Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Pietrogrande, Riccardo (2018) Multiscale modeling of short fiber-reinforced thermoplastics under fatigue loading. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document
Thesis not accessible until 30 September 2021 for intellectual property related reasons.
Visibile to: nobody

6Mb

Abstract (italian or english)

The present work falls within a wider framework concerning the prediction of the mechanical response of short glass fiber-reinforced thermoplastics (SFRT), which are commonly employed in the automotive industry to reduce the overall weight of the components. More in detail, the main objective of the thesis is to develop a fatigue criterion for predicting the effect of different factors affecting the fatigue strength of such materials. In this interest, the influence of the composite complex morphology (local fiber orientation and fiber content) and of notches giving rise to stress concentrations is taken into account. In the present thesis, an experimental activity related to plain and notched specimens is firstly presented. In this context, data resulting from computed tomography (CT) analyses are shown. The latter serve to evaluate the specimens’ fiber orientation distributions, which are quantified by means of fiber orientation tensors (FOT). Furthermore, fatigue test data on the considered coupons, in the absence and in the presence of notches (with radii of 0.1 mm, 0.2 mm, 2 mm and 5 mm), are presented for different fiber orientations and weight fractions (15 wt%, 25 wt%, 35 wt% and 50 wt%). Secondly, being aware of the fact that the onset of a macroscopic crack is driven by the evolution of damage at the matrix level, a multiscale fatigue model relying on matrix stress distributions is presented. The calculation of the matrix stress cumulative distribution functions is achieved by formulating an analytical numerical pseudo-grain approach (i) permitting to avoid the generation, mesh and solution of complex microstructures, but only relying on the solution of simple unidirectional cells. The pseudo-grain method is subsequently included in the formulation of a fatigue criterion, for plain (ii), at first, and for notched specimens (iii), subsequently. The proposed fatigue criterion is eventually validated with a bulk of experimental data, partially presented in this work. Namely, fiber orientation tensors are used to properly assign the anisotropic elastic properties to the developed numerical models and the presented fatigue data are employed to assess the efficacy of the model in terms of fatigue strength prediction.

Abstract (a different language)

Questa tesi di dottorato di ricerca si inserisce all’interno di un quadro più ampio relativo alla previsione del comportamento meccanico di materie termoplastiche rinforzate con fibre corte di vetro. Tali materiali compositi sono spesso impiegati nell’industria automobilistica per ridurre il peso complessivo della componentistica coinvolta. L’obbiettivo principale di questo lavoro è legato alla necessità di sviluppare criteri di cedimento che prevedano l’influenza di diversi fattori sulla resistenza a fatica di tali materiali. In particolar modo, si è scelto di focalizzarsi sull’effetto della morfologia (orientazione locale e contenuto di fibre) e della presenza di intagli, che a loro volta danno luogo a concentrazioni tensionali. In questa tesi viene presentata innanzitutto l’attività sperimentale svolta. Ovvero si riportano dati relativi ad analisi ottenute tramite tomografia computerizzata (CT). Quest’ultima ha il ruolo di fornire informazioni sulle distribuzioni locali dell’orientazione delle fibre, le quali vengono quantificate tramite il tensore di orientazione delle fibre (FOT). Inoltre, si presentano dati relativi al comportamento a fatica di provini con e senza intagli (di raggio pari a 0.1 mm, 0.2 mm, 2 mm e 5 mm), considerando contemporaneamente l’effetto dell’orientazione delle fibre e delle loro frazioni di peso (15 wt%, 25 wt%, 35 wt% e 50 wt%). In secondo luogo, consapevoli del fatto che l’origine di cricche macroscopiche può essere imputata all’evoluzione del danneggiamento nella matrice, si propone un modello multiscala per la previsione della vita a fatica di tali compositi, basandosi sul calcolo delle distribuzioni tensionali locali. Il calcolo delle funzioni cumulate delle tensioni matriciali è ottenuto tramite la formulazione di un approccio analitico-numerico di tipo pseudo-grain (i). Quest’ultimo permette quindi di evitare la generazione, mesh e risoluzione di microstrutture complesse e di ottenere i risultati desiderati tramite semplici modelli numerici unidirezionali. Tale approccio viene poi inserito nella formulazione di un criterio di fatica per provini lisci (ii) e intagliati (iii). Il criterio proposto è poi validato con un numero consistente di dati sperimentali, parte dei quali è presentata in questo lavoro. In particolare, i tensori di orientazione delle fibre sono impiegati per assegnare le proprietà elastiche anisotrope ai modelli numerici. I dati di fatica sono invece utilizzati per verificare l’efficacia del modello in termini di previsione della resistenza a fatica di provini lisci e intagliati.

