Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Moschin, Silvia (2018) MADS-box genes expressed during flower development and fruit maturation in Nymphaea caerulea. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document (tesi di dottorato) - Accepted Version
Thesis not accessible until 01 December 2021 for intellectual property related reasons.
Visibile to: nobody

7Mb

Abstract (italian or english)

MADS-box genes have been found in all eukaryotes, but their number has greatly expanded in plants, where their functions range from root development to floral organ specification and to fruit development. During the development of flowers, some of them act as homeotic selector genes specifying the identity of the floral organs, according to the ABC(D)E model. The model was developed thanks to many studies carried out in eudicots and it works quite well to explain their flower development. By contrast, for many basal Angiosperms the same model does not fit equally well, because their flowers may be organized with a different architecture and their floral organs are not always similarly well defined. For instance, they may show transition forms for some of the floral components.
My PhD project studied MADS-box genes expressed in the developing reproductive structures of the basal Angiosperm Nymphaea caerulea.
The work has started with gene isolation, since no MADS-box sequence belonging to this species could be found in public databases. To isolate as many as possible MADS-box genes several starting samples and methods have been used. Overall, I was able to isolate the following different MADS-box genes from both flower and fruit tissues: APETALA1/FRUITFULL, APETALA3 (three splicing variants and two resulting proteins of different length), PISTILLATA, three different AGAMOUS-like genes (i.e. AG1, AG2, and AG3), SEPALLATA, AGL6, and JOINTLESS. Thus, genes belonging to all the functional classes of the canonical ABC(D)E model of flower development have been obtained and identified.
A detailed expression analysis of the isolated genes during flower and fruit development has revealed some interesting results. A complex scenario for the expressed MADS-box genes in floral developing tissues was obtained, which reflects the complex floral morphology of the water lily and is in accordance with previous studies conducted in basal Angiosperms’ flowers.
Considering that some MADS-box transcription factors involved in flower development are important also to regulate post-fertilization processes, I also studied in detail the N. caerulea fruit development, which appeared an interesting and finely tuned process.
The study of fruit maturation in a water lily represents the most novel aspect of this work. N. caerulea has a pluricarpellate ovary that after fertilization develops into a fleshy capsule. It matures underwater until its opening occurs to disperse a multitude of arillate seeds. Detailed observations of the fruit opening evidenced some specific zones involved in cell separation events like those that occur in the abscission zones of petioles and pedicels in terrestrial organs. Such interesting observations have been supported by the expression of genes involved in the determination (i.e. JNT) and in the activation (i.e. AG2) of these zones, but also by the presence of some cell wall degrading/modelling enzymes that may cause the separation events which trigger the fruit opening.
Finally, I noticed also that the actual seeds dispersion in this species is not carried out directly by its fleshy capsule, which almost completely dissolves in water shortly after its opening, rather by the soft arils that surround the seeds.

Abstract (a different language)

