Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Cappellari, Roberta (2018) The monocyte continuum and cardiovascular disease: Evaluation of the prognostic cardiovascular meaning of monocyte displacement along their continuum. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document
2212Kb

Abstract (italian or english)

Introduction. Monocytes are cells of the innate immunity system with high heterogeneity and plasticity and are involved in acute and chronic inflammatory states. Monocytes are traditionally distinguished in three subsets, based on CD14 (LPS co-receptor) and CD16 (FcγIII receptor with low IgG affinity) expression: classical, intermediate and non-classical. Monocyte subsets have a developmental relationship and differ in phenotypic and functional characteristics. Distribution of monocyte subsets has been shown to predict cardiovascular outcomes. Nevertheless, monocytes have now been redefined as a continuum of subsets with dynamic changes of their characteristics and classification into different subtypes may be an oversimplification. Monocytes have been studied in cardiovascular diseases because they are involved in inflammatory processes linked with these pathological states: they have a central role in the development of atherosclerotic plaques, that represent the major cause of cardiovascular events. Changes within different monocyte subsets are reported in several studies in relation with cardiovascular risk factors and cardiovascular diseases.
Aim of the study. The aim of this study is to establish whether distribution of monocytes based on CD14 and CD16 fluorescence intensity provides incremental and complementary information in relation to cardiovascular risk factors, prevalent cardiovascular diseases and cardiovascular outcomes beyond enumeration of traditional subsets.
Materials and methods. A cohort of 227 patients with high cardiovascular risk (patients with at least two classical cardiovascular risk factors or with establish cardiovascular disease) were recruited for this study and followed up for a median of 4 years. Monocyte subsets were quantified and characterized at baseline using polychromatic flow cytometry, based on the CD14 e CD16 expression; for each monocyte subset frequency and mean fluorescence intensity (MFI) of CD14 and CD16 were determined, evaluating the continuous distribution. These monocyte characteristics were studied in patients in relation to cardiovascular risk factors, prevalence of coronary artery disease (CAD) and occurrence of major adverse cardiovascular events (MACE) during follow-up.
Results. In relation to cardiovascular risk factors, every monocyte subset of patients with type 2 diabetes showed a consistent shift toward higher CD16 fluorescence intensity, despite no changes in their frequencies. Patients with coronary artery disease (CAD) at baseline displayed a doubled amount of CD14++ CD16+, intermediate monocytes, and a shift of non-classical and classical monocytes towards intermediates ones. During follow-up, cardiovascular death or cardiovascular events occurred in 26 patients, who showed monocyte displacement similar to those of patients with CAD at baseline. Using a Cox proportional hazard regression models, among monocytes parameters, only the higher CD16 expression on classical monocytes, independently predicted adverse cardiovascular outcomes, but not the level of intermediate monocytes or other subsets.
Discussion and conclusion. Changes within monocyte subsets in patients with CAD and in patients with incident MACE during follow-up suggested a shift of classical and non-classical monocytes towards intermediate monocytes, showing phenotypic changes within the monocyte continuum. The predictive role of CD16 MFI on classical monocytes highlights how the concept of monocyte continuum can be used to shape the cardiovascular risk more than frequencies of monocyte subsets can do.

Abstract (a different language)

