Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

RUFFIN, ALESSANDRO (2018) Study and Development of Throttleable Hybrid Rocket Motors. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document (tesi_Alessandro_Ruffin)
9Mb

Abstract (italian or english)

A throttleable rocket motor to perform some particular mission profiles such as soft landing. Current applications of hybrid technology are very peculiar. Among them there are sounding rockets, flying test beds, space tourism and speed world record automobiles. Most of them require throttling. Furthermore throttleability could be an interesting feature to implement on possible future applications such as launchers and in-orbit manoeuvre engines. Without throttleability hybrid rocket applications could be very limited. When the hybrid technology readiness will increase throttleability will be a paramount feature, if it is not already.
Hybrid rocket engines throttleability is the topic of the present research activity. This work is focused on the investigation and development of a general purpose throttleable hybrid rocket motor, in particular a 1 kN-class motor with a throttling ratio of 5:1. The engine will use high test peroxide as an oxidizer which will flow to the combustion chamber in a pressure fed fashion. Two combustion chamber configuration are presented: paraffin fuel grain and mixing post combustion chamber or swirled injection (vortex engine) and long chain hydrocarbons fuel grain. However the final dynamic throttling fire test campaign has been carried out with the second motor configuration.
In the past at University of Padova hybrid propulsion group other members studied throttleability both from a theoretical and experimental point of view, but this is the first time that dynamic throttling fire tests are carried out with a continuous thrust levels control, performed with an in house developed flow control valve. The recent availability of funds at the group gave us the possibility to develop and characterize new equipment. The tools employed during this doctoral research work are mainly experimental, the obtained results are then compared with the predictions from simplified analytical models.
The pressure fed system is controlled by means of a flow control valve, this is a fundamental component in the feeding line of a throttleable hybrid rocket motor. The flow control valve was developed as part of the doctoral activities during this doctoral research period. The detailed design phase is discussed in chapter 3. The flow control valve is composed by valve body and actuation. The variable area cavitating venturi principle was selected for the valve body. Inside the valve a conical pointed pintle alters the throat area of a conventional venturi tube. The variable area cavitating venturi presents different advantages such as independence of the flow from the downstream pressure, uncoupling of tank and combustion chamber environments and precise flow control. The actuation controls the pintle axial position with respect to the venturi throat, an active closed control loop with a feedback on the pintle stroke guarantees the precise positioning. It is possible to implement the system with a control loop closed on the thrust but this strategy was not followed during this thesis.
The flow control valve underwent a complete characterization aimed to fully understand its behaviour and limits. The outcomes of this characterization are: characteristic curve, discharge coefficient trend, maximum allowed back pressure, cavitation instabilities peak frequencies, system rise and fall time and some transfer function points.
The flow control valve then has been integrated with the test motor, starting a series of fire test campaigns. The first step was to determine the motor behaviour for a series of discrete thrust levels in order to ascertain the motor regression rate power law and combustion chamber efficiency for a constant oxidizer mass flow. This preliminary fire test campaign was carried out for both the proposed motor configurations. Afterwards the dynamic throttling fire test campaign started, four tests were carried out.

Abstract (a different language)

