Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Zangrossi, Manuela (2018) Study of the extra-telomeric functions of telomerase in in vitro and in vivo models. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document
Thesis not accessible until 30 September 2021 for intellectual property related reasons.
Visibile to: nobody

4Mb

Abstract (italian or english)

Maintenance of telomere length, required for the unlimited cell proliferation displayed by cancer cells, is provided by telomerase, a ribonucleoprotein complex containing a specialized reverse transcriptase, encoded by TERT gene, that uses an internal RNA template to maintain telomeres length, thus playing a critical role in tumor formation and progression. TERT is usually repressed in normal somatic cells, but is detectable in the vast majority of tumors.
Recent studies have suggested that TERT, besides maintaining telomere, is involved in other cellular functions, and it may contribute to carcinogenesis also via telomere length-independent mechanisms; therefore its inhibition could represent a promising strategy to improve cancer treatment, regardless of telomere length. The possible therapeutic effects of BIBR1532 (BIBR), a specific TERT inhibitor, have been evaluated in different cellular backgrounds, but no data are currently available regarding Epstein-Barr virus (EBV)-driven and virus-unrelated B-cell malignancies.
The aim of this study was to characterize the biological effects of short-term TERT inhibition by BIBR on EBV-immortalized lymphoblastoid cell lines (LCLs) and fully transformed Burkitt’s lymphoma (BL) cell lines; in addition, we investigated the effects of short-term BIBR treatment in vivo in wild type zebrafish embryos.
We found that short-term inhibition of TERT by BIBR, in in vitro models of B-cell malignancies, led to decreased cell proliferation, accumulation of cells in the S-phase and ultimately increased apoptosis. The cell cycle arrest and apoptosis, consequent upon short-term TERT inhibition, were associated with and likely dependent on the activation of the DNA damage response (DDR), highlighted by the increased levels of γH2AX and activation of ATM and ATR pathways. Analyses of the mean and range of telomere lengths and telomere dysfunction-induced foci indicated that DDR after short-term TERT inhibition was not related to telomere dysfunction, thus suggesting that TERT, besides stabilizing telomere, may protect DNA via telomere-independent mechanisms. Notably, TERT-positive LCLs treated with BIBR in combination with fludarabine or cyclophosphamide showed a significant increase in the number of apoptotic cells with respect to those treated with chemotherapeutic agents alone.
In agreement with in vitro results, short-term inhibition of Tert by BIBR in wild type zebrafish embryos reduced cell proliferation, induced an accumulation of cells in S-phase, increased apoptosis, and triggered the activation of DDR. These effects were telomere length-unrelated, since the range of telomere length was not affected by the short-term BIBR treatment and the DNA damage foci were distributed randomly, rather than specifically located at telomeres. All these effects were specifically related to Tert inhibition since BIBR treatment showed no effect in Tert-negative zebrafish embryos.
Taken together these data demonstrate that TERT inhibition impairs cell proliferation and induces pro-apoptotic effects unrelated to telomere dysfunction, enforcing the concept that TERT per se exerts telomere length-independent tumor-promoting effects, and thus supporting the introduction of TERT inhibitors to complement current anticancer treatment modalities.

Abstract (a different language)