Introduzione. I monociti sono cellule del sistema dell’immunità innata con elevata eterogeneità e plasticità e sono coinvolti in stati infiammatori acuti e cronici. I monociti sono tradizionalmente distinti in tre sottopopolazioni, in base all'espressione del CD14 (co-recettore dell’LPS) e CD16 (recettore FcγIII con bassa affinità per IgG): classici, intermedi e non classici. Questi sottogruppi monocitari hanno una relazione evolutiva e differiscono per caratteristiche fenotipiche e funzionali. La distribuzione dei sottoinsiemi monocitari ha dimostrato di prevedere gli esiti cardiovascolari. Tuttavia, i monociti sono recentemente stati ridefiniti come un continuum di sottoinsiemi con cambiamenti dinamici delle loro caratteristiche e la categorizzazione in sottoinsiemi discreti può essere considerata come un’eccessiva semplificazione. Nelle malattie cardiovascolari i monociti sono stati studiati in quanto coinvolti in processi infiammatori legati a questi stati patologici: hanno un ruolo centrale nello sviluppo delle placche aterosclerotiche, che rappresentano la principale causa per gli eventi cardiovascolari. Diversi studi hanno dimostrato cambiamenti all'interno dei sottoinsiemi monocitari in relazione ai tradizionali fattori di rischio cardiovascolare e alle patologie cardiovascolari.
Scopo dello studio. Lo scopo di questo studio è stabilire se la distribuzione dei monociti basata sull'intensità di fluorescenza del CD14 e del CD16 fornisce informazioni incrementali e complementari in relazione ai fattori di rischio cardiovascolare, alle patologie cardiovascolari prevalenti e agli esiti cardiovascolari rispetto alla quantificazione della frequenza dei sottogruppi tradizionali. L'obiettivo dello studio è anche quello di verificare se questi cambiamenti predicono esiti cardiovascolari.
Materiali e metodi. 227 pazienti ad alto rischio cardiovascolare (pazienti con almeno due classici fattori di rischio cardiovascolare o con malattia cardiovascolare stabilita) sono stati reclutati per questo studio e seguiti per una mediana di 4 anni. Le sottopopolazioni monocitarie sono state quantificate e caratterizzate al basale utilizzando la citometria a flusso policromatica, in base all'espressione di CD14 e CD16; per ciascun sottogruppo sono stati determinati la frequenza e l’ intensità media di fluorescenza (MFI) di CD14 e CD16, valutando la loro distribuzione lungo il continuum monocitario. Queste caratteristiche dei monociti sono state studiate nei pazienti correlandole ai fattori di rischio cardiovascolare, alla prevalenza di malattia coronarica (CAD) e alla comparsa di eventi avversi cardiovascolari maggiori (MACE) durante il follow-up.
Risultati. In relazione ai fattori di rischio cardiovascolare, nei pazienti con diabete di tipo 2 è stato osservato un aumento consistente dell’ intensità di fluorescenza del CD16 all'interno di ciascun gruppo di monociti, nonostante non si sia rilevato nessun cambiamento nelle loro frequenze. I pazienti con malattia coronarica (CAD) al basale hanno mostrato un raddoppio nella frequenza dei monociti intermedi CD14++ CD16+ e uno spostamento di monociti classici e non classici verso quelli intermedi. Durante il follow-up, la morte cardiovascolare o eventi cardiovascolari si sono verificati in 26 pazienti, che hanno mostrato uno spostamento dei monociti simile a quelli dei pazienti con CAD al basale. Utilizzando il modello di Cox di regressione di rischio proporzionale, tra i parametri dei monociti, solo l'espressione del CD16, più elevata sui monociti classici, ma non il livello di monociti intermedi o di altri sottogruppi, predice indipendentemente gli eventi cardiovascolari avversi.
Discussione e conclusione. I cambiamenti nei sottogruppi monocitari in pazienti con CAD e in pazienti evoluti in MACE durante il follow-up hanno suggerito uno “shift” dei monociti classici e non classici verso gli intermedi, mostrando cambiamenti fenotipici all'interno del continuum monocitario. Il ruolo predittivo dell’MFI del CD16 sui monociti classici evidenzia come il concetto di continuum monocitario possa essere utilizzato per modellare il rischio cardiovascolare più della frequenza delle diverse sottopopolazioni monocitarie.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Fadini, Gianpaolo
Ph.D. course:Ciclo 31 > Corsi 31 > MEDICINA SPECIALISTICA TRASLAZIONALE "G.B. MORGAGNI"
Data di deposito della tesi:29 November 2018
Anno di Pubblicazione:29 November 2018
Key Words:Monocytes; Monocyte subpopulations; Cardiovascular diseases; Atherosclerosis; Monociti; Sottopopolazioni monocitarie; Patologie cardiovascolari; Aterosclerosi
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/11 Malattie dell'apparato cardiovascolare
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Cardiologiche, Toraciche e Vascolari
Codice ID:11452
Depositato il:07 Nov 2019 12:04
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Lusis A. Atherosclerosis. Nature. 2000; Cerca con Google

2. Ross R. Atherosclerosis--an inflammatory disease. N. Engl. J. Med. 1999; Cerca con Google

3. Hansson GK, Robertson A-KL, Söderberg-Nauclér C. INFLAMMATION AND ATHEROSCLEROSIS. Annu. Rev. Pathol. Mech. Dis. 2006; Cerca con Google

4. Hansson GK. Inflammation, atherosclerosis and coronary artery disease. N. Engl. J. Med. 2005; Cerca con Google

5. Herrington W, Lacey B, Sherliker P, Armitage J, Lewington S. Epidemiology of Atherosclerosis and the Potential to Reduce the Global Burden of Atherothrombotic Disease. Circ. Res. 2016; Cerca con Google

6. Ross R, Glomset J, Harker L. Response to injury and atherogenesis. Am J Pathol. 1977; Cerca con Google

7. POOLE JC, FLOREY HW. Changes in the endothelium of the aorta and the behaviour of macrophages in experimental atheroma of rabbits. J. Pathol. Bacteriol. 1958; Cerca con Google