Un motore ibrido a spinta regolabile permette di eseguire dei profili di missione molto particolari come per esempio il soft landing. Le applicazioni correnti della tecnologia propulsiva ibrida sono peculiari di per se, tra loro ci sono razzi sonda, banchi di prova volanti, navicelle per il turismo spaziale e macchine da record di velocità. Molte di loro ad oggi sono dotate di controllo della spinta. Inoltre anche possibili applicazioni future come lanciatori e motori di manovra d'orbita potrebbero beneficiare della throttleabilità. Senza modulazione di spinta il range di applicazioni della tecnologia propulsiva ibrida è molto limitato. Quando la maturità della tecnologia ibrida aumenterà la modulazione della spinta sarà una funzionalità fondamentale qualora non lo fosse già.
La modulazione della spinta nei motori ibridi è l'argomento principale della presente attività di ricerca. Questo lavoro è focalizzato nello studio e sviluppo di un motore ibrido multiuso a spinta variabile, in particolare questo avrà una spinta massima di 1 kN e un rapporto di spinta 5:1. Il motore utilizzerà una miscela acquosa di perossido di idrogeno ad alto titolo come ossidante, che sarà spinto verso la camera di combustione con un sistema di pressurizzazione a monte. Due configurazioni di camera di combustione sono presentate: la prima consiste in un grano combustibile di paraffina e una post camera dotata di mixer, la seconda consiste in un’iniezione elicoidale che instaura un vortice all'interno della camera di combustione e un grano in idrocarburi a lunga catena, possibilmente polietilene ad alta densità. Ad ogni modo la campagna di test a spinta modulabile di continuo è stata effettuata con la sola seconda configurazione.
In passato al gruppo di propulsione ibrida dell'Università degli Studi di Padova altri ricercatori hanno studiato la throttleabilità sia da un punto di vista teorico che sperimentale, ma questa è la prima volta che dei test dinamici a spinta variabile con un livello continuo di discretizzazione vengono effettuati, e sono effettuati grazie ad una valvola che è stata sviluppata interamente ''in casa'' durante questa tesi. Questo è anche merito della recente disponibilità di fondi presso il gruppo per lo sviluppo di nuovo equipaggiamento. I metodi utilizzati in questo progetto di dottorato sono prevalentemente sperimentali, i risultati ottenuti sono ad ogni modo comparati con quelli provenienti da modelli analitici semplificati.
Il sistema di alimentazione ossidante è controllato grazie ad una valvola di controllo di flusso, componente fondamentale in una linea fluidica per motori ibridi a spinta modulabile. Questa valvola è stata sviluppata interamente come parte del progetto di dottorato. I dettagli del design sono presentati nel capitolo 3.La valvola di controllo di flusso è stata sottoposta ad una completa caratterizzazione. I risultati ottenuti con la caratterizzazione sono: la curva caratteristica, l'andamento del coefficiente di scarica, la contropressione massima accettabile, l'andamento delle frequenze di picco della cavitazione con la pressione operativa e alcuni punti della funzione di trasferimento tra portata richiesta e portata ottenuta.
Successivamente all'integrazione della valvola col motore una serie di campagne sperimentali cominciò. Il primo passo è stato caratterizzare il comportamento del motore per le due configurazioni proposte per diversi livelli di spinta, mantenuta costante durante i singoli test in modo da poter stabilire la legge di regressione del combustibile e l'efficienza del motore. Successivamente la campagna di test di modulazione di spinta dinamica è stata condotta. I risultati di queste campagne sperimentali sono riportati nel capitolo 4.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:BARATO, FRANCESCO
Supervisor:PAVARIN, DANIELE
Ph.D. course:Ciclo 31 > Corsi 31 > SCIENZE TECNOLOGIE E MISURE SPAZIALI
Data di deposito della tesi:29 November 2018
Anno di Pubblicazione:29 September 2018
Key Words:Throttling Hybrid Rocket Motor Hydrogen Peroxide Flow Control Valve
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/07 Propulsione aerospaziale
Struttura di riferimento:Centri > Centro Interdipartimentale di ricerca di Studi e attività  spaziali "G. Colombo" (CISAS)
Codice ID:11476
Depositato il:14 Nov 2019 13:50
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] Bellomo N., Barato F., Faenza M., Lazzarin M., Bettella A. and Pavarin D. “Numerical and Experimental Investigation of Unidirectional Vortex Injection in Hybrid Rocket Engines.” In: Journal of Propulsion and Power 29.5 (2013), pp. 1097–1113. Cerca con Google

[2] Bellomo N., Barato F., Faenza M., Lazzarin M., Bettella A. and Pavarin D. “Numerical and Experimental Investigation on Vortex Injection in Hybrid Rocket Motors.” In: 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. San Diego, CA, USA, July-August 2011. Cerca con Google

[3] Bellomo N., Faenza M., Barato F., Bettella A. and Pavarin D. “The ”Vortex Reloaded” project: experimental investigation on fully tangential vortex injection in N2O – paraffin hybrid motors.” In: 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference Cerca con Google

& Exhibit. Atlanta, GA, USA, July-August 2012. Cerca con Google

[4] Boardman T. A. “Hybrid Propellant Rockets,” in: Rocket Propulsion Elements. Ed. by Sutton G. P. and Biblarz O. Jhon Wiley & Sons Inc., 2001. Cerca con Google

[5] Jones R. A. Hybrid Propulsion System for an Advanced Rocket-Powered Target Missile, Quarterly Technical Report. Tech. rep. UTC 2220-QTR2, 1967. Cerca con Google

[6] Karabeyoglu M. A. and Altman D. “Dynamic Modeling of Hybrid Rocket Combustion.” In: Journal of Propulsion and Power 15.4 (1999). Cerca con Google