I geni MADS-box sono stati identificati in tutti gli eucarioti, tuttavia il loro numero si è notevolmente espanso nelle piante, dove le loro funzioni spaziano dalla specificazione degli organi fiorali, allo sviluppo dei frutti, a quello delle radici. Durante lo sviluppo dei fiori, alcuni di essi agiscono come geni selettori omeotici specificando l'identità degli organi fiorali, secondo il modello ABC(D)E. Il modello è stato sviluppato grazie a numerosi studi effettuati in piante Eudicotiledoni e funziona abbastanza bene per spiegare lo sviluppo dei loro fiori. Al contrario, per le Angiosperme basali lo stesso modello non si adatta ugualmente bene, perché i loro fiori possono mostrare un’architettura diversa, e i loro organi fiorali non sono sempre definiti come nelle Eudicotiledoni, possono infatti mostrare forme di transizione per alcuni componenti (ad esempio stami petaloidi).
Durante il mio lavoro di dottorato ho studiato i geni MADS-box espressi nelle strutture riproduttive in via di sviluppo dell’Angiosperma basale Nymphaea caerulea.
Il lavoro è iniziato con l'isolamento dei geni, dal momento che nessuna sequenza MADS-box appartenente a questa specie era disponibile in database pubblici. Per isolare il maggior numero possibile di geni MADS-box sono stati utilizzati diversi metodi e diversi tessuti di partenza. Nel complesso, sono stati isolati i seguenti geni MADS-box a partire da boccioli fiorali e tessuti di frutto: APETALA1/FRUITFULL, APETALA3 (tre varianti di splicing e due proteine risultanti di diversa lunghezza), PISTILLATA, tre diversi geni AGAMOUS-like (AG1, AG2 e AG3), SEPALLATA, AGL6 e JOINTLESS. Pertanto, sono stati ottenuti e identificati geni appartenenti a tutte le classi funzionali del canonico modello ABC(D)E.
Un'analisi dettagliata dell'espressione dei geni isolati ha rivelato dei risultati interessanti. Per quanto riguarda i tessuti fiorali in via di sviluppo, è stato ottenuto uno scenario complesso dei MADS-box espressi, il quale riflette la complessa morfologia del fiore della ninfea oggetto dello studio, ed è in accordo con lavori precedenti condotti su fiori di Angiosperme basali.
Considerando che è noto che alcuni fattori di trascrizione MADS-box coinvolti nello sviluppo dei fiori sono reclutati anche per regolare processi di sviluppo post-fecondazione, ho studiato in dettaglio anche lo sviluppo del frutto in questa specie, che è apparso un processo molto interessante e finemente regolato.
Lo studio della maturazione del frutto di una ninfea attraverso un approccio molecolare rappresenta l'aspetto più nuovo di questo lavoro. N. caerulea ha un ovario pluricarpellato che dopo la fecondazione si sviluppa in una capsula carnosa. Il frutto matura sott'acqua fino alla sua apertura, che comporta la dispersione di una moltitudine di semi arillati. Osservando dettagliatamente il processo di apertura, è stato possibile identificare alcune zone specifiche della capsula coinvolte in eventi di separazione cellulare come quelli che si verificano nelle zone di abscissione di piccioli e pedicelli negli organi terrestri. Tali osservazioni sono state supportate dall'espressione di geni coinvolti nella determinazione (JOINTLESS) e nell'attivazione (AG2) di queste zone, e dalla presenza di alcuni enzimi di degradazione/rimodellamento della parete cellulare che possono causare eventi di separazione, i quali scatenano il processo di apertura del frutto.
Infine, è stato possibile notare che l'effettiva dispersione dei semi in questa specie non è effettuata direttamente dalla sua capsula carnosa, che si dissolve quasi completamente in acqua poco dopo la sua apertura, bensì dagli arilli che circondano i semi.

EPrint type:Ph.D. thesis
Tutor:Baldan, Barbara
Ph.D. course:Ciclo 31 > Corsi 31 > BIOSCIENZE
Data di deposito della tesi:29 November 2018
Anno di Pubblicazione:29 November 2018
Key Words:MADS-box genes / Nymphaeales / flower development / fruit development / fruit maturation / basal Angiosperm / water lily
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/01 Botanica generale
Struttura di riferimento:Dipartimenti > Dipartimento di Biologia
Centri > Centro di Ateneo Orto Botanico
Codice ID:11473
Depositato il:08 Nov 2019 10:03
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Amborella Genome Project (2013). The Amborella genome and the evolution of flowering plants. Science 342 1241089. Cerca con Google

Balanzà, V., Roig-Villanova, I., Di Marzo, M., Masiero, S., and Colombo, L. (2016). Seed abscission and fruit dehiscence required for seed dispersal rely on similar genetic networks. Development 143: 3372–3381. Cerca con Google

Bateman, R.M., Crane, P.R., DiMichele, W.A., Kenrick, P.R., Rowe, N.P., Speck, T., and Stein, W.E. (1998). EARLY EVOLUTION OF LAND PLANTS: Phylogeny, Physiology, and Ecology of the Primary Terrestrial Radiation. Annu. Rev. Ecol. Syst. 29: 263–292. Cerca con Google

Becker, A. and Theißen, G. (2003). The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol. Phylogenet. Evol. 29: 464–489. Cerca con Google

Bell, C. D., Soltis, D. E. and Soltis, P. S. (2005). The age of the angiosperms: a molecular timescale without a clock. Evolution 59: 1245-1258. Cerca con Google