EPrint type:Ph.D. thesis
Tutor:Quaresimin, Marino
Ph.D. course:Ciclo 31 > Corsi 31 > INGEGNERIA MECCATRONICA E DELL'INNOVAZIONE MECCANICA DEL PRODOTTO
Data di deposito della tesi:29 November 2018
Anno di Pubblicazione:28 November 2018
Key Words:Fatica, compositi, fibre corte, fibre di vetro, micromeccanica, multiscala, termoplastici, danneggiamento, dati sperimentali, tensore di orientazione delle fibre, frazione volumetrica, modo I, multiassialità, stato di tensione multiassiale, provini lisci, provini intagliati, intagli, effetto d'intaglio, parametro di danneggiamento, fatigue, composites, short fibers, glass fibers, micromechanics, multiscale, themoplastics, damage, experimental data, fiber orientation tensor, fiber volume fraction, mode I, multiaxiality, multiaxial stress state, plain specimens, notched specimens, notches, notch effect, damage parameter.
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/14 Progettazione meccanica e costruzione di macchine
Struttura di riferimento:Dipartimenti > Dipartimento di Tecnica e Gestione dei Sistemi Industriali
Codice ID:11436
Depositato il:07 Nov 2019 15:46
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[ADV87] S. G. Advani and C. L. Tucker, Closure approximations for three‐dimensional structure tensors, Journal of Rheology, vol. 34, pp. 367-386, 1990 Cerca con Google

[ADV90] S. G. Advani, C. L. Tucker, A numerical simulation of short fiber orientation in compression molding, Polymer Composites, vol. 11, pp. 164-173, 1990 Cerca con Google

[ADV90_2] S. G. Advani, C. L. Tucker, The use of tensors to describe and predict fiber orientation in short fiber composites, Journal of Rheology, vol. 31, pp. 751-784, 1987 Cerca con Google

[ARI14] M. F. Arif, N. Saintier, F. Meraghni, J. Fitoussi, Y, Chemiscky, G. Robert, Multiscale fatigue damage characterization in short glass fiber reinforced polyamide-66, Composites Part B, vol. 61, pp. 55-65, 2014 Cerca con Google

[BAB18] K. P. Babu, P. M. Mohite, C. S. Upadhyay, Development of an RVE and its stiffness predictions based on mathematical homogenization theory for short fibre composites, International Journal of Solids and Structures, vol. 130-131, pp. 80-104 Cerca con Google

[BAR07] S. Barbouchi, V. Bellenger, A. Tcharkhtchi, Ph. Castaing, T. Jollivet, Effect of water on the fatigue behaviour of a pa66/glass fibers composite material, Journal of Materi-als Science, 2007 Cerca con Google

[BAS1] BASF, CAMPUS® Datasheet, Ultramid® A3W - PA66, 2018 Cerca con Google

[BAS2] BASF, CAMPUS® Datasheet, Ultramid® A3WG3- PA66-GF15, 2018 Cerca con Google

[BAS3] BASF, CAMPUS® Datasheet, Ultramid® A3WG5 - PA66-GF25, 2018 Cerca con Google

[BAS4] BASF, CAMPUS® Datasheet, Ultramid® A3WG7 - PA66-GF35, 2018 Cerca con Google

[BAS5] BASF, CAMPUS® Datasheet, Ultramid® A3WG10 - PA66-GF50, 2018 Cerca con Google

[BAS90] C. Bastioli, I. Guanella, G. Romano, Effects of water sorption on the physical properties of PET, PBT, and their long fibers composites, Polymer Composites, vol. 11, pp. 1-9, 1990 Cerca con Google

[BEL16] E. Belmonte, M. De Monte, T. Riedel, M. Quaresimin, Local microstructure and stress distributions at the crack initiation site in a short fiber reinforced polyamide under fatigue loading, Polymer Testing, vol. 54, pp. 250-259, 2016 Cerca con Google