8. GIMBRONE MA. Endothelial Dysfunction and Atherosclerosis. J. Card. Surg. 1989; Cerca con Google

9. Ross R. Cell biology of atherosclerosis. Annu. Rev. Physiol. 1995; Cerca con Google

10. Ward MR, Pasterkamp G, Yeung AC, Borst C. Arterial Remodeling : Mechanisms and Clinical Implications. Circulation. 2000; Cerca con Google

11. Caro GG. Discovery of the role of wall shear in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2009; Cerca con Google

12. Tedgui A. Cytokines in Atherosclerosis: Pathogenic and Regulatory Pathways. Physiol. Rev. 2006; Cerca con Google

13. Rafieian-Kopaei M, Setorki M, Doudi M, Baradaran A, Nasri H. Atherosclerosis: Process, indicators, risk factors and new hopes. Int. J. Prev. Med. 2014; Cerca con Google

14. Stary HC, Chandler a B, Dinsmore RE, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 1995; Cerca con Google

15. Hansson GK, Libby P. The immune response in atherosclerosis: a double-edged sword. Nat. Rev. Immunol. 2006; Cerca con Google

16. Niessner A, Weyand CM. Dendritic cells in atherosclerotic disease. Clin. Immunol. 2010; Cerca con Google

17. Kovanen PT. Mast cells: Multipotent local effector cells in atherothrombosis. Immunol. Rev. 2007; Cerca con Google

18. Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ. Res. 2014; Cerca con Google

19. Badimon L, Vilahur G. Thrombosis formation on atherosclerotic lesions and plaque rupture. J. Intern. Med. 2014; Cerca con Google

20. Li H, Horke S, Förstermann U. Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis. 2014; Cerca con Google

21. Linton MF, Yancey PG, Davies SS, et al. The Role of Lipids and Lipoproteins in Atherosclerosis. 2000; Cerca con Google

22. Weber C, Zernecke A, Libby P. The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nat. Rev. Immunol. 2008; Cerca con Google

23. Galley HF, Webster NR. Physiology of the endothelium. Br. J. Anaesth. 2004; Cerca con Google

24. Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004; Cerca con Google

25. Packard RRS, Lichtman AH, Libby P. Innate and adaptive immunity in atherosclerosis. Semin. Immunopathol. 2009; Cerca con Google

26. Libby P, Ridker PM, Hansson GK. Inflammation in AtherosclerosisFrom Pathophysiology to Practice. J. Am. Coll. Cardiol. 2009; Cerca con Google

27. Rocha VZ, Libby P. Obesity, inflammation, and atherosclerosis. Nat. Rev. Cardiol. 2009; Cerca con Google

28. Ougrinovskaia A, Thompson RS, Myerscough MR. An ODE model of early stages of atherosclerosis: Mechanisms of the inflammatory response. Bull. Math. Biol. 2010; Cerca con Google

29. Boring L, Gosling J, Cleary M, Charo IF. Decreased lesion formation in CCR2(-/-) mice reveals a role for chemokines in the initiation of atherosclerosis. Nature. 1998; Cerca con Google

30. Janeway C a, Medzhitov R. Innate immune recognition. Annu. Rev. Immunol. 2002; Cerca con Google

31. Taleb S. L’inflammation dans l’athérosclérose. Arch. Cardiovasc. Dis. 2016; Cerca con Google

32. Miteva K, Madonna R, De Caterina R, Van Linthout S. Innate and adaptive immunity in atherosclerosis. Vascul. Pharmacol. 2018; Cerca con Google

33. Meng X, Yang J, Dong M, et al. Regulatory T cells in cardiovascular diseases. Nat. Rev. Cardiol. 2015; Cerca con Google

34. Sherer Y, Shoenfeld Y. Mechanisms of disease: Atherosclerosis in autoimmune diseases. Nat. Clin. Pract. Rheumatol. 2006; Cerca con Google

35. Baetta R, Corsini A. Role of polymorphonuclear neutrophils in atherosclerosis: Current state and future perspectives. Atherosclerosis. 2010; Cerca con Google

36. Pashkow FJ. Oxidative Stress and Inflammation in Heart Disease: Do Antioxidants Have a Role in Treatment and/or Prevention? Int. J. Inflam. 2011; Cerca con Google

37. Stocker R. Role of Oxidative Modifications in Atherosclerosis. Physiol. Rev. 2004; Cerca con Google

38. Libby P, Libby P. Inflammation in atherosclerosis. Nature. 2002; Cerca con Google

39. Wang JC, Bennett M. Aging and atherosclerosis: Mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ. Res. 2012; Cerca con Google