Bonilla-Barbosa, J., Novelo, A., Hornelas Orozco, Y., and Márquez-Guzmán, J. (2000). Comparative seed morphology of Mexican Nymphaea species. Aquat. Bot. 68: 189–204. Cerca con Google

Bowman, J. L., Smyth, D. R., & Meyerowitz, E. M. (1989). Genes directing flower development in Arabidopsis. The Plant Cell 1: 37-52. Cerca con Google

Bowman, J. L. (1997). Evolutionary conservation of angiosperm flower development at the molecular and genetic levels. Journal of Biosciences 22: 515-527. Cerca con Google

Bowman, J. L., Smyth, D. R., & Meyerowitz, E. M. (2012). The ABC model of flower development: then and now. Development 139: 4095-4098. Cerca con Google

Brummell, D. A., Harpster, M. H., Civello, P. M., Palys, J. M., Bennett, A. B., & Dunsmuir, P. (1999). Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. The Plant Cell 11: 2203-2216. Cerca con Google

Brummell, D. A., & Harpster, M. H. (2001). Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Molecular Biology 47: 311-339. Cerca con Google

Buzgo, M., Soltis, P.S., and Soltis, D.E. (2004). Floral Developmental Morphology of Amborella trichopoda (Amborellaceae). Int. J. Plant Sci. 165: 925–947. Cerca con Google

Causier, B., Schwarz-Sommer, Z., & Davies, B. (2010, February). Floral organ identity: 20 years of ABCs. In Seminars in cell & developmental biology (Vol. 21, No. 1, pp. 73-79). Academic Press. Cerca con Google

Chanderbali, A.S., Kim, S., Buzgo, M., Zheng, Z., Oppenheimer, D.G., Soltis, D.E., and Soltis, P.S. (2006). Genetic Footprints of Stamen Ancestors Guide Perianth Evolution in Persea (Lauraceae). Int. J. Plant Sci. 167: 1075–1089. Cerca con Google

Chang, S., Puryear, J., and Cairney, J. (1993). A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Report. 11: 113–116. Cerca con Google

Chase, M.W. et al. (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181: 1–20. Cerca con Google

Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16: 735-743. Cerca con Google

Cosgrove, D. J. (2000). Loosening of plant cell walls by expansins. Nature 407: 321. Cerca con Google

Daminato, M., Guzzo, F., and Casadoro, G. (2013). A SHATTERPROOF-like gene controls ripening in non-climacteric strawberries, and auxin and abscisic acid antagonistically affect its expression. J. Exp. Bot. 64: 3775–3786. Cerca con Google

Daminato, M., Masiero, S., Resentini, F., Lovisetto, A., and Casadoro, G. (2014). Characterization of TM8, a MADS-box gene expressed in tomato flowers. BMC Plant Biol. 14: 1–15. Cerca con Google

Doyle, J. A. (2006). Seed ferns and the origin of angiosperms. The Journal of the Torrey Botanical Society, 133: 169-209. Cerca con Google

Ezquer, I., Mizzotti, C., Nguema-Ona et al. (2016). The developmental regulator STK controls the structure and mechanical properties of the Arabidopsis seed coat. Plant Cell 28: 2478–2492. Cerca con Google

Felsenstein, J. (1985). Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution (N. Y). 39: 783. Cerca con Google

de Folter, S. (2005). Comprehensive Interaction Map of the Arabidopsis MADS Box Transcription Factors. Plant Cell 17: 1424–1433. Cerca con Google

Egea-Cortines, M., Saedler, H., & Sommer, H. (1999). Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. The EMBO journal 18: 5370-5379. Cerca con Google

Goulao, L. F., & Oliveira, C. M. (2008). Cell wall modifications during fruit ripening: when a fruit is not the fruit. Trends in Food Science & Technology 19: 4-25. Cerca con Google

Gramzow, L. and Theißen, G. (2013). Phylogenomics of MADS-Box Genes in Plants — Two Opposing Life Styles in One Gene Family. Biology (Basel). 2: 1150–1164. Cerca con Google

Immink, R.G.H., Tonaco, I.A.N., de Folter, S., Shchennikova, A., van Dijk, A.D.J., Busscher-Lange, J., Borst, J.W., and Angenent, G.C. (2009). SEPALLATA3: The “glue” for MADS box transcription factor complex formation. Genome Biol. 10. Cerca con Google