Il mantenimento dei telomeri, necessario per la proliferazione illimitata delle cellule tumorali, è esercitato dalla telomerasi, un complesso ribonucleoproteico contenente una trascrittasi inversa specializzata, codificata dal gene TERT, che utilizza un templato ad RNA per sintetizzare nuove sequenze telomeriche, svolgendo quindi un ruolo critico nella formazione e nella progressione dei tumori. TERT viene infatti solitamente represso in normali cellule somatiche, mentre è rilevabile nella maggior parte dei tumori.
Studi recenti hanno suggerito che TERT è coinvolto in altre funzioni cellulari e può contribuire alla carcinogenesi anche attraverso meccanismi indipendenti dal mantenimento dei telomeri, quindi la sua inibizione potrebbe rappresentare una strategia promettente per migliorare il trattamento antitumorale, al di là dell’effetto sui telomeri. I possibili effetti terapeutici di BIBR1532 (BIBR), un inibitore specifico del TERT, sono stati valutati in diversi contesti cellulari, ma non sono attualmente disponibili dati ottenuti su modelli di neoplasie delle cellule B sia associate al virus di Epstein-Barr (EBV) che virus-indipendenti.
Lo scopo di questo studio era di caratterizzare gli effetti biologici dell'inibizione di TERT a breve termine da parte del BIBR su linee cellulari linfoblastoidi immortalizzate da EBV (LCL) e su modelli in vitro di linfoma di Burkitt (BL); inoltre, sono stati studiati gli effetti del trattamento con BIBR a breve termine in vivo negli embrioni di zebrafish.
I risultati ottenuti hanno dimostrato che l'inibizione a breve termine di TERT da parte di BIBR, in modelli in vitro di tumori delle cellule B, ha portato a una diminuzione della proliferazione cellulare, all'accumulo di cellule nella fase S e infine all'aumento dell'apoptosi. L'arresto del ciclo cellulare e l'apoptosi, conseguenti all'inibizione di TERT a breve termine, erano associati e probabilmente dipendenti dall'attivazione della risposta al danno del DNA, come evidenziato dall’aumento dei livelli di γH2AX e dall'attivazione dei pathway di ATM e ATR. L’analisi della media e del range di lunghezza dei telomeri e dei foci di danno al DNA ha indicato che la risposta al danno attivata in seguito all’inibizione TERT a breve termine non era legata a disfunzioni telomeriche, suggerendo quindi che TERT, oltre a stabilizzare il telomero, può proteggere il DNA tramite meccanismi telomero-indipendenti. In particolare, LCL-TERT positive trattate con BIBR in combinazione con fludarabina o ciclofosfamide hanno mostrato un aumento significativo del numero di cellule apoptotiche rispetto a quelle trattate con agenti chemioterapici da soli.
In accordo con i risultati in vitro, l'inibizione a breve termine di Tert da parte del BIBR in embrioni di zebrafish ha ridotto la proliferazione cellulare, indotto un accumulo di cellule nella fase S, aumentato il tasso di apoptosi e innescato l'attivazione della risposta al danno al DNA. Questi effetti non erano legati a disfunzioni telomeriche, poiché il range di lunghezza dei telomeri non era influenzato dal trattamento a breve termine con BIBR e i foci di danno al DNA erano distribuiti casualmente, piuttosto che localizzati in modo specifico sui telomeri. Tutti questi effetti erano specificamente associati all'inibizione di Tert poiché il trattamento con BIBR non mostrava alcun effetto negli embrioni di zebrafish Tert-negativi.
Nel complesso questi dati dimostrano che l'inibizione del TERT compromette la proliferazione cellulare e induce effetti pro-apoptotici non associati a disfunzioni telomeriche, rafforzando il concetto che TERT esercita di per sé funzioni pro-tumorali indipendenti dalla lunghezza del telomero e quindi supportando l'introduzione di inibitori di TERT per integrare le attuali modalità di trattamento antitumorale.

EPrint type:Ph.D. thesis
Tutor:De Rossi, Anita
Ph.D. course:Ciclo 31 > Corsi 31 > ONCOLOGIA CLINICA E SPERIMENTALE E IMMUNOLOGIA
Data di deposito della tesi:30 November 2018
Anno di Pubblicazione:2018
Key Words:telomerasi, inibitori della telomerasi, TERT, funzioni extra-telomeriche, ciclo cellulare, apoptosi, tumori delle cellule B, zebrafish, EBV / telomerase, extra-telomeric functions, telomerase inhibitors, TERT, cell cycle, apoptosis, b-cell malignancies, zebrafish, EBV
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/06 Oncologia medica
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Chirurgiche Oncologiche e Gastroenterologiche
Codice ID:11470
Depositato il:05 Nov 2019 17:20
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Cleal K, Norris K, Baird D. Telomere Length Dynamics and the Evolution of Cancer Genome Architecture. Int J Mol Sci 2018;19(2) doi 10.3390/ijms19020482. Cerca con Google

2. Seifert M, Scholtysik R, Kuppers R. Origin and pathogenesis of B cell lymphomas. Methods Mol Biol 2013;971:1-25 doi 10.1007/978-1-62703-269-8_1. Cerca con Google

3. Hakem R. DNA-damage repair; the good, the bad, and the ugly. Embo j 2008;27(4):589-605 doi 10.1038/emboj.2008.15. Cerca con Google

4. Sirbu BM, Cortez D. DNA damage response: three levels of DNA repair regulation. Cold Spring Harb Perspect Biol 2013;5(8):a012724 doi 10.1101/cshperspect.a012724. Cerca con Google

5. Gilson E, Geli V. How telomeres are replicated. Nat Rev Mol Cell Biol 2007;8(10):825-38 doi 10.1038/nrm2259. Cerca con Google

6. Lazzerini-Denchi E, Sfeir A. Stop pulling my strings - what telomeres taught us about the DNA damage response. Nat Rev Mol Cell Biol 2016;17(6):364-78 doi 10.1038/nrm.2016.43. Cerca con Google

7. Lu W, Zhang Y, Liu D, Songyang Z, Wan M. Telomeres-structure, function, and regulation. Exp Cell Res 2013;319(2):133-41 doi 10.1016/j.yexcr.2012.09.005. Cerca con Google

8. Cusanelli E, Chartrand P. Telomeric noncoding RNA: telomeric repeat-containing RNA in telomere biology. Wiley Interdiscip Rev RNA 2014;5(3):407-19 doi 10.1002/wrna.1220. Cerca con Google

9. Rhodes D, Lipps HJ. G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res 2015;43(18):8627-37 doi 10.1093/nar/gkv862. Cerca con Google

10. Rog O, Cooper JP. Telomeres in drag: Dressing as DNA damage to engage telomerase. Curr Opin Genet Dev 2008;18(2):212-20 doi 10.1016/j.gde.2008.01.011. Cerca con Google