40. Mendelsohn ME. Protective effects of estrogen on the cardiovascular system. Am. J. Cardiol. 2002; Cerca con Google

41. Chen Z, Boreham J. Smoking and Cardiovascular Disease. Semin. Vasc. Med. 2002; Cerca con Google

42. Gimbrone MA. Endothelial dysfunction, hemodynamic forces, and atherosclerosis. Thromb. Haemost. 1999; Cerca con Google

43. American Diabetes Association. Standards of medical care in diabetes--2011. Diabetes Care. 2011; Cerca con Google

44. Hadi HAR, Suwaidi J Al. Endothelial dysfunction in diabetes mellitus. Vasc. Health Risk Manag. 2007; Cerca con Google

45. Morigi M, Angioletti S, Imberti B, et al. Leukocyte-endothelial interaction is augmented by high glucose concentrations and hyperglycemia in a NF-kB-dependent fashion. J. Clin. Invest. 1998; Cerca con Google

46. Paoletti R, Bolego C, Poli A, Cignarella A. Metabolic syndrome, inflammation and atherosclerosis. Vasc. Health Risk Manag. 2006; Cerca con Google

47. Fuster V, Badimon L, Cohen M, et al. Insights into the pathogenesis of acute ischemic syndromes. Circulation. 1988; Cerca con Google

48. Libby P. The molecular mechanisms of the thrombotic complications of atherosclerosis. J. Intern. Med. 2008; Cerca con Google

49. Bui QT, Prempeh M, Wilensky RL. Atherosclerotic plaque development. Int. J. Biochem. Cell Biol. 2009; Cerca con Google

50. Virmani R, Burke AP, Willerson JT, et al. The Pathology of Vulnerable Plaque. Vulnerable Atheroscler. Plaque Strateg. Diagnosis Manag. 2007; Cerca con Google

51. Shi C, Pamer EG. Monocyte Recruitment Suring Infection and Inflammation. Nat Rev Immunol. 2014; Cerca con Google

52. van Furth R, Cohn ZA, Hirsch JG, et al. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull. World Health Organ. 1972; Cerca con Google

53. Geissmann F, Manz MG, Jung S, et al. Development of monocytes, macrophages, and dendritic cells. Science (80-. ). 2010; Cerca con Google

54. Hettinger J, Richards DM, Hansson J, et al. Origin of monocytes and macrophages in a committed progenitor. Nat. Immunol. 2013; Cerca con Google

55. van Furth R, Cohn ZA. The origin and kinetics of mononuclear phagocytes. J. Exp. Med. 1968; Cerca con Google

56. Le Douce V, Herbein G, Rohr O, Schwartz C. Molecular mechanisms of HIV-1 persistence in the monocyte-macrophage lineage. Retrovirology. 2010; Cerca con Google

57. Ginhoux F, Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis TL - 14. Nat. Rev. Immunol. 2014; Cerca con Google

58. Yona S, Kim KW, Wolf Y, et al. Fate Mapping Reveals Origins and Dynamics of Monocytes and Tissue Macrophages under Homeostasis. Immunity. 2013; Cerca con Google

59. Hashimoto D, Chow A, Noizat C, et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity. 2013; Cerca con Google

60. Hulsmans M, Sam F, Nahrendorf M. Monocyte and macrophage contributions to cardiac remodeling. J. Mol. Cell. Cardiol. 2016; Cerca con Google

61. Hoeffel G, Ginhoux F. Ontogeny of tissue-resident macrophages. Front. Immunol. 2015; Cerca con Google

62. Davies LC, Jenkins SJ, Allen JE, Taylor PR. Tissue-resident macrophages. Nat. Immunol. 2013; Cerca con Google

63. Bain CC, Mowat AMI. The monocyte-macrophage axis in the intestine. Cell. Immunol. 2014; Cerca con Google

64. Wynn T, Chawla A, Pollard J. Macrophage biology in development, homeostasis and disease. Nature. 2013; Cerca con Google

65. Segura E, Amigorena S. Inflammatory dendritic cells in mice and humans. Trends Immunol. 2013; Cerca con Google

66. Collin M, Mcgovern N, Haniffa M. Human dendritic cell subsets. Immunology. 2013; Cerca con Google

67. Ziegler-Heitbrock HW. Definition of human blood monocytes. J. Leukoc. Biol. 2000; Cerca con Google

68. Wong KL, Tai JJ-Y, Wong W-C, et al. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood. 2011; Cerca con Google

69. Kantari C, Pederzoli-Ribeil M, Witko-Sarsat V. The role of neutrophils and monocytes in innate immunity. Contrib. Microbiol. 2008; Cerca con Google