Irish, V. F. (2010). The flowering of Arabidopsis flower development. The Plant Journal 61: 1014-1028. Cerca con Google

Jayani, R. S., Saxena, S., & Gupta, R. (2005). Microbial pectinolytic enzymes: a review. Process Biochemistry 40: 2931-2944. Cerca con Google

Jensen, W. A. (1962). Botanical histochemistry: principles and practice. Cerca con Google

Kaufmann, K., Melzer, R., and Theißen, G. (2005). MIKC-type MADS-domain proteins: Structural modularity, protein interactions and network evolution in land plants. Gene 347: 183–198. Cerca con Google

Kim, S., Koh, J., Ma, H., Hu, Y., Endress, P.K., Hauser, B.A., Buzgo, M., Soltis, P.S., and Soltis, D.E. (2005a). Sequence and Expression Studies of A-, B-, and E-Class MADS-Box Homologues in Eupomatia (Eupomatiaceae): Support for the Bracteate Origin of the Calyptra. Int. J. Plant Sci. 166: 185. Cerca con Google

Kim, S., Koh, J., Yoo, M.J., Kong, H., Hu, Y., Ma, H., Soltis, P.S., and Soltis, D.E. (2005b). Expression of floral MADS-box genes in basal angiosperms: Implications for the evolution of floral regulators. Plant J. 43: 724–744. Cerca con Google

Klee, H. J., & Giovannoni, J. J. (2011). Genetics and control of tomato fruit ripening and quality attributes. Annual review of genetics 45: 41-59. Cerca con Google

Kramer, E.M., Dorit, R.L., and Irish, V.F. (1998). Molecular evolution of genes controlling petal and stamen development: Duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149: 765–783. Cerca con Google

Kramer, E.M., Holappa, L., Gould, B., Jaramillo, M.A., Setnikov, D., and Santiago, P.M. (2007). Elaboration of B Gene Function to Include the Identity of Novel Floral Organs in the Lower Eudicot Aquilegia. Plant Cell Online 19: 750–766. Cerca con Google

Kramer, E.M., Jaramillo, M.A., and Di Stilio, V.S. (2004). Patterns of Gene Duplication and Functional Evolution during the Diversification of the AGAMOUS Subfamily of MADS Box Genes in Angiosperms. Genetics 166: 1011–1023. Cerca con Google

Kramer, E.M., Di Stilio, V.S., and Schlüter, P.M. (2003). Complex Patterns of Gene Duplication in the APETALA3 and PISTILLATA Lineages of the Ranunculaceae. Int. J. Plant Sci. 164: 1–11. Cerca con Google

Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 33: 1870–1874. Cerca con Google

Liljegren, S.J., Ditta, G.S., Eshed, Y., Savidge, B., Bowman, J.L., and Yanofsky, M.F. (2000). SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404: 766–770. Cerca con Google

Lovisetto, A., Guzzo, F., Tadiello, A., Toffali, K., Favretto, A., and Casadoro, G. (2012). Molecular analyses of MADS-box genes trace back to gymnosperms the invention of fleshy fruits. Mol. Biol. Evol. 29: 409–419. Cerca con Google

Mao, L., Begum, D., Chuang, H., Budiman, M.A., Szymkowiak, E.J., Irish, E.E., and Wing, R.A. (2000). is a MADS-box gene controlling tomato ower abscission zone development. Nature 406: 910–913. Cerca con Google

Melzer, R., Härter, A., Rümpler, F., Kim, S., Soltis, P.S., Soltis, D.E., and Theißen, G. (2014). DEF- and GLO-like proteins may have lost most of their interaction partners during angiosperm evolution. Ann. Bot. 114: 1431–1443. Cerca con Google

Mizzotti, C., Mendes, M. A., Caporali, E., Schnittger, A., Kater, M. M., Battaglia, R., and Colombo, L. (2012). The MADS box genes SEEDSTICK and ARABIDOPSIS Bsister play a maternal role in fertilization and seed development. The Plant Journal 70: 409-420. Cerca con Google

Moseley, M.F. (1961). Morphological Studies of the Nymphaeaceae II. The Flower of Nymphaea. Bot. Gaz. 122: 233–259. Cerca con Google