11. Martinez P, Blasco MA. Replicating through telomeres: a means to an end. Trends Biochem Sci 2015;40(9):504-15 doi 10.1016/j.tibs.2015.06.003. Cerca con Google

12. Calado RT, Young NS. Telomere maintenance and human bone marrow failure. Blood 2008;111(9):4446-55 doi 10.1182/blood-2007-08-019729. Cerca con Google

13. Palm W, de Lange T. How shelterin protects mammalian telomeres. Annu Rev Genet 2008;42:301-34 doi 10.1146/annurev.genet.41.110306.130350. Cerca con Google

14. de Lange T. How telomeres solve the end-protection problem. Science 2009;326(5955):948-52 doi 10.1126/science.1170633. Cerca con Google

15. Longhese MP. DNA damage response at functional and dysfunctional telomeres. Genes Dev 2008;22(2):125-40 doi 10.1101/gad.1626908. Cerca con Google

16. Cesare AJ, Karlseder J. A three-state model of telomere control over human proliferative boundaries. Curr Opin Cell Biol 2012;24(6):731-8 doi 10.1016/j.ceb.2012.08.007. Cerca con Google

17. Martinez P, Blasco MA. Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat Rev Cancer 2011;11(3):161-76 doi 10.1038/nrc3025. Cerca con Google

18. Schmidt JC, Cech TR. Human telomerase: biogenesis, trafficking, recruitment, and activation. Genes Dev 2015;29(11):1095-105 doi 10.1101/gad.263863.115. Cerca con Google

19. Wellinger RJ. In the end, what's the problem? Mol Cell 2014;53(6):855-6 doi 10.1016/j.molcel.2014.03.008. Cerca con Google

20. Maciejowski J, de Lange T. Telomeres in cancer: tumour suppression and genome instability. Nat Rev Mol Cell Biol 2017;18(3):175-86 doi 10.1038/nrm.2016.171. Cerca con Google

21. Greider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 1985;43(2 Pt 1):405-13. Cerca con Google

22. Kumar M, Lechel A, Gunes C. Telomerase: The Devil Inside. Genes (Basel) 2016;7(8) doi 10.3390/genes7080043. Cerca con Google

23. Saretzki G. Extra-telomeric functions of human telomerase: cancer, mitochondria and oxidative stress. Curr Pharm Des 2014;20(41):6386-403. Cerca con Google

24. Nachajova M, Brany D, Dvorska D. Telomerase and the process of cervical carcinogenesis. Tumour Biol 2015;36(10):7335-8 doi 10.1007/s13277-015-3976-z. Cerca con Google

25. Wu RA, Upton HE, Vogan JM, Collins K. Telomerase Mechanism of Telomere Synthesis. Annu Rev Biochem 2017;86:439-60 doi 10.1146/annurev-biochem-061516-045019. Cerca con Google

26. Podlevsky JD, Chen JJ. It all comes together at the ends: telomerase structure, function, and biogenesis. Mutat Res 2012;730(1-2):3-11 doi 10.1016/j.mrfmmm.2011.11.002. Cerca con Google

27. Akincilar SC, Unal B, Tergaonkar V. Reactivation of telomerase in cancer. Cell Mol Life Sci 2016;73(8):1659-70 doi 10.1007/s00018-016-2146-9. Cerca con Google

28. Heidenreich B, Kumar R. TERT promoter mutations in telomere biology. Mutat Res 2017;771:15-31 doi 10.1016/j.mrrev.2016.11.002. Cerca con Google

29. Liu X, Wang Y, Chang G, Wang F, Geng X. Alternative Splicing of hTERT Pre-mRNA: A Potential Strategy for the Regulation of Telomerase Activity. Int J Mol Sci 2017;18(3) doi 10.3390/ijms18030567. Cerca con Google

30. Pfeiffer V, Lingner J. Replication of telomeres and the regulation of telomerase. Cold Spring Harb Perspect Biol 2013;5(5):a010405 doi 10.1101/cshperspect.a010405. Cerca con Google

31. Chiodi I, Mondello C. Telomere-independent functions of telomerase in nuclei, cytoplasm, and mitochondria. Front Oncol 2012;2:133 doi 10.3389/fonc.2012.00133. Cerca con Google

32. Giunco S, Rampazzo E, Celeghin A, Petrara MR, De Rossi A. Telomere and Telomerase in Carcinogenesis: Their Role as Prognostic Biomarkers. Curr Pathobiol Rep 2015;3:315–28 doi 10.1007/s40139-015-0087-x. Cerca con Google

33. Terrin L, Dal Col J, Rampazzo E, Zancai P, Pedrotti M, Ammirabile G, et al. Latent membrane protein 1 of Epstein-Barr virus activates the hTERT promoter and enhances telomerase activity in B lymphocytes. J Virol 2008;82(20):10175-87 doi 10.1128/JVI.00321-08. Cerca con Google