[BEL17] E. Belmonte, M. De Monte, C.-J Hoffmann, M. Quaresimin, Damage initiation and evolution in short fiber reinforced polyamide under fatigue loading: Influence of fiber volume fraction, Composites Part B, vol. 113, pp. 331-341, 2017 Cerca con Google

[BEL17_2] E. Belmonte, M. De Monte, C.-J Hoffmann, M. Quaresimin, Damage mechanisms in a short glass fiber reinforced polyamide under fatigue loading, vol. 94, pp. 145-157, 2017 Cerca con Google

[BER07] A. Bernasconi, P. Davoli, A. Basile, A. Filippi, Effect of fibre orientation on the fatigue behaviour of a short glass fibre reinforced polyamide-6, International Journal of Fatigue, vol. 29, pp. 199-208, 2006 Cerca con Google

[BER12] A. Bernasconi, F. Cosmi, P. J. Hine, Analysis of fibre orientation distribution in short fibre reinforced polymers: A comparison between optical and tomographic methods, Composite Science and Technology, vol. 72, pp. 2002-2008, 2012 Cerca con Google

[BER15] A. Bernasconi, E. Conrado, P. Hine, An experimental investigation of the combined influence of notch size and fibre orientation on the fatigue strength of a short glass fibre reinforced polyamide 6, polymer Testing, vol. 47, pp. 12-21, 2015 Cerca con Google

[BIE16] D. Biermann, L. Laperrière, G. Reinhart, CIRP Encyclopedia of Production Engineering, Springer Berlin Heidelberg, 2016 Cerca con Google

[BIR12] M. Biron, Thermoplastics and Thermoplastic Composites, William Andrew 2013 , 2012 Cerca con Google

[CAM90] C. W. Camacho, C. L. Tucker, S. Yalvaç, L. McGee, Stiffness and thermal expansion predictions for hybrid short fiber composites, Polymer Composites, vol. 11, p. 229–239, 1990 Cerca con Google

[CAS17] J. A. Casado, F. Gutiérrez-Solana, I. Carrascal, S. Diego, D. Ferreño, Analysis of fatigue behaviour of notched specimens made of fibreglass reinforced polyamide by means of a cohesive model, vol. 64, pp. 337-344, 2017 Cerca con Google

[CAR14] P. A. Carraro, M. Quaresimin, A damage based model for crack initiation in unidirectional composites under multiaxial cyclic loadings, Composites Science and Technology, vol. 99, pp. 154-163, 2014 Cerca con Google

[CHU02] D. H. Chung, T. H. Kwon, Fiber orientation in the processing of polymer composites, Korea Australia Rheology Journal, vol. 14, pp. 175-188, 2002 Cerca con Google

[DEA17] A. Dean, S. Sahraee, J. Reinoso, R. Rolfes, A new invariant-based thermoplastic model for finite deformation analysis of short fibre reinforced composites: Development and numerical aspects, Composites Part B, vol. 125, pp. 241-258, 2017 Cerca con Google

[DEM08] M. De Monte, Multiaxial fatigue behaviour of short fibre reinforced thermoplastics, PhD-Thesis, 2008 Cerca con Google

[DEM10] M. De Monte, E. Moosbrugger, M. Quaresimin, Influence of temperature and thickness on the off-axis behaviour of short glass fibre reinforced polyamide 6.6 – Quasi-static loading, Composites Part A, vol. 41, pp. 859-871, 2010 Cerca con Google

[DEM10_2] M. De Monte, E. Moosbrugger, M. Quaresimin, Influence of temperature and thickness on the off-axis behaviour of short glass fibre reinforced polyamide 6.6 – Cyclic loading, Composites Part A, vol. 41, pp.1368-1379, 2010 Cerca con Google

[DEM10_3] M. De Monte, E. Moosbrugger, K. Jaschek and M. Quaresimin, Multiaxial fatigue of a short glass fibre reinforced polyamide 6.6, Fatigue and fracture behaviour, International Journal of Fatigue, vol. 32, p. 17–28, 2010 Cerca con Google

[DIG17] Digimat User's manual - Release 2018.0, 2017 Cerca con Google

[DOG05] I. Doghri, L. Tinel, Micromechanical modeling and computation of elastoplastic materials reinforced with distributed-orientation fibers, International Journal of Plasticity, vol. 21, p. 1919–1940, 2005 Cerca con Google