[7] Rabinovitch J., T. Jens E., Karp A., Nakazono B., Conte A. and Vaughan D. A. “Characterization of PolyMethylMethAcrylate as a Fuel for Hybrid Rocket Motors.” In: 2018 Joint Propulsion Conference. Cincinnati, OH, USA, July 2018. Cerca con Google

[8] Karp A., Nakazono B. A., Vaughan D., Story G. T., Oglesby B. and Prince A. “Update on Technology Development Plan for a Low Temperature Hybrid Mars Ascent Vehicle Concept.” In: 2018 Joint Propulsion Conference. Cincinnati, OH, USA, Cerca con Google

July 2018. Cerca con Google

[9] Christopher E. Brennen. Cavitation and Bubble Dynamics. New York: Oxford University Press, 1995. Cerca con Google

[10] Arves J., Gnau M.,Joiner K., Kearney D., McNeal C. and Murbach M. “Overview of The Hybrid Sounding Rocket (HYSR) Project.” In: 39th AIAA/ASME/SAE/ASEE Cerca con Google

Joint Propulsion Conference and Exhibit. Huntsville, AL, USA, 2003. [11] Carmicino C. and Sorge A. R. “Role of Injection in Hybrid Rockets Regression Rate Behavior.” In: Journal of Propulsion and Power 21.4 (2005). Cerca con Google

[12] Carmicino C. and Sorge A. R. “Influence of a Conical Axial Injector on Hybrid Rocket Performance.” In: Journal of Propulsion and Power 22.5 (2006). Cerca con Google

[13] Hammock W. R. Jr., Currie E. C. and Fisher A. E. APOLLO EXPERIENCE REPORT - DESCENT PROPULSION SYSTEMt. Tech. rep. NASA, 1973. Cerca con Google

[14] Altman D. and Humble R. Hybrid rocket Propulsion Systems in Space Propulsion Analysis and Design. Space Technology Series. McGraw Hill, 1995. Cerca con Google

[15] Faenza M., Moretto F. , Tijsterman R., Popela R., Dvorak P., Petronio D. and Pavarin D. “Experimental Characterization of a Cavitating Pintle Valve with H2O2.” In: 4th AAF/ESA/CNES Space Propulsion Conference. Cologne, Germany, May 2014. Cerca con Google

[16] Jones C. C., Myre D. D. and Cowart J. S. “Performance and Analysis of Vortex Oxidizer Injection in a Hybrid Rocket Motor.” In: 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Denver, CO, USA, August 2009. Cerca con Google

[17] Paccagnella E., Barato F., Pavarin D. and Karabeyoglu A. M. “Scaling Parameters of Swirling Oxidizer Injection in Hybrid Rocket Motors.” In: Journal of Propulsion and Power 33.6 (2017), pp. 1378–1394. Cerca con Google

[18] Penn C. D. and Branigan J. E. Preliminary Flight Rating Tests of the HAST Propulsion System. Tech. rep. AFRPL-TR-15-5, 1975. Cerca con Google

[19] Penn C. D. and Branigan J. E. AQM-81A Firebolt, Tactical Air Command Technical Report. Tech. rep. Langley AFB VA, 1983. Cerca con Google

[20] Whitmore S. A., Merkley S. L., Walker S. D. and Spurrier Z. S. “Throttled Launch- Assist Hybrid Rocket Motor for an Airborne NanoSat Launch Platform.” In: 51st AIAA/SAE/ASEE Joint Propulsion Conference. Orlando, FL, USA, July 2015. Cerca con Google

[21] Pastrone Dario. “Approaches to Low Fuel Regression Rate in Hybrid Rocket Engines.” In: International Journal of Aerospace Engineering 2012.1 (2012). Cerca con Google

[22] Austin B. L., Heister S. D., Dambach E. M., Meyer S. E. and Wernimont E. J. “Variable Thrust, Multiple Start Hybrid Motor Solutions for Missile and Space Applications.” In: 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Cerca con Google

Nashville, TN, USA, July 2010. Cerca con Google

[23] Barato F., Paccagnella E. and Pavarin D. “Explicit Analytical Equations for Single Port Hybrid Rocket Combustion Chamber Sizing.” In: 53rd AIAA/SAE/ASEE Joint Propulsion Conference. Atlanta, GA, USA, July 2017. Cerca con Google