34. Chen X, Kamranvar SA, Masucci MG. Tumor viruses and replicative immortality--avoiding the telomere hurdle. Semin Cancer Biol 2014;26:43-51 doi 10.1016/j.semcancer.2014.01.006. Cerca con Google

35. Kang Y, Zhang J, Sun P, Shang J. Circulating cell-free human telomerase reverse transcriptase mRNA in plasma and its potential diagnostic and prognostic value for gastric cancer. Int J Clin Oncol 2013;18(3):478-86 doi 10.1007/s10147-012-0405-9. Cerca con Google

36. Rampazzo E, Del Bianco P, Bertorelle R, Boso C, Perin A, Spiro G, et al. The predictive and prognostic potential of plasma telomerase reverse transcriptase (TERT) RNA in rectal cancer patients. Br J Cancer 2018;118(6):878-86 doi 10.1038/bjc.2017.492. Cerca con Google

37. Yuan P, Cao JL, Abuduwufuer A, Wang LM, Yuan XS, Lv W, et al. Clinical Characteristics and Prognostic Significance of TERT Promoter Mutations in Cancer: A Cohort Study and a Meta-Analysis. PLoS One 2016;11(1):e0146803 doi 10.1371/journal.pone.0146803. Cerca con Google

38. Rampazzo E, Bonaldi L, Trentin L, Visco C, Keppel S, Giunco S, et al. Telomere length and telomerase levels delineate subgroups of B-cell chronic lymphocytic leukemia with different biological characteristics and clinical outcomes. Haematologica 2012;97(1):56-63 doi 10.3324/haematol.2011.049874. Cerca con Google

39. De Vitis M, Berardinelli F, Sgura A. Telomere Length Maintenance in Cancer: At the Crossroad between Telomerase and Alternative Lengthening of Telomeres (ALT). Int J Mol Sci 2018;19(2) doi 10.3390/ijms19020606. Cerca con Google

40. Maicher A, Lockhart A, Luke B. Breaking new ground: digging into TERRA function. Biochim Biophys Acta 2014;1839(5):387-94 doi 10.1016/j.bbagrm.2014.03.012. Cerca con Google

41. Pickett HA, Reddel RR. Molecular mechanisms of activity and derepression of alternative lengthening of telomeres. Nat Struct Mol Biol 2015;22(11):875-80 doi 10.1038/nsmb.3106. Cerca con Google

42. Stampfer MR, Garbe J, Levine G, Lichtsteiner S, Vasserot AP, Yaswen P. Expression of the telomerase catalytic subunit, hTERT, induces resistance to transforming growth factor beta growth inhibition in p16INK4A(-) human mammary epithelial cells. Proc Natl Acad Sci U S A 2001;98(8):4498-503 doi 10.1073/pnas.071483998. Cerca con Google

43. Park JI, Venteicher AS, Hong JY, Choi J, Jun S, Shkreli M, et al. Telomerase modulates Wnt signalling by association with target gene chromatin. Nature 2009;460(7251):66-72 doi 10.1038/nature08137. Cerca con Google

44. Polakis P. Wnt signaling in cancer. Cold Spring Harb Perspect Biol 2012;4(5) doi 10.1101/cshperspect.a008052. Cerca con Google

45. Giunco S, Celeghin A, Gianesin K, Dolcetti R, Indraccolo S, De Rossi A. Cross talk between EBV and telomerase: the role of TERT and NOTCH2 in the switch of latent/lytic cycle of the virus. Cell Death Dis 2015;6:e1774 doi 10.1038/cddis.2015.145. Cerca con Google

46. Koh CM, Khattar E, Leow SC, Liu CY, Muller J, Ang WX, et al. Telomerase regulates MYC-driven oncogenesis independent of its reverse transcriptase activity. J Clin Invest 2015;125(5):2109-22 doi 10.1172/jci79134. Cerca con Google

47. Khattar E, Tergaonkar V. Transcriptional Regulation of Telomerase Reverse Transcriptase (TERT) by MYC. Front Cell Dev Biol 2017;5:1 doi 10.3389/fcell.2017.00001. Cerca con Google

48. Baena-Del Valle JA, Zheng Q, Esopi DM, Rubenstein M, Hubbard GK, Moncaliano MC, et al. MYC drives overexpression of telomerase RNA (hTR/TERC) in prostate cancer. J Pathol 2018;244(1):11-24 doi 10.1002/path.4980. Cerca con Google

49. Terrin L, Dolcetti R, Corradini I, Indraccolo S, Dal Col J, Bertorelle R, et al. hTERT inhibits the Epstein-Barr virus lytic cycle and promotes the proliferation of primary B lymphocytes: implications for EBV-driven lymphomagenesis. Int J Cancer 2007;121(3):576-87 doi 10.1002/ijc.22661. Cerca con Google

50. Giunco S, Dolcetti R, Keppel S, Celeghin A, Indraccolo S, Dal Col J, et al. hTERT inhibition triggers Epstein-Barr virus lytic cycle and apoptosis in immortalized and transformed B cells: a basis for new therapies. Clin Cancer Res 2013;19(8):2036-47 doi 10.1158/1078-0432.ccr-12-2537. Cerca con Google