[DOG06] I. Doghri, L. Tinel, Micromechanics of inelastic composites with misaligned inclusions: Numerical treatment of orientation, Computational Methods in Applied Mechanics and Engineering, vol. 195, p. 1387–1406, 2006 Cerca con Google

[DRA07] D. Dray, P. Gilormini and G. Regnier, Comparison of several closure approximations for evaluating the thermoelastic properties of an injection molded short-fiber compo-site, Composites Science and Technology, vol. 67, p. 1601–1610, 2007 Cerca con Google

[EFT16] M. Eftekhari, A. Fatemi, Creep-fatigue interaction and thermo-mechanical fatigue behaviors of thermoplastics and their composites, International Journal of Fatigue, vol. 91, pp. 136-148, 2016 Cerca con Google

[FAT15] A. Fatemi, S. Mortazavian, A. Khosrovaneh, Fatigue Behavior and Predictive Modeling of Short Fiber Thermoplastic Composites, Procedia Engineering, vol. 133, pp. 5-20, 2015 Cerca con Google

[FOS14] P. H. Foss, H. -C. Tseng, J. Snawerdt, Y.-J. Chang, W. -H. Yang, C. -H. Hsu, Prediction of fiber orientation distribution in injection molded parts using Moldex3D simulation, Polymer Composites, vol. 35, p. 671–680, 2014 Cerca con Google

[FU00] S.-Y Fu, B. Lauke, E. Mäder, C.-Y Yue, X. Hu, Tensile properties of short-glass-fiber- and short-carbon-fiber-reinforced polypropylene composite, Composite Part A, vol. 31, pp. 1117-1125, 2000 Cerca con Google

[FU01] S. -Y Fu, C.-Y Yue, X. Hu, Characterization of fiber length distribution of short-fiber reinforced thermoplastic, Journals of Materials Science Letters, vol. 20, pp.31-33, 2001 Cerca con Google

[GOL17] N. Goldberg, F. Ospald, M. Schneider, A fiber orientation-adapted integration scheme for computing the hyperelastic Tucker average for short fiber reinforced composites, Computational Mechanics, vol. 60, pp. 595-611, 2017 Cerca con Google

[GOO07] J. W. Gooch, Encyclopedic Dictionary of Polymers, 2007 Cerca con Google

[HAS12] A. Hassan, N. A. Rahman, R. Yahya, Moisture absorption effect on thermal, dynamic mechanical and mechanical properties of injection-molded short glass-fiber/polyamide 6,6 composites, Fibers and polymers, vol. 13, pp. 899-906, 2012 Cerca con Google

[HOP92] C. P. Hoppel, The effect of tension-tension fatigue on the mechanical behavior of short fiber reinforced thermoplastics, Proceedings-American Society for Composites, TECHNOMIC PUBLISHING AG, p509-509, 1992 Cerca con Google

[HOR97] J. J. Horst, J. L. Spoormaker, Fatigue fracture mechanisms and fractography of short-glassfibre-reinforced polyamide 6, Journal of Materials Science, vol. 32, pp. 3641-3651, 1997 Cerca con Google

[HSI09] J. Hsieh, Computed Tomography: Principles, Design, Artifacts and Recent Advances, 2009 Cerca con Google

[JAI13] A. Jain, S. V. Lomov, Y. Abdin, I. Verpoest, W. Van Paepegem, Pseudo-grain discretization and full Mori Tanaka formulation for random heterogeneous media: Predictive abilities for stresses in individual inclusions and the matrix, Composites Sciences and Technology, vol. 87, p. 86–93, 2013 Cerca con Google

[JAI16] A. Jain, W. Van Paepegem, I. Verpoest, S. V. Lomov, A feasibility study of the Master SN curve approach for short fiber reinforced composites, International Journal of Fatigue, vol. 91, pp. 264-274, 2016 Cerca con Google

[JAI16_2] A. Jain, J. M. Veas, S. Straesser, W. Van Paepegem, I. Verpoest, S. V. Lomov, The Master SN curve approach – A hybrid multi-scale fatigue simulation of short fiber reinforced composites, Composites Part A, vol. 91, pp. 510-518, 2016 Cerca con Google