70. Zhao Y, Glesne D, Huberman E. A human peripheral blood monocyte-derived subset acts as pluripotent stem cells. Proc. Natl. Acad. Sci. 2003; Cerca con Google

71. Woollard KJ, Geissmann F. Monocytes in atherosclerosis: Subsets and functions. Nat. Rev. Cardiol. 2010; Cerca con Google

72. Ziegler‐Heitbroc HWL, Thiel E, Futterer A, et al. Establishment of a human cell line (mono mac 6) with characteristics of mature monocytes. Int. J. Cancer. 1988; Cerca con Google

73. Passlick B, Flieger D, Ziegler-Heitbrock HW. Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood. 1989; Cerca con Google

74. Ziegler-Heitbrock L, Ancuta P, Crowe S, et al. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010; Cerca con Google

75. Ziegler-heitbrock L, Ancuta P, Crowe S, et al. Nomenclature of monocytes and dendritic cells in blood Nomenclature of monocytes and dendritic cells in blood. 2014; Cerca con Google

76. Weber C, Shantsila E, Hristov M, et al. Role and analysis of monocyte subsets in cardiovascular disease. Thromb. Haemost. 2016; Cerca con Google

77. Boyette LB, MacEdo C, Hadi K, et al. Phenotype, function, and differentiation potential of human monocyte subsets. PLoS One. 2017; Cerca con Google

78. Thomas GD, Hamers AAJ, Nakao C, et al. Human Blood Monocyte Subsets: A New Gating Strategy Defined Using Cell Surface Markers Identified by Mass Cytometry. Arterioscler. Thromb. Vasc. Biol. 2017; Cerca con Google

79. Ferrer DG, Jaldín-Fincati JR, Amigone JL, et al. Standardized flow cytometry assay for identification of human monocytic heterogeneity and LRP1 expression in monocyte subpopulations: Decreased expression of this receptor in nonclassical monocytes. Cytom. Part A. 2014; Cerca con Google

80. Zawada AM, Rogacev KS, Schirmer SH, et al. Monocyte heterogeneity in human cardiovascular disease. Immunobiology. 2012; Cerca con Google

81. Sunderkotter C, Nikolic T, Dillon MJ, et al. Subpopulations of Mouse Blood Monocytes Differ in Maturation Stage and Inflammatory Response. J. Immunol. 2004; Cerca con Google

82. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 2005; Cerca con Google

83. Ziegler-Heitbrock L, Hofer TPJ. Toward a refined definition of monocyte subsets. Front. Immunol. 2013; Cerca con Google

84. Ziegler-Heitbrock L. Reprint of: Monocyte subsets in man and other species. Cell. Immunol. 2014; Cerca con Google

85. Ancuta P, Liu KY, Misra V, et al. Transcriptional profiling reveals developmental relationship and distinct biological functions of CD16+ and CD16- monocyte subsets. BMC Genomics. 2009; Cerca con Google

86. Auffray C, Fogg D, Garfa M, et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science (80-. ). 2007; Cerca con Google

87. Carlin LM, Stamatiades EG, Auffray C, et al. Nr4a1-dependent Ly6Clow monocytes monitor endothelial cells and orchestrate their disposal. Cell. 2013; Cerca con Google

88. Saha P, Geissmann F. Toward a functional characterization of blood monocytes. Immunol. Cell Biol. 2011; Cerca con Google

89. Skrzeczy??ska-Moncznik J, Bzowska M, Loseke S, et al. Peripheral blood CD14high CD16+ monocytes are main producers of IL-10. Scand. J. Immunol. 2008; Cerca con Google

90. Mukherjee R, Kanti Barman P, Kumar Thatoi P, et al. Non-Classical monocytes display inflammatory features: Validation in Sepsis and Systemic Lupus Erythematous. Sci. Rep. 2015; Cerca con Google

91. França CN, Izar MCO, Hortêncio MNS, et al. Monocyte subtypes and the CCR2 chemokine receptor in cardiovascular disease. Clin. Sci. 2017; Cerca con Google

92. Cros J, Cagnard N, Woollard K, et al. Human CD14dimMonocytes Patrol and Sense Nucleic Acids and Viruses via TLR7 and TLR8 Receptors. Immunity. 2010; Cerca con Google

93. Finak G, Langweiler M, Jaimes M, et al. Standardizing Flow Cytometry Immunophenotyping Analysis from the Human ImmunoPhenotyping Consortium. Sci. Rep. 2016; Cerca con Google

