo C, Cameselle-Teijeiro JM, Cavadas B, Pereira L, Sobrinho-Simões M, Soares P. TERT, BRAF, and NRAS in Primary Thyroid Cancer and Metastatic Disease. J Clin Endocrinol Metab. 2017 Jun 1;102(6):1898-1907. doi: 10.1210/jc.2016-2785. Cerca con Google

158 Xing M, Alzahrani AS, Carson KA, Viola D, Elisei R et al. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA. 2013 Apr 10;309(14):1493-501. doi: 10.1001/jama.2013.3190 Cerca con Google

159 Xing M, Alzahrani AS, Carson KA, Shong YK, Kim TY et al. Association between BRAF V600E mutation and recurrence of papillary thyroid cancer. J Clin Oncol. 2015 Jan 1;33(1):42-50. doi: 10.1200/JCO.2014.56.8253. Epub 2014 Oct 20. Cerca con Google

160 Elisei R, Viola D, Torregrossa L, Giannini R, Romei C et al. The BRAF(V600E) mutation is an independent, poor prognostic factor for the outcome of patients with low-risk intrathyroid papillary thyroid carcinoma: single-institution results from a large cohort study. J Clin Endocrinol Metab. 2012 Dec;97(12):4390-8. doi: 10.1210/jc.2012-1775. Epub 2012 Oct 12. Cerca con Google

161 Barollo S, Pennelli G, Vianello F, Watutantrige Fernando S, Negro I et al. BRAF in primary and recurrent papillary thyroid cancers: the relationship with (131)I and 2-[(18)F]fluoro-2-deoxy-D-glucose uptake ability. Eur J Endocrinol. 2010 Oct;163(4):659-63. doi: 10.1530/EJE-10-0290. Epub 2010 Jul 20. Cerca con Google

162 Galuppini F, Pennelli G, Vianello F, Censi S, Zambonin L et al. BRAF analysis before surgery for papillary thyroid carcinoma: correlation with clinicopathological features and prognosis in a single-institution prospective experience. Clin Chem Lab Med. 2016 Sep 1;54(9):1531-9. doi: 10.1515/cclm-2015-0218. Cerca con Google

163 Damiani L, Lupo S, Rossi R, Bruni S, Bartolomei M et al. Evaluation of the Role of BRAFV600E Somatic Mutation on Papillary Thyroid Cancer Disease Persistence: A Prospective Study. Eur Thyroid J. 2018 Oct;7(5):251-257. doi: 10.1159/000490699. Epub 2018 Jul 13. Cerca con Google

164 Vuong HG, Altibi AM, Duong UN, Ngo HT, Pham TQ et al. Role of molecular markers to predict distant metastasis in papillary thyroid carcinoma: Promising value of TERT promoter mutations and insignificant role of BRAF mutations-a meta-analysis. Tumour Biol. 2017 Oct;39(10):1010428317713913. doi: 10.1177/1010428317713913 Cerca con Google

165. Pennelli G, Vianello F, Barollo S, Pezzani R, Merante Boschin I, Pelizzo MR, Mantero F, Rugge M, Mian C. BRAF(K601E) mutation in a patient with a follicular thyroid carcinoma. Thyroid. 2011 Dec;21(12):1393-6. doi: 10.1089/thy.2011.0120. Cerca con Google

166. Liu X, Bishop J, Shan Y, Pai S, Liu D, Murugan AK. Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocr Relat Cancer. 2013;20. Cerca con Google

167. Xing M, Liu R, Liu X, Murugan AK, Zhu G, Zeiger MA, Pai S, Bishop J. BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. J Clin Oncol. 2014 Sep 1;32(25):2718-26. doi: 10.1200/JCO.2014.55.5094. Cerca con Google

168. Pani F, Macerola E, Basolo F, Boi F, Scartozzi M, Mariotti S. Aggressive differentiated thyroid cancer with multiple metastases and NRAS and TERT promoter mutations: A case report. Oncol Lett. 2017 Aug;14(2):2186-2190. doi: 10.3892/ol.2017.6395. Epub 2017 Jun 16. Cerca con Google

169. Alzahrani AS, Murugan AK, Qasem E, Alswailem M, Al-Hindi H, Shi Y. Single Point Mutations in Pediatric Differentiated Thyroid Cancer. Thyroid. 2017 Feb;27(2):189-196. doi: 10.1089/thy.2016.0339. Epub 2016 Dec 20. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record