[KAB06] M. R. Kabir, W. Lutz, K. Zhu, S. Scmauder, Fatigue modeling of short fiber reinforced composites with ductile matrix under cyclic loading, Computational Materials Science, vol. 36, pp.361-366, 2006 Cerca con Google

[KAM11] S. Kammoun, I. Doghri, L. Adam, G. Robert, L. Delannay, First pseudo-grain failure model for inelastic composites with misaligned short fibers, Composite Part A, vol. 42, pp. 1892-1902, 2011 Cerca con Google

[KAW17] M. Kawai, H. Takeuchi, I. Taketa, A. Tsuchiya, Effects of temperature and stress ratio on fatigue life of injection molded short carbon fiber-reinforced polyamide composite, Composites Part A, vol. 98, pp. 9-24, 2017 Cerca con Google

[KAI14] J.-M. Kaiser, M. Stommel, Modified mean-field formulations for the improved simulation of short fiber reinforced thermoplastics, vol. 99, pp. 75-81 Cerca con Google

[KLI11] B. Klimkeit, Y. Nadot, S. Castagnet, C. Nadot-Martin, C. Dumas, S. Bergamo, C. M. Sonsino, A. Büter, Multiaxial fatigue life assessment for reinforced polymers, International Journal of Fatigue, vol. 33, pp. 766-780, 2011 Cerca con Google

[KÖP13] T. Köpplmayr, I. Milosavljevic, M. Aigner, R. Hasslacher, B. Plank, D. Salaberger, J. Miethlinger, Influence of fiber orientation and length distribution on the rheological characterization of glass-fiber-filled polypropylene, Polymer Testing, vol. 32, pp. 535-544, 2013 Cerca con Google

[KRA16] A. Krairi, I. Doghri, G. Robert, Multiscale high cycle fatigue models for neat and short fiber reinforced thermoplastic polymers, International Journal of Fatigue, vol. 92, pp. 179-192, 2016 Cerca con Google

[KRE17] J Kreutzer, J. DeLuca, B. Caplan, Encyclopedia of Clinical Neuropsychology, Springer New York, 2011 Cerca con Google

[LAP16] L. Laperrière, G. Reinhart, CIRP Encyclopedia of Production Engineering, Springer Berlin Heidelberg, 2016 Cerca con Google

[LAR18] M. Laribi, S. Tamboura, J. Fitoussi, R. Tié Bi, A. Tcharkhtchi, H. Ben Dali, Fast fatigue life prediction of short fiber reinforced composites using a new hybrid damage approach: Application to SMC, Composites Part B, vol. 139, pp. 155-162, 2018 Cerca con Google

[LEE18] D. Lee, Local anisotropy analysis based on the Mori-Tanaka model for multiphase composites with fiber length and orientation distributions, Composites Part B, vol. 148, pp. 227-234, 2018 Cerca con Google

[LUN13] A. Lunay, M. H. Maitournam, Y. Marco, I. Raoult, Multiaxial fatigue models for short glass fiber reinforced polyamide – Part I: Nonlinear anisotropic constitutive behavior for cyclic response, International Journal of Fatigue, vol. 47, pp. 382-389, 2013 Cerca con Google

[LUN13_2] A. Launay, M. H. Maitournam, Y. Marco and I. Raoult, Multiaxial fatigue models for short glass fibre reinforced polyamide. Part II: Fatigue life estimation, International Journal of Fatigue, vol. 47, pp. 390-406, 2013 Cerca con Google

[MAL04] P. K. Mallick, Y. Zhou, Effect of mean stress on the stress-controlled fatigue of a short E-glass fiber reinforced polyamide-6,6, International Journal of Fatigue, vol. 26, pp. 941, 946, 2004 Cerca con Google

[MAS16] Y. Masumuchi, M. Terada, A. Yamanaka, T. Yamamoto, T. Ishikawa, Distribution function of fiber length in thermoplastic composites, Composites Science and Technology, vol. 134, pp.43-48, 2016 Cerca con Google

[MEN11] G. Meneghetti, M. Quaresimin, Fatigue strength assessment of a short fiber composite based on the specific heat dissipation, Composites Part B, vol. 42, pp. 217-225,2011 Cerca con Google