[24] Marxman G. A. , Wooldridge C. E. and Muzzy R. J. “Fundamentals of Hybrid BoundaryLayer Combustion.” In: Progress in Astronautics and Aeronautics 15 (1964). Cerca con Google

[25] Barato Francesco. “Numerical and Experimental Investigation of Hybrid Rocket Motors Transient Behavior.” PhD thesis. CISAS: Space Sciences, Technologies and Measurements, 2013. Cerca con Google

[26] Sanford Gordon and Bonnie J. McBride. Computer Program for Calculation of Complex Chemical Equilibrium Composition and Application. NASA Reference Publication 1311. October 1994. Cerca con Google

[27] Schnerr G. H. and Sauer J. “Physical and Numerical Modeling of Unsteady Cavitation Dynamics".” In: Fourth International Conference on Multiphase Flow. New Orleans, LA, USA, 2000. Cerca con Google

[28] Nakagawa I. and Nikone S. “Study on the Regression Rate of Paraffn-Based Hybrid Rocket Fuels.” In: Journal of Propulsion and Power 27.6 (November 2011), pp. 1276–1279. Cerca con Google

[29] Franklin B. , Mead J. and B. R. Bornhorst. Certification Tests of a Hybrid Propulsion System for the Sandpiper Target Missile. Tech. rep. AFRPL-TR- 69 -73, 1969. Cerca con Google

[30] Karabeyoglu M. A., Cantwell B. J. and Zilliac G. “Development of Scalable Space Time Averaged Regression Rate Expressions for Hybrid Rockets.” In: 41th Joint Propulsion Conference and Exhibit. Tucson, AZ, USA, July 2005. Cerca con Google

[31] Karabeyoglu M. A., De Zilwa S., Cantwell B. J. and Zilliac G. “Transient Modeling of Hybrid Rocket Low Frequency Instabilities.” In: 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Huntsville, AL, USA, July 2003. Cerca con Google

[32] Karabeyoglu M. A., Stevens J., Geyzel D., Cantwell B. J. and Micheletti D. “High Performance Hybrid Upper Stage Motor.” In: 47th Joint Propulsion Conference and Exhibit. San Diego, CA, USA, July August 2011. Cerca con Google

[33] Kline S. J. and McClintock F. A. “Describing uncertainties in single-sample experiments.” In: Mechanical Engineering 75.1 (1953). Cerca con Google

[34] Rønningen J. and Husdal J. “Nammo Hybrid Rocket Propulsion TRL Improvement Program.” In: 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Atlanta, GA, USA, July August 2012. Cerca con Google

[35] Schmierer C., Kobald M., Steelant J. and Schlechtriem S. “Hybrid Propulsion for a Moon Sample Return Mission.” In: Space Propulsion 2018. Seville, Spain, May 2018. Cerca con Google

[36] Yuasa S., Yamamoto K., Hachiya H., Kitagawa K. and Oowada Y. “Development of a small sounding hybrid rocket with a swirling-oxidizer-type engine.” In: 37th Joint Propulsion Conference and Exhibit. Salt Lake City, UT, USA, July 2001. Cerca con Google

[37] Ashley Karp, Barry Nakazono, Joel Benito Manrique, Robert Shotwell, David Vaughan, and George T. Story. “A Hybrid Mars Ascent Vehicle Concept for Low Temperature Storage and Operation.” In: 52nd AIAA/SAE/ASEE Joint Propulsion Conference. Salt Lake City, UT, USA, July 2016. Cerca con Google

[38] Boardman T.A., Carpenter R. L. and Claflin S.E. “A Comparative Study of the Effects of Liquid Versus Gaseous - Oxygen Injection on Combustion Stability in 11-inch-Diameter Hybrid Motors,” in: 33rd Joint Propulsion Conference and exhibit. Seattle, WA, USA, July 1997. Cerca con Google

[39] Cherne Jack M. MECHANICAL DESIGN OF THE LUNAR MODULE DESCENT ENGINE. Tech. rep. TRW System. Cerca con Google

[40] Chiaverini M. “Review of Solid Fuel Regression Rate Behavior in Classical and Non classical Hybrid Rocket Motors.” In: Fundamentals of Hybrid Rocket Combustion and Propulsion. Ed. by Chiaverini M. J. and Kuo K. K. Vol. 218. Progress in Astronautics and Aeronautics. Reston VA: AIAA, 2007. Cerca con Google