51. Dolcetti R, Dal Col J, Martorelli D, Carbone A, Klein E. Interplay among viral antigens, cellular pathways and tumor microenvironment in the pathogenesis of EBV-driven lymphomas. Semin Cancer Biol 2013;23(6):441-56 doi 10.1016/j.semcancer.2013.07.005. Cerca con Google

52. Giunco S, Petrara MR, Zangrossi M, Celeghin A, De Rossi A. Extra-telomeric functions of telomerase in the pathogenesis of Epstein-Barr virus-driven B-cell malignancies and potential therapeutic implications. Infect Agent Cancer 2018;13:14 doi 10.1186/s13027-018-0186-5. Cerca con Google

53. Indran IR, Hande MP, Pervaiz S. hTERT overexpression alleviates intracellular ROS production, improves mitochondrial function, and inhibits ROS-mediated apoptosis in cancer cells. Cancer Res 2011;71(1):266-76 doi 10.1158/0008-5472.can-10-1588. Cerca con Google

54. Maida Y, Yasukawa M, Furuuchi M, Lassmann T, Possemato R, Okamoto N, et al. An RNA-dependent RNA polymerase formed by TERT and the RMRP RNA. Nature 2009;461(7261):230-5 doi 10.1038/nature08283. Cerca con Google

55. Lassmann T, Maida Y, Tomaru Y, Yasukawa M, Ando Y, Kojima M, et al. Telomerase reverse transcriptase regulates microRNAs. Int J Mol Sci 2015;16(1):1192-208 doi 10.3390/ijms16011192. Cerca con Google

56. Mukherjee S, Firpo EJ, Wang Y, Roberts JM. Separation of telomerase functions by reverse genetics. Proc Natl Acad Sci U S A 2011;108(50):E1363-71 doi 10.1073/pnas.1112414108. Cerca con Google

57. Sharma NK, Reyes A, Green P, Caron MJ, Bonini MG, Gordon DM, et al. Human telomerase acts as a hTR-independent reverse transcriptase in mitochondria. Nucleic Acids Res 2012;40(2):712-25 doi 10.1093/nar/gkr758. Cerca con Google

58. Sharma GG, Gupta A, Wang H, Scherthan H, Dhar S, Gandhi V, et al. hTERT associates with human telomeres and enhances genomic stability and DNA repair. Oncogene 2003;22(1):131-46 doi 10.1038/sj.onc.1206063. Cerca con Google

59. Shin KH, Kang MK, Dicterow E, Kameta A, Baluda MA, Park NH. Introduction of human telomerase reverse transcriptase to normal human fibroblasts enhances DNA repair capacity. Clin Cancer Res 2004;10(7):2551-60. Cerca con Google

60. Arndt GM, MacKenzie KL. New prospects for targeting telomerase beyond the telomere. Nat Rev Cancer 2016;16(8):508-24 doi 10.1038/nrc.2016.55. Cerca con Google

61. Shirgahi Talari F, Bagherzadeh K, Golestanian S, Jarstfer M, Amanlou M. Potent Human Telomerase Inhibitors: Molecular Dynamic Simulations, Multiple Pharmacophore-Based Virtual Screening, and Biochemical Assays. J Chem Inf Model 2015;55(12):2596-610 doi 10.1021/acs.jcim.5b00336. Cerca con Google

62. Ruden M, Puri N. Novel anticancer therapeutics targeting telomerase. Cancer Treat Rev 2013;39(5):444-56 doi 10.1016/j.ctrv.2012.06.007. Cerca con Google

63. Pascolo E, Wenz C, Lingner J, Hauel N, Priepke H, Kauffmann I, et al. Mechanism of human telomerase inhibition by BIBR1532, a synthetic, non-nucleosidic drug candidate. J Biol Chem 2002;277(18):15566-72 doi 10.1074/jbc.M201266200. Cerca con Google

64. Greider CW. Telomere length regulation. Annu Rev Biochem 1996;65:337-65 doi 10.1146/annurev.bi.65.070196.002005. Cerca con Google

65. Blackburn EH, Greider CW, Szostak JW. Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med 2006;12(10):1133-8 doi 10.1038/nm1006-1133. Cerca con Google

66. Nakamura TM, Morin GB, Chapman KB, Weinrich SL, Andrews WH, Lingner J, et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 1997;277(5328):955-9. Cerca con Google

67. Kelland L. Targeting the limitless replicative potential of cancer: the telomerase/telomere pathway. Clin Cancer Res 2007;13(17):4960-3 doi 10.1158/1078-0432.ccr-07-0422. Cerca con Google

68. Liang W, Ye D, Dai L, Shen Y, Xu J. Overexpression of hTERT extends replicative capacity of human nucleus pulposus cells, and protects against serum starvation-induced apoptosis and cell cycle arrest. J Cell Biochem 2012;113(6):2112-21 doi 10.1002/jcb.24082. Cerca con Google