[MOO11] A. Moosaie, A. Le Duc, M. Manhart, A priori analysis of a closure model using the reconstruction of the orientation distribution function in flow of fiber suspensions, Computational Mechanics, vol. 48, pp. 451-459, 2011 Cerca con Google

[MOR15] S. Mortazavian, A. Fatemi, Effects of fiber orientation and anisotropy on tensile strength and elastic modulus of short fiber reinforced polymer composite, Composite Part B, vol. 72, pp. 116-129, 2015 Cerca con Google

[MOR15_2] S. Mortazavian, A. Fatemi, A. Khosrovaneh, Effect of Water Absorption on Tensile and Fatigue Behaviors of Two Short Glass Fiber Reinforced Thermoplastics, SAE Int. J. Materi. Manf., vol. 8, pp. 435-443, 2015 Cerca con Google

[MOR15_3] S. Mortazavian, A. Fatemi, Fatigue behavior and modeling of short fiber reinforced polymer composites: A literature review, International Journal of Fatigue, vol. 70, pp. 297-321, 2015 Cerca con Google

[MOR15_4] S. Mortazavian, A. Fatemi, Fatigue behavior and modeling of short fiber reinforced polymer composites including anisotropy and temperature effects, International Journal of Fatigue, vol. 77, pp. 12-27, 2015 Cerca con Google

[MOR17] S. Mortazavian and A. Fatemi, Fatigue of short fiber thermoplastic composites: A review of recent experimental results and analysis, International Journal of Fatigue, vol. 102, pp. 171-183, 2017 Cerca con Google

[MOU06] B. Mouhmid, A. Imad, N. Benseddiq, S. Benmedakhène, A. Maazuouz, A study of the mechanical behaviour of a glass fibre reinforced polyamide 6,6: Experimental investigation, Polymer Testing, vol. 25, pp. 544-552, 2006 Cerca con Google

[MÜL15] V. Müller, M. Kabel, H. Andrä, T. Böhlke, Homogenization of linear elastic properties of short-fiber reinforced composites – A comparison of mean field and voxel-based methods, International Journal of Solids and Structures, vol. 67-68, pp. 56-70, 2015 Cerca con Google

[NGU12] V. -D. Nguyen, E. Béchet, C. Geuzaine, L. Noels, Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation, Computational Materials Science, vol. 55, p. 390–406, 2012 Cerca con Google

[NOT14] D. Notta-Cuvier, F. Lauro, B. Bennani, R. Balieu, Damage of short-fibre reinforced materials with anisotropy induced by complex fibres orientations, Mechanics of Materials, vol. 68, p. 193–206, 2014 Cerca con Google

[OGI17] W. Ogierman and G. Kokot, Homogenization of inelastic composites with misaligned inclusions by using the optimal pseudo-grain discretization, International Journal of Solids and Structures,vol. 113-114, pp. 230-240, 2017 Cerca con Google

[ONA88] E. T. Onat, F. A. Leckie, Representation of Mechanical Behavior in the Presence of Changing Internal Structure, Journal of Applied Mechanics, vol. 55, pp. 1-10, 1988 Cerca con Google

[OSS12] T. A. Osswald, G. Menges, Materials Science of Polymers for Engineers, 2012 Cerca con Google

[PAT06] S. Patcharaphun, Characterization and Simulation of Material Distribution and Fiber Orientation in Sandwich Injection Molded Parts, Dissertation, Technische Universität Chemnitz, 2006 Cerca con Google

[PIE04] O. Pierard, C. Friebel, I. Doghri, Mean-field homogenization of multi-phase thermo-elastic composites: a general framework and its validation, Composites Science and Technology, vol. 64, p. 1587–1603, 2004 Cerca con Google

[PIE18] R. Pietrogrande, P. A. Carraro, M. De Monte and M. Quaresimin, A novel pseudo-grain approach for the estimation of the elastic stress distributions within the matrix of Short Fiber-Reinforced Polymers, Composite Part B, vol. 150, pp. 115-123, 2018 Cerca con Google

[PON15] A. Pontefisso, M. Zappalorto, M. Quaresimin, An efficient RVE formulation for the analysis of the elastic properties, Computational Materials Science, vol. 96, pp. 319-326, 2015 Cerca con Google

[QUA16] M. Quaresimin, P. A. Carraro, L. Maragoni, Early stage damage in off-axis plies under fatigue loading, Composites Science and Technology, vol. 128, pp. 147-154, 2016 Cerca con Google