Münster, T., Pahnke, J., Di Rosa, A., Kim, J. T., Martin, W., Saedler, H., & Theissen, G. (1997). Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. Proceedings of the National Academy of Sciences 94: 2415-2420. Cerca con Google

North, H. M., Berger, A., Saez-Aguayo, S., & Ralet, M. C. (2014). Understanding polysaccharide production and properties using seed coat mutants: future perspectives for the exploitation of natural variants. Annals of botany 114: 1251-1263. Cerca con Google

Orozco-Arroyo, G., Paolo, D., Ezquer, I., and Colombo, L. (2015). Networks controlling seed size in Arabidopsis. Plant Reprod. 28: 17–32. Cerca con Google

Pabon-Mora, N., Ambrose, B.A., and Litt, A. (2012). Poppy APETALA1/FRUITFULL Orthologs Control Flowering Time, Branching, Perianth Identity, and Fruit Development. Plant Physiol. 158: 1685–1704. Cerca con Google

Pellicer, J., Kelly, L.J., Magdalena, C., and Leitch, I.J. (2013). in the early diverging angiosperm lineage Nymphaeales ( water lilies ). Genome 449: 437–449. Cerca con Google

Pinyopich, A., Ditta, G.S.G.G.S., Savidge, B., Liljegren, S.J.S., Baumann, E., Wisman, E., and Yanofsky, M.F. (2003). Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424: 85–88. Cerca con Google

Rasmussen, D. A., Kramer, E. M., & Zimmer, E. A. (2009). One size fits all? Molecular evidence for a commonly inherited petal identity program in Ranunculales. American Journal of Botany 96: 96-109. Cerca con Google

Rautengarten, C., Usadel, B., Neumetzler, L., Hartmann, J., Büssis, D., & Altmann, T. (2008). A subtilisin-like serine protease essential for mucilage release from Arabidopsis seed coats. The Plant Journal 54: 466-480. Cerca con Google

Rijpkema, A.S., Zethof, J., Gerats, T., and Vandenbussche, M. (2009). The petunia AGL6 gene has a SEPALLATA-like function in floral patterning. Plant J. 60: 1–9. Cerca con Google

Roeder, A.H.K., Ferrándiz, C., and Yanofsky, M.F. (2003). The Role of the REPLUMLESS Homeodomain Protein in Patterning the Arabidopsis Fruit. Cerca con Google

Ross, G. S., Wegrzyn, T., MacRae, E. A., & Redgwell, R. J. (1994). Apple [beta]-Galactosidase. Activity against Cell Wall Polysaccharides and Characterization of a Related cDNA Clone. Plant Physiology 106: 521-528. Cerca con Google

Saarela, J.M., Rai, H.S., Doyle, J.A., Endress, P.K., Mathews, S., Marchant, A.D., Briggs, B.G., and Graham, S.W. (2007). Hydatellaceae identified as a new branch near the base of the angiosperm phylogenetic tree. Nature 446: 312–315. Cerca con Google

Sauquet, H. et al. (2017). The ancestral flower of angiosperms and its early diversification. Nat. Commun. 8. Cerca con Google

Schiestl, R.H.R. and Gietz, R.D.R. (1989). High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16: 339–346. Cerca con Google

Schneider, E. L., & Chaney, T. (1981). The floral biology of Nymphaea odorata (Nymphaeaceae). The Southwestern Naturalist. 159-165. Cerca con Google

Schwarz-Sommer Z., Huijser, P., Nacken, W., Saedler, H., Sommer, H. (1990). Genetic Control of Flower Development by Homeotic Genes in Antirrhinum majus. Science 250: 931-936. Cerca con Google

Scutt, C.P., Vinauger-Douard, M., Fourquin, C., Finet, C., and Dumas, C. (2006). An evolutionary perspective on the regulation of carpel development. J. Exp. Bot. 57: 2143–2152. Cerca con Google

Scutt, C. P. (2018). The Origin of Angiosperms. Cerca con Google

Shan, H., Zahn, L., Guindon, S., Wall, P.K., Kong, H., Ma, H., Depamphilis, C.W., and Leebens-Mack, J. (2009). Evolution of plant MADS box transcription factors: Evidence for shifts in selection associated with early angiosperm diversification and concerted gene duplications. Mol. Biol. Evol. 26: 2229–2244. Cerca con Google