69. Cerone MA, Londono-Vallejo JA, Autexier C. Telomerase inhibition enhances the response to anticancer drug treatment in human breast cancer cells. Mol Cancer Ther 2006;5(7):1669-75 doi 10.1158/1535-7163.mct-06-0033. Cerca con Google

70. Pendino F, Dudognon C, Delhommeau F, Sahraoui T, Flexor M, Bennaceur-Griscelli A, et al. Retinoic acid receptor alpha and retinoid-X receptor-specific agonists synergistically target telomerase expression and induce tumor cell death. Oncogene 2003;22(57):9142-50 doi 10.1038/sj.onc.1207093. Cerca con Google

71. Rahman R, Latonen L, Wiman KG. hTERT antagonizes p53-induced apoptosis independently of telomerase activity. Oncogene 2005;24(8):1320-7 doi 10.1038/sj.onc.1208232. Cerca con Google

72. Dudognon C, Pendino F, Hillion J, Saumet A, Lanotte M, Segal-Bendirdjian E. Death receptor signaling regulatory function for telomerase: hTERT abolishes TRAIL-induced apoptosis, independently of telomere maintenance. Oncogene 2004;23(45):7469-74 doi 10.1038/sj.onc.1208029. Cerca con Google

73. Lacoste S, Wiechec E, Dos Santos Silva AG, Guffei A, Williams G, Lowbeer M, et al. Chromosomal rearrangements after ex vivo Epstein-Barr virus (EBV) infection of human B cells. Oncogene 2010;29(4):503-15 doi 10.1038/onc.2009.359. Cerca con Google

74. Kamranvar SA, Chen X, Masucci MG. Telomere dysfunction and activation of alternative lengthening of telomeres in B-lymphocytes infected by Epstein-Barr virus. Oncogene 2013;32(49):5522-30 doi 10.1038/onc.2013.189. Cerca con Google

75. Hahn WC, Stewart SA, Brooks MW, York SG, Eaton E, Kurachi A, et al. Inhibition of telomerase limits the growth of human cancer cells. Nat Med 1999;5(10):1164-70 doi 10.1038/13495. Cerca con Google

76. Nakamura M, Masutomi K, Kyo S, Hashimoto M, Maida Y, Kanaya T, et al. Efficient inhibition of human telomerase reverse transcriptase expression by RNA interference sensitizes cancer cells to ionizing radiation and chemotherapy. Hum Gene Ther 2005;16(7):859-68 doi 10.1089/hum.2005.16.859. Cerca con Google

77. Noureini SK, Wink M. Dose-dependent cytotoxic effects of boldine in HepG-2 cells-telomerase inhibition and apoptosis induction. Molecules 2015;20(3):3730-43 doi 10.3390/molecules20033730. Cerca con Google

78. Bashash D, Ghaffari SH, Zaker F, Hezave K, Kazerani M, Ghavamzadeh A, et al. Direct short-term cytotoxic effects of BIBR 1532 on acute promyelocytic leukemia cells through induction of p21 coupled with downregulation of c-Myc and hTERT transcription. Cancer Invest 2012;30(1):57-64 doi 10.3109/07357907.2011.629378. Cerca con Google

79. Damm K, Hemmann U, Garin-Chesa P, Hauel N, Kauffmann I, Priepke H, et al. A highly selective telomerase inhibitor limiting human cancer cell proliferation. Embo j 2001;20(24):6958-68 doi 10.1093/emboj/20.24.6958. Cerca con Google

80. Nakashima M, Nandakumar J, Sullivan KD, Espinosa JM, Cech TR. Inhibition of telomerase recruitment and cancer cell death. J Biol Chem 2013;288(46):33171-80 doi 10.1074/jbc.M113.518175. Cerca con Google

81. Brassat U, Balabanov S, Bali D, Dierlamm J, Braig M, Hartmann U, et al. Functional p53 is required for effective execution of telomerase inhibition in BCR-ABL-positive CML cells. Exp Hematol 2011;39(1):66-76.e1-2 doi 10.1016/j.exphem.2010.10.001. Cerca con Google

82. Ward RJ, Autexier C. Pharmacological telomerase inhibition can sensitize drug-resistant and drug-sensitive cells to chemotherapeutic treatment. Mol Pharmacol 2005;68(3):779-86 doi 10.1124/mol.105.011494. Cerca con Google

83. El-Daly H, Kull M, Zimmermann S, Pantic M, Waller CF, Martens UM. Selective cytotoxicity and telomere damage in leukemia cells using the telomerase inhibitor BIBR1532. Blood 2005;105(4):1742-9 doi 10.1182/blood-2003-12-4322. Cerca con Google

84. Bashash D, Ghaffari SH, Mirzaee R, Alimoghaddam K, Ghavamzadeh A. Telomerase inhibition by non-nucleosidic compound BIBR1532 causes rapid cell death in pre-B acute lymphoblastic leukemia cells. Leuk Lymphoma 2013;54(3):561-8 doi 10.3109/10428194.2012.704034. Cerca con Google