[ROL16] H. Rolland, N. Saintier, G. Robert, Damage mechanisms in short glass fibre reinforced thermoplastic during in situ microtomography tensile tests, Composites Part B, vol. 90, pp. 365-377, 2016 Cerca con Google

[ROL18] H. Rolland, N. Saintier, I. Raphael, N. Lenoir, A. King, G. Robert, Fatigue damage mechanisms of short fiber reinforced PA66 as observed by in-situ synchrotron X-ray microtomography, Composites Part B, vol. 143, pp. 217-229, 2018 Cerca con Google

[ROS12] D. V. Rosato, M. G. Rosato, Injection Molding Handbook, Springer Science and Business Media, 2012 Cerca con Google

[SCH17] M. Schneider, The sequential addition and migration method to generate representa-tive volume elements for the homogenization of short fiber reinforced plastics, Computational Mechanics, vol. 59, pp. 247-263, 2017 Cerca con Google

[SCH14] A. Schaaf, M. De Monte, C. -J. Hoffmann, M. Vormwald and M. Quaresimin, Damage mechanisms in PBT-GF30 under thermo-mechanical cyclic loading, AIP (American Institute of Physics) Conference Proceedings, vol. 1593, p. 600, 2014. loading, AIP (American Institute of Physics) Conference Proceedings, vol. 1593, p. 600, 2014 Cerca con Google

[SON08] C. M. Sonsino, E. Moosbrugger, Fatigue design of highly loaded short-glass-fibre reinforced polyamide parts in engine compartments, International Journal of Fatigue, vol. 30, pp. 1279-1288, 2008 Cerca con Google

[TAN14] K. Tanaka, T. Kitano, N. Egami, Effect of fiber orientation on fatigue crack propagation in short-fiber reinforced plastics, Engineering Fracture Mechanics, vol. 123. pp.44-58, 2014 Cerca con Google

[TIA14] W. Tian, L. Qi, J. Zhou, J. Guan, Effects of the fiber orientation and fiber aspect ratio on the tensile strength of Csf/Mg composites, Computational Materials Science, vol. 89, pp. 6-11, 2014 Cerca con Google

[TIA15] W. Tian, L. Qi, J. Zhou, J. Liang, Y. Ma, Representative volume element for composites reinforced by spatially randomly distributed discontinuous fibers and its applications, Composite Structures, vol. 131, pp. 366-373, 2015 Cerca con Google

[TIA16] W. Tian, L. Qi, J. Liang, X. Chao and J. Zhou, Evaluation for elastic properties of metal matrix composites with randomly distributed fibers: Two-step mean-field homogenization procedure versus FE homogenization method, Journal of Alloys and Compounds, vol. 658, pp. 241-247, 2016 Cerca con Google

[TSA80] S. Tsai, H. T. Hahn, Introduction to Composite Materials, TECHNOMIC Publishing Co. Inc. 1980, 1980 Cerca con Google

[WEB1] https://www.epa.gov Vai! Cerca con Google

[WEB2] http://www.custompartnet.com/wu/InjectionMolding Vai! Cerca con Google

[WEB3] https://www.geodict.com Vai! Cerca con Google

[WIL15] A. Wilmes and K. Hornberger, Influence of Fiber Orientation and Multiaxiality on the Fatigue Strength of Unnotched Specimens – Lifetime Estimation, Procedia Engineering, vol. 133, pp. 148-160, 2015 Cerca con Google

[WIL16] A. Wilmes, M. Vormwald, K. Hornberger, Fatigue Lifetime Estimation Concept for Short Fiber Reinforced Thermoplastics, ICMFF11 Proceedings, 2016 Cerca con Google

[ZAG01] A. Zago, G. S. Springer, Constant Amplitude Fatigue of Short Glass and Carbon Fiber Reinforced Thermoplastics, Journal of Reinforced Plastics and Composites, vol. 20, pp. 564-595, 2001 Cerca con Google

[ZHO06] Y. Zhou, P. K. Mallick, Fatigue performance of an injection‐molded short E‐glass fiber‐reinforced polyamide 6,6. I. Effects of orientation, holes and weld line, Polymer Composites, vol. 27, pp. 230-237, 2006 Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record