94. Tamoutounour S, Guilliams M, Sanchis FM, et al. Origins and Functional Specialization of Macrophages and of Conventional and {Monocyte-Derived} Dendritic Cells in Mouse Skin. Immunity. 2013; Cerca con Google

95. Mantovani A, Martinez FO, Gordon S, Locati M. Gene Expression Polarization: New Molecules and Patterns of and Monocyte-to-Macrophage Differentiation Transcriptional Profiling of the Human Transcriptional Profiling of the Human Monocyte-to-Macrophage Differentiation and Polarization: New Molecules and. J Immunol Mater. Suppl. J. Immunol. 2018; Cerca con Google

96. Shantsila E, Wrigley B, Tapp L, et al. Immunophenotypic characterization of human monocyte subsets: possible implications for cardiovascular disease pathophysiology. J Thromb Haemost. 2011; Cerca con Google

97. Zawada AM, Rogacev KS, Rotter B, et al. SuperSAGE evidence for CD14 ++CD16 + monocytes as a third monocyte subset. Blood. 2011; Cerca con Google

98. Gren ST, Rasmussen TB, Janciauskiene S, et al. A single-cell gene-expression profile reveals inter-cellular heterogeneity within human monocyte subsets. PLoS One. 2015; Cerca con Google

99. Poehlmann H, Schefold JC, Zuckermann-Becker H, Volk H-D, Meisel C. Phenotype changes and impaired function of dendritic cell subsets in patients with sepsis: a prospective observational analysis. Crit. Care. 2009; Cerca con Google

100. Rogacev KS, Seiler S, Zawada AM, et al. CD14++CD16+ monocytes and cardiovascular outcome in patients with chronic kidney disease. Eur. Heart J. 2011; Cerca con Google

101. Rogacev KS, Ulrich C, Blömer L, et al. Monocyte heterogeneity in obesity and subclinical atherosclerosis. Eur. Heart J. 2010; Cerca con Google

102. Thiesen S, Janciauskiene S, Uronen-Hansson H, et al. CD14hiHLA-DRdim macrophages, with a resemblance to classical blood monocytes, dominate inflamed mucosa in Crohn’s disease. J. Leukoc. Biol. 2014; Cerca con Google

103. Hijdra D, Vorselaars ADM, Grutters JC, Claessen AME, Rijkers GT. Phenotypic Characterization of Human Intermediate Monocytes. Front. Immunol. 2013; Cerca con Google

104. Patel AA, Zhang Y, Fullerton JN, et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J. Exp. Med. 2017; Cerca con Google

105. Tacke F, Alvarez D, Kaplan TJ, et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Invest. 2007; Cerca con Google

106. Swirski FK, Nahrendorf M, Etzrodt M, et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 2009; Cerca con Google

107. Appleby LJ, Nausch N, Midzi N, et al. Sources of heterogeneity in human monocyte subsets. Immunol. Lett. 2013; Cerca con Google

108. Gratchev A, Sobenin I, Orekhov A, Kzhyshkowska J. Monocytes as a diagnostic marker of cardiovascular diseases. Immunobiology. 2012; Cerca con Google

109. Stansfield BK, Ingram DA. Clinical significance of monocyte heterogeneity. Clin. Transl. Med. 2015; Cerca con Google

110. Cignarella A, Tedesco S, Cappellari R, Fadini GP. The continuum of monocyte phenotypes: Experimental evidence and prognostic utility in assessing cardiovascular risk. J. Leukoc. Biol. 2018; Cerca con Google

111. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 2008; Cerca con Google

112. Italiani P, Boraschi D. From monocytes to M1/M2 macrophages: Phenotypical vs. functional differentiation. Front. Immunol. 2014; Cerca con Google

113. Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014; Cerca con Google

114. Sica A, Mantovani A. Macrophage plasticity and polarization: In vivo veritas. J. Clin. Invest. 2012; Cerca con Google

115. Murray PJ, Allen JE, Biswas SK, et al. Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines. Immunity. 2014; Cerca con Google

116. Fadini GP, De Kreutzenberg SV, Boscaro E, et al. An unbalanced monocyte polarisation in peripheral blood and bone marrow of patients with type 2 diabetes has an impact on microangiopathy. Diabetologia. 2013; Cerca con Google

117. Fadini GP, Cappellari R, Mazzucato M, et al. Monocyte-macrophage polarization balance in pre-diabetic individuals. Acta Diabetol. 2013; Cerca con Google

118. Xue J, Schmidt S V, Sander J, et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity. 2014; Cerca con Google

119. Nahrendorf M, Swirski FK. Abandoning M1/M2 for a network model of macrophage function. Circ. Res. 2016; Cerca con Google