85. Nabetani A, Yokoyama O, Ishikawa F. Localization of hRad9, hHus1, hRad1, and hRad17 and caffeine-sensitive DNA replication at the alternative lengthening of telomeres-associated promyelocytic leukemia body. J Biol Chem 2004;279(24):25849-57 doi 10.1074/jbc.M312652200. Cerca con Google

86. Dejardin J, Kingston RE. Purification of proteins associated with specific genomic Loci. Cell 2009;136(1):175-86 doi 10.1016/j.cell.2008.11.045. Cerca con Google

87. Terrin L, Rampazzo E, Pucciarelli S, Agostini M, Bertorelle R, Esposito G, et al. Relationship between tumor and plasma levels of hTERT mRNA in patients with colorectal cancer: implications for monitoring of neoplastic disease. Clin Cancer Res 2008;14(22):7444-51 doi 10.1158/1078-0432.ccr-08-0478. Cerca con Google

88. Ballon G, Ometto L, Righetti E, Cattelan AM, Masiero S, Zanchetta M, et al. Human immunodeficiency virus type 1 modulates telomerase activity in peripheral blood lymphocytes. J Infect Dis 2001;183(3):417-24 doi 10.1086/318072. Cerca con Google

89. Colombrino E, Rossi E, Ballon G, Terrin L, Indraccolo S, Chieco-Bianchi L, et al. Human immunodeficiency virus type 1 Tat protein modulates cell cycle and apoptosis in Epstein-Barr virus-immortalized B cells. Exp Cell Res 2004;295(2):539-48 doi 10.1016/j.yexcr.2004.01.018. Cerca con Google

90. McKerlie M, Walker JR, Mitchell TR, Wilson FR, Zhu XD. Phosphorylated (pT371)TRF1 is recruited to sites of DNA damage to facilitate homologous recombination and checkpoint activation. Nucleic Acids Res 2013;41(22):10268-82 doi 10.1093/nar/gkt775. Cerca con Google

91. Gianesin K, Noguera-Julian A, Zanchetta M, Del Bianco P, Petrara MR, Freguja R, et al. Premature aging and immune senescence in HIV-infected children. Aids 2016;30(9):1363-73 doi 10.1097/qad.0000000000001093. Cerca con Google

92. Bashash D, Zareii M, Safaroghli-Azar A, Omrani MD, Ghaffari SH. Inhibition of telomerase using BIBR1532 enhances doxorubicin-induced apoptosis in pre-B acute lymphoblastic leukemia cells. Hematology 2017;22(6):330-40 doi 10.1080/10245332.2016.1275426. Cerca con Google

93. Liang Y, Lin SY, Brunicardi FC, Goss J, Li K. DNA damage response pathways in tumor suppression and cancer treatment. World J Surg 2009;33(4):661-6 doi 10.1007/s00268-008-9840-1. Cerca con Google

94. d'Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 2003;426(6963):194-8 doi 10.1038/nature02118. Cerca con Google

95. Chang YH, Lee CP, Su MT, Wang JT, Chen JY, Lin SF, et al. Epstein-Barr virus BGLF4 kinase retards cellular S-phase progression and induces chromosomal abnormality. PLoS One 2012;7(6):e39217 doi 10.1371/journal.pone.0039217. Cerca con Google

96. Xu L, Li S, Stohr BA. The role of telomere biology in cancer. Annu Rev Pathol 2013;8:49-78 doi 10.1146/annurev-pathol-020712-164030. Cerca con Google

97. Denchi EL, de Lange T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 2007;448(7157):1068-71 doi 10.1038/nature06065. Cerca con Google

98. Lajoie V, Lemieux B, Sawan B, Lichtensztejn D, Lichtensztejn Z, Wellinger R, et al. LMP1 mediates multinuclearity through downregulation of shelterin proteins and formation of telomeric aggregates. Blood 2015;125(13):2101-10 doi 10.1182/blood-2014-08-594176. Cerca con Google

99. Barzilai A, Yamamoto K. DNA damage responses to oxidative stress. DNA Repair (Amst) 2004;3(8-9):1109-15 doi 10.1016/j.dnarep.2004.03.002. Cerca con Google

100. Tanaka T, Halicka HD, Huang X, Traganos F, Darzynkiewicz Z. Constitutive histone H2AX phosphorylation and ATM activation, the reporters of DNA damage by endogenous oxidants. Cell Cycle 2006;5(17):1940-5 doi 10.4161/cc.5.17.3191. Cerca con Google

101. Masutomi K, Possemato R, Wong JM, Currier JL, Tothova Z, Manola JB, et al. The telomerase reverse transcriptase regulates chromatin state and DNA damage responses. Proc Natl Acad Sci U S A 2005;102(23):8222-7 doi 10.1073/pnas.0503095102. Cerca con Google

102. Shawi M, Chu TW, Martinez-Marignac V, Yu Y, Gryaznov SM, Johnston JB, et al. Telomerase contributes to fludarabine resistance in primary human leukemic lymphocytes. PLoS One 2013;8(7):e70428 doi 10.1371/journal.pone.0070428. Cerca con Google