Shan, H., Zhang, N., Liu, C., Xu, G., Zhang, J., Chen, Z., and Kong, H. (2007). Patterns of gene duplication and functional diversification during the evolution of the AP1/SQUA subfamily of plant MADS-box genes. Mol. Phylogenet. Evol. 44: 26–41. Cerca con Google

Soltis, P. S., Soltis, D. E., Kim, S., Chanderbali, A., & Buzgo, M. (2006). Expression of floral regulators in basal angiosperms and the origin and evolution of ABC-function. Advances in botanical research 44:483-506. Cerca con Google

Soltis, D.E., Chanderbali, A.S., Kim, S., Buzgo, M., and Soltis, P.S. (2007). The ABC model and its applicability to basal angiosperms. Ann. Bot. 100: 155–163. Cerca con Google

Soltis, D.E., Bell, C.D., Kim, S., and Soltis, P.S. (2008). Origin and early evolution of angiosperms. Ann. N. Y. Acad. Sci. 1133: 3–25. Cerca con Google

Stellari, G.M., Jaramillo, M.A., and Kramer, E.M. (2004). Evolution of the APETALA3 and PISTILLATA Lineages of MADS-Box-Containing Genes in the Basal Angiosperms. Mol. Biol. Evol. 21: 506–519. Cerca con Google

Sun, G. and Dilcher, D.L. (2002). Early angiosperms from the Lower Cretaceous of Jixi, eastern Heilongjiang, China. Rev. Palaeobot. Palynol. 121: 91–112. Cerca con Google

Theißen, G. (2000). Evolutionary developmental genetics of floral symmetry: the revealing power of Linnaeus' monstrous flower. Bioessays 22: 209-213. Cerca con Google

Theißen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J.T., Münster, T., Winter, K.-U., and Saedler, H. (2000). A short history of MADS-box genes in plants. Plant Mol. Biol. 42: 115–149. Cerca con Google

Theißen, G. and Melzer, R. (2007). Molecular mechanisms underlying origin and diversification of the angiosperm flower. Ann. Bot. 100: 603–619. Cerca con Google

Vrebalov, J., Pan, I.L., Arroyo, A.J.M., McQuinn, R., Chung, M., Poole, M., Rose, J., Seymour, G., Grandillo, S., Giovannoni, J., and Irish, V.F. (2009). Fleshy Fruit Expansion and Ripening Are Regulated by the Tomato SHATTERPROOF Gene TAGL1. Plant Cell 21: 3041–3062. Cerca con Google

Wang, Y.Q., Melzer, R., and Theißcen, G. (2010). Molecular interactions of orthologues of floral homeotic proteins from the gymnosperm Gnetum gnemon provide a clue to the evolutionary origin of “floral quartets.” Plant J. 64: 177–190. Cerca con Google

Willis, K.J., McElwain, J.C. (2013) The evolution of plants 2nd edition. Oxford University Press. Cerca con Google

Wikström, N., Savolainen, V., and Chase, M.W. (2001). Evolution of the angiosperms: Calibrating the family tree. Proc. R. Soc. B Biol. Sci. 268: 2211–2220. Cerca con Google

Yoo, M., Soltis, P.S., and Soltis, D.E. (2010). Expression of Floral MADS-Box Genes in Two Divergent Water Lilies: Nymphaeales and Nelumbo. Int. J. Plant Sci. 171: 121–146. Cerca con Google

Zahn, L.M., Kong, H., Leebens-Mack, J.H., Kim, S., Soltis, P.S., Landherr, L.L., Soltis, D.E., DePamphilis, C.W., and Ma, H. (2005). The evolution of the SEPALLATA subfamily of MADS-box genes: A preangiosperm origin with multiple duplications throughout angiosperm history. Genetics 169: 2209–2223. Cerca con Google

Zhang, P., Tan, H.T.W., Pwee, K.H., and Kumar, P.P. (2004). Conservation of class C function of floral organ development during 300 million years of evolution from gymnosperms to angiosperms. Plant J. 37: 566–577. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record