120. Piccolo V, Curina A, Genua M, et al. Opposing macrophage polarization programs show extensive epigenomic and transcriptional cross-talk. Nat. Immunol. 2017; Cerca con Google

121. Hristov M, Heine GH. Monocyte subsets in atherosclerosis. Hamostaseologie. 2015; Cerca con Google

122. Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: A dynamic balance. Nat. Rev. Immunol. 2013; Cerca con Google

123. Ammirati E, Moroni F, Magnoni M, et al. Circulating CD14+ and CD14highCD16− classical monocytes are reduced in patients with signs of plaque neovascularization in the carotid artery. Atherosclerosis. 2016; Cerca con Google

124. Heidt T, Courties G, Dutta P, et al. Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction. Circ. Res. 2014; Cerca con Google

125. Schloss MJ, Hilby M, Nitz K, et al. Ly6Chigh Monocytes Oscillate in the Heart During Homeostasis and After Myocardial Infarction-Brief Report. Arterioscler. Thromb. Vasc. Biol. 2017; Cerca con Google

126. Horne BDB, Anderson JLJ, John JJM, et al. Which white blood cell subtypes predict increased cardiovascular risk? J Am Coll Cardiol. 2005; Cerca con Google

127. Gurm HS, Bhatt DL, Lincoff AM, et al. Impact of preprocedural white blood cell count on long term mortality after percutaneous coronary intervention: insights from the EPIC, EPILOG, and EPISTENT trials. Heart. 2003; Cerca con Google

128. Coller BS. Leukocytosis and ischemic vascular disease morbidity and mortality: is it time to intervene? Arter. Thromb Vasc Biol. 2005; Cerca con Google

129. Rothe G, Herr AS, Stöhr J, et al. A more mature phenotype of blood mononuclear phagocytes is induced by fluvastatin treatment in hypercholesterolemic patients with coronary heart disease. Atherosclerosis. 1999; Cerca con Google

130. Poitou C, Dalmas E, Renovato M, et al. CD14dimCD16+ and CD14+CD16+ monocytes in obesity and during weight loss: Relationships with fat mass and subclinical atherosclerosis. Arter. Thromb Vasc Biol. 2011; Cerca con Google

131. Timmerman KL, Flynn MG, Coen PM, Markofski MM, Pence BD. Exercise training-induced lowering of inflammatory (CD14+CD16+) monocytes: a role in the anti-inflammatory influence of exercise? J. Leukoc. Biol. 2008; Cerca con Google

132. de Matos MA, Duarte TC, Ottone V de O, et al. The effect of insulin resistance and exercise on the percentage of CD16+ monocyte subset in obese individuals. Cell Biochem. Funct. 2016; Cerca con Google

133. Patel VK, Williams H, Li SCH, Fletcher JP, Medbury HJ. Monocyte inflammatory profile is specific for individuals and associated with altered blood lipid levels. Atherosclerosis. 2017; Cerca con Google

134. Ziegler-Heitbrock L. Blood monocytes and their subsets: Established features and open questions. Front. Immunol. 2015; Cerca con Google

135. Ulrich C, Heine GH, Garcia P, et al. Increased expression of monocytic angiotensin-converting enzyme in dialysis patients with cardiovascular disease. Nephrol. Dial. Transplant. 2006; Cerca con Google

136. Schlitt A, Heine GH, Blankenberg S, et al. CD14+CD16+ monocytes in coronary artery disease and their relationship to serum TNF-α levels. Thromb. Haemost. 2004; Cerca con Google

137. Tapp LD, Shantsila E, Wrigley BJ, Pamukcu B, Lip GYH. The CD14++CD16+ monocyte subset and monocyte-platelet interactions in patients with ST-elevation myocardial infarction. J. Thromb. Haemost. 2012; Cerca con Google

138. Kaito M, Araya SI, Gondo Y, et al. Relevance of Distinct Monocyte Subsets to Clinical Course of Ischemic Stroke Patients. PLoS One. 2013; Cerca con Google

139. Urra X, Villamor N, Amaro S, et al. Monocyte subtypes predict clinical course and prognosis in human stroke. J. Cereb. Blood Flow Metab. 2009; Cerca con Google

140. Shantsila E, Tapp LD, Wrigley BJ, et al. Monocyte subsets in coronary artery disease and their associations with markers of inflammation and fibrinolysis. Atherosclerosis. 2014; Cerca con Google

141. Fadini GP, Simoni F, Cappellari R, et al. Pro-inflammatory monocyte-macrophage polarization imbalance in human hypercholesterolemia and atherosclerosis. Atherosclerosis. 2014; Cerca con Google