103. Tahtouh R, Azzi AS, Alaaeddine N, Chamat S, Bouharoun-Tayoun H, Wardi L, et al. Telomerase inhibition decreases alpha-fetoprotein expression and secretion by hepatocellular carcinoma cell lines: in vitro and in vivo study. PLoS One 2015;10(3):e0119512 doi 10.1371/journal.pone.0119512. Cerca con Google

104. Lieschke GJ, Currie PD. Animal models of human disease: zebrafish swim into view. Nat Rev Genet 2007;8(5):353-67 doi 10.1038/nrg2091. Cerca con Google

105. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn 1995;203(3):253-310 doi 10.1002/aja.1002030302. Cerca con Google

106. Parichy DM, Elizondo MR, Mills MG, Gordon TN, Engeszer RE. Normal Table of Post-Embryonic Zebrafish Development: Staging by Externally Visible Anatomy of the Living Fish. Dev Dyn 2009;238(12):2975-3015 doi 10.1002/dvdy.22113. Cerca con Google

107. Ackermann GE, Paw BH. Zebrafish: a genetic model for vertebrate organogenesis and human disorders. Front Biosci 2003;8:d1227-53. Cerca con Google

108. Goessling W, North TE, Zon LI. New waves of discovery: modeling cancer in zebrafish. J Clin Oncol 2007;25(17):2473-9 doi 10.1200/jco.2006.08.9821. Cerca con Google

109. Veinotte CJ, Dellaire G, Berman JN. Hooking the big one: the potential of zebrafish xenotransplantation to reform cancer drug screening in the genomic era. Dis Model Mech 2014;7(7):745-54 doi 10.1242/dmm.015784. Cerca con Google

110. Carneiro MC, de Castro IP, Ferreira MG. Telomeres in aging and disease: lessons from zebrafish. Dis Model Mech 2016;9(7):737-48 doi 10.1242/dmm.025130. Cerca con Google

111. Carneiro MC, Henriques CM, Nabais J, Ferreira T, Carvalho T, Ferreira MG. Short Telomeres in Key Tissues Initiate Local and Systemic Aging in Zebrafish. PLoS Genet 2016;12(1):e1005798 doi 10.1371/journal.pgen.1005798. Cerca con Google

112. Anchelin M, Murcia L, Alcaraz-Perez F, Garcia-Navarro EM, Cayuela ML. Behaviour of telomere and telomerase during aging and regeneration in zebrafish. PLoS One 2011;6(2):e16955 doi 10.1371/journal.pone.0016955. Cerca con Google

113. Lau BW, Wong AO, Tsao GS, So KF, Yip HK. Molecular cloning and characterization of the zebrafish (Danio rerio) telomerase catalytic subunit (telomerase reverse transcriptase, TERT). J Mol Neurosci 2008;34(1):63-75 doi 10.1007/s12031-007-0072-x. Cerca con Google

114. Imamura S, Uchiyama J, Koshimizu E, Hanai J, Raftopoulou C, Murphey RD, et al. A non-canonical function of zebrafish telomerase reverse transcriptase is required for developmental hematopoiesis. PLoS One 2008;3(10):e3364 doi 10.1371/journal.pone.0003364. Cerca con Google

115. Xie M, Mosig A, Qi X, Li Y, Stadler PF, Chen JJ. Structure and function of the smallest vertebrate telomerase RNA from teleost fish. J Biol Chem 2008;283(4):2049-59 doi 10.1074/jbc.M708032200. Cerca con Google

116. Henriques CM, Carneiro MC, Tenente IM, Jacinto A, Ferreira MG. Telomerase is required for zebrafish lifespan. PLoS Genet 2013;9(1):e1003214 doi 10.1371/journal.pgen.1003214. Cerca con Google

117. Anchelin M, Alcaraz-Perez F, Martinez CM, Bernabe-Garcia M, Mulero V, Cayuela ML. Premature aging in telomerase-deficient zebrafish. Dis Model Mech 2013;6(5):1101-12 doi 10.1242/dmm.011635. Cerca con Google

118. Li Y, Tergaonkar V. Noncanonical functions of telomerase: implications in telomerase-targeted cancer therapies. Cancer Res 2014;74(6):1639-44 doi 10.1158/0008-5472.can-13-3568. Cerca con Google

119. Pruvot B, Jacquel A, Droin N, Auberger P, Bouscary D, Tamburini J, et al. Leukemic cell xenograft in zebrafish embryo for investigating drug efficacy. Haematologica 2011;96(4):612-6 doi 10.3324/haematol.2010.031401. Cerca con Google

120. Corkery DP, Dellaire G, Berman JN. Leukaemia xenotransplantation in zebrafish--chemotherapy response assay in vivo. Br J Haematol 2011;153(6):786-9 doi 10.1111/j.1365-2141.2011.08661.x. Cerca con Google

121. Haldi M, Ton C, Seng WL, McGrath P. Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish. Angiogenesis 2006;9(3):139-51 doi 10.1007/s10456-006-9040-2. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record