[41] Grosse M. “Design Challenges for a Cost Competitive Hybrid Rocket Booster.” In: 2TH EUROPEAN CONFERENCE FOR AERONAUTICS AND AEROSPACE SCIENCES. Brussel, Belgium, July 2007. Cerca con Google

[42] Petrarolo A. , Kobalt M. and Schlechtriem S. “Optical Analysis of the Liquid Layer Combustion of Paraffin-based Hybrid Rocket Fuels.” In: 7TH EUROPEAN CONFERENCE FOR AERONAUTICS AND AEROSPACE SCIENCES. July 2017. Cerca con Google

[43] Pugibet M. and Moutet H. “Utilisation dans les systèmes hybrides de l’eau oxygénée come comburant: On the use of hydrogen peroxide as oxidizer in hybrid systems.” In: La Recherche Aerospatiale 132 (1969), pp. 15–31. Cerca con Google

[44] Ruffin A., Barato F., Santi M., Paccagnella E., Bellomo N., Miste G. A., Venturelli G. M. and Pavarin D. “Development of a Cavitating Pintle for a Throttleable Hybrid Rocket Motor.” In: 7th European Conference for Aerospace Sciences EUCASS. Milan, Italy, July 2017. Cerca con Google

[45] Ruffin A., Santi M., Paccagnella E., Barato F., Bellomo N., Miste G. A., Venturelli G. M. and Pavarin D. “Development of a Flow Control Valve for a Throttleable Hybrid Rocket Motor and Throttling Fire Tests.” In: 2018 Joint Propulsion Conference. Cincinnati, OH, USA, July 2018. Cerca con Google

[46] Karabeyoglu M.Arif. “Transient combustion in hybrid rockets.” PhD thesis. Stanford University, Deptartment of Aeronautics and Astronautics, Stanford, 1998. Cerca con Google

[47] Faenza Martina. “Numerical and Experimental Characterization of Throttleable Hybrid Propulsion Systems.” PhD thesis. CISAS: Space Sciences, Technologies and Measurements, 2014. Cerca con Google

[48] Randall L. N. “Rocket Applications of the Cavitating Venturi.” In: American Rocket Society. Toronto, Canada, June 1951. Cerca con Google

[49] Sheng Z. Cai G., Tian H., Yu N. and Zeng P. “Experimental tests of throttleable H2O2/PE hybrids.” In: 51st AIAA/SAE/ASEE Joint Propulsion Conference. Orlando, FL, USA, July 2015. Cerca con Google

[50] Tian H., Zeng P., Yu N and Cai G. “Application of variable area cavitating venturi as a dynamic flow controller.” In: Flow Measurement and Instrumentation 38. May 2014. Cerca con Google

[51] Zeng P., Tian H., Yu N. and Cai G. “Numerical Simulation on Flow in the Variable Area Cavitating Venturi.” In: 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. San Jose, CA, USA, July 2013. Cerca con Google

[52] Bellomo Nicolas. “Analysis Of Variable Thrust Hybrid Propulsion For Formation Cerca con Google

Flight Satellites.” PhD thesis. CISAS: Space Sciences, Technologies and Measurements, 2012. Cerca con Google

[53] Duban P. “The LEX rocket probe (LEX small rocket probe for in-fight testing of ONERA studies of hybrid propulsion, discussing design and program.” In: L’Aeronautique et L’Astronautique (1968). Cerca con Google

[54] Casiano M. J., Hulka J. R. and Yang V. “Liquid-Propellant Rocket Engine Throttling: A Comprehensive Review.” In: 45th Joint Propulsion Conference and exhibit. Denver, CO, USA, August 2009. Cerca con Google

[55] Boardman T.A., Abel T.M. , Claflin S.E. and Shaeffer C.W. “Design and test planning for a 200 klbf thrust hybrid rocket motor under the hybrid propulsion demonstration program.” In: 33rd Joint Propulsion Conference and exhibit. Seattle, WA, USA, July 1997. Cerca con Google

[56] Whitmore S.A., Peterson Z.W. and Eilers S. D. “Closed-Loop Precision Throttling of a Hybrid Rocket Motor.” In: Journal of Propulsion and Power 30.2 (2014), pp. 325–336. Cerca con Google

[57] Parissenti Guido, Pessana Mario et al. “Throttleable hybrid engine for planetary soft landing.” In: 4th European Conference for Aerospace Sciences EUCASS. Saint Petersburg, RU, July 2011. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record