142. Hatanaka E, Monteagudo PT, Marrocos MSM, Campa A. Neutrophils and monocytes as potentially important sources of proinflammatory cytokines in diabetes. Clin. Exp. Immunol. 2006; Cerca con Google

143. Horvath P, Oliver SR, Ganesan G, et al. Fasting glucose level modulates cell surface expression of CD11b and CD66b in granulocytes and monocytes of patients with type 2 diabetes. J. Investig. Med. 2013; Cerca con Google

144. Latet SC, Van Craenenbroeck AH, Van Herck PL, et al. A critical view of monocyte subpopulations in human hypercholesterolemia. Atherosclerosis. 2016; Cerca con Google

145. Rogacev KS, Cremers B, Zawada AM, et al. CD14++CD16+ monocytes independently predict cardiovascular events: A cohort study of 951 patients referred for elective coronary angiography. J. Am. Coll. Cardiol. 2012; Cerca con Google

146. Heine GH, Fliser The Fundación Jiménez Díaz D, Institutet K, et al. Monocyte subpopulations and cardiovascular risk in chronic kidney disease. Nat. Rev. Nephrol. 2012; Cerca con Google

147. Heine GH, Ulrich C, Seibert E, et al. CD14++CD16+monocytes but not total monocyte numbers predict cardiovascular events in dialysis patients. Kidney Int. 2008; Cerca con Google

148. M. H, T. L, C. S, et al. Monocyte heterogeneity and cardiovascular risk factors in coronary artery disease. Eur. Heart J. 2010; Cerca con Google

149. Berg KE, Ljungcrantz I, Andersson L, et al. Elevated CD14++CD16-monocytes predict cardiovascular events. Circ. Cardiovasc. Genet. 2012; Cerca con Google

150. Van Der Laan AM, Hirsch A, Robbers LFHJ, et al. A proinflammatory monocyte response is associated with myocardial injury and impaired functional outcome in patients with ST-segment elevation myocardial infarction: Monocytes and myocardial infarction. Am. Heart J. 2012; Cerca con Google

151. Wildgruber M, Czubba M, Aschenbrenner T, et al. Increased intermediate CD14++CD16++monocyte subset levels associate with restenosis after peripheral percutaneous transluminal angioplasty. Atherosclerosis. 2016; Cerca con Google

152. Fingerle-Rowson, Angstwurm, Andreesen, Ziegler-Heitbrock. Selective depletion of CD14+ CD16+ monocytes by glucocorticoid therapy. Clin. Exp. Immunol. 1998; Cerca con Google

153. American Diabetes Association. Diagnosing Diabetes and Learning About Prediabetes. Www.Diabetes.Org/Diabetes-Basics/Diagnosis. 2015; Vai! Cerca con Google

154. Xie P, Huang JM, Lin HY, Wu WJ, Pan LP. CDK-EPI equation may be the most proper formula based on creatinine in determining glomerular filtration rate in Chinese patients with chronic kidney disease. Int. Urol. Nephrol. 2013; Cerca con Google

155. Pencina MJ, D’Agostino RB, Demler O V. Novel metrics for evaluating improvement in discrimination: Net reclassification and integrated discrimination improvement for normal variables and nested models. Stat. Med. 2012; Cerca con Google

156. Cappellari R, D’Anna M, Bonora BM, et al. Shift of monocyte subsets along their continuum predicts cardiovascular outcomes. Atherosclerosis. 2017; Cerca con Google

157. Kelly JA, Griffin ME, Fava RA, et al. Inhibition of arterial lesion progression in CD16-deficient mice: Evidence for altered immunity and the role of IL-10. Cardiovasc. Res. 2010; Cerca con Google

158. Wildgruber M, Aschenbrenner T, Wendorff H, et al. The ‘intermediate’ CD14++ CD16+ monocyte subset increases in severe peripheral artery disease in humans. Sci. Rep. 2016; Cerca con Google

159. Lambert C, Preijers FWMB, Yanikkaya Demirel G, Sack U. Monocytes and macrophages in flow: an ESCCA initiative on advanced analyses of monocyte lineage using flow cytometry. Cytom. Part B - Clin. Cytom. 2017; Cerca con Google

160. Zawada AM, Fell LH, Untersteller K, et al. Comparison of two different strategies for human monocyte subsets gating within the large-scale prospective CARE FOR HOMe Study. Cytometry. A. 2015; Cerca con Google

161. Yarnell JW, Baker I a, Sweetnam PM, et al. Fibrinogen, viscosity, and white blood cell count are major risk factors for ischemic heart disease. The Caerphilly and Speedwell collaborative heart disease studies. Circulation. 1991. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record