Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Simonetto, Matteo (2018) Development and testing of a new life cycle assessment method for the monetary evaluation of water scarcity impacts. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document - Accepted Version
Thesis not accessible until 12 January 2021 for intellectual property related reasons.
Visibile to: nobody

7Mb

Abstract (italian or english)

Considering goods for which no market exists (i.e. clean air, freshwater, rainforests, etc.) if on the one hand it is quite simple to quantify them in physical units, on the other hand it seems difficult to give them an economic value, especially when considering their related environmental impacts. Even if international standardize methodology of Life Cycle Assessment (LCA) may support practitioners in performing environmental assessments, because of its intrinsic nature of tool able to provide mainly a biophysical impact characterization the LCA methodology alone to date is not sufficient to provide monetary information about environmental impacts. Existing methods and approaches aimed to give monetary value to environmental impacts and aspects, particularly those focused on water resource, are still absent or very limited by data availability and time-spatial characterization issues, resulting in an almost total absence of consistent economic LCA based indicators focused on water scarcity impacts. The aim of the present research was thus the development and testing of a new Life Cycle Assessment method for the monetary evaluation of water scarcity impacts. The research core was the development of specific monetary characterization factors to convert water consumption related impacts into monetary terms, adopting principles from the theory of the LCA methodology and considering also some economy-related parameters. The resulting new developed method was validated according to sensitivity analysis at different levels and then it was successfully tested in four different real case studies. To be applied the new proposed method was imported into the LCA software SimaPro adopted to process data of each product system collected on the field. Finally, a hotspots analysis of results was performed demonstrating the effectiveness and the applicability of the new proposed method, highlighting also its sensitivity to different real productive contexts and to different existing water scarcity impact assessment methods. Concluding, the new developed method for the monetary valuation of water scarcity impacts provides a simpler framework when compared to the existing monetary methods whose application in LCA is usually limited to few environmental aspects, requiring often significant people involvement to perform surveys and analysis needing a huge amount of time. However, further improvements such as the integration of water qualitative aspects, additional validation procedures and testing in other productive contexts need to be investigated in order to increase the accuracy and the capacity of the proposed method to generate consistent results.

Abstract (a different language)

Considerando i beni per cui ad oggi non esiste un vero e proprio mercato (es. aria pulita, acqua dolce, foreste pluviali, ecc.) se da un lato una loro valutazione in termini quantitativi appare abbastanza semplice, dall'altro risulta complesso potergli attribuire un valore economico, in particolar modo quando si considerano i relativi impatti ambientali. Sebbene l'adozione della metodologia di valutazione del ciclo di vita LCA (Life Cycle Assessment), normata a livello internazionale, possa supportare la conduzione di valutazioni di impatto ambientale, trattandosi di uno strumento in grado di fornire principalmente una caratterizzazione dei potenziali impatti in termini biofisici, tale metodologia da sola ad oggi non è sufficiente a fornire informazioni di tipo monetario sugli impatti ambientali. I metodi e gli approcci esistenti orientati a conferire un valore monetario ad aspetti e impatti ambientali, in particolare quelli incentrati sulle risorse idriche, sono ancora in via di sviluppo e fortemente limitati dalla disponibilità di dati e problemi di caratterizzazione spazio-temporale, risultando in una quasi totale assenza di indicatori economici consistenti basati sulla metodologia LCA e focalizzati in particolare sugli impatti derivanti da scarsità idrica. Lo scopo della presente ricerca è dunque quello di sviluppare e testare un nuovo metodo per la monetizzazione degli impatti da scarsità idrica basato sull'analisi del ciclo di vita. La ricerca si è concentrata sullo sviluppo di specifici fattori di caratterizzazione monetaria per convertire gli impatti relativi al consumo di acqua in termini monetari, adottando una combinazione di principi derivanti dalla teoria della metodologia LCA e di parametri economici. Il nuovo metodo sviluppato è stato convalidato tramite un'analisi di sensitività condotta su più livelli ed è stato testato con successo in quattro diversi casi studio reali. Per poter essere applicato, il nuovo metodo proposto è stato importato nel software di analisi LCA SimaPro, impiegato per elaborare i dati di inventario di ciascun sistema prodotto raccolti sul campo. Infine, è stata effettuata un'analisi dei risultati ottenuti, dimostrando l'efficacia e l'applicabilità del nuovo metodo proposto ed evidenziando la sua sensibilità ai diversi contesti produttivi e ai diversi metodi esistenti in letteratura finalizzati alla valutazione dell'impatto sulla risorsa idrica. Concludendo, il nuovo metodo sviluppato per la valutazione monetaria degli impatti sulla scarsità idrica rappresenta uno strumento più semplice rispetto ai metodi monetari esistenti la cui applicazione in campo LCA è solitamente limitata a pochi aspetti ambientali e che richiedono, inoltre, il coinvolgimento di un elevato numero di soggetti e di lunghi tempi per poter condurre le indagini. Tuttavia, ulteriori miglioramenti al metodo sviluppato nella presente ricerca, come l'integrazione di parametri qualitativi dell'acqua, procedure di validazione aggiuntive e test condotti in altri contesti produttivi, possono essere investigati al fine di valutare la possibilità di incrementare il livello di accuratezza e la capacità del nuovo metodo proposto di generare risultati consistenti.

EPrint type:Ph.D. thesis
Tutor:Scipioni, Antonio
Ph.D. course:Ciclo 31 > Corsi 31 > INGEGNERIA INDUSTRIALE
Data di deposito della tesi:30 November 2018
Anno di Pubblicazione:01 October 2018
Key Words:monetization of environmental impacts, water scarcity, life cycle assessment
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/27 Chimica industriale e tecnologica
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Industriale
Codice ID:11477
Depositato il:06 Nov 2019 12:41
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Addams L., Boccaletti G., Kerlin M., Stuchtey M., 2009. Charting our water future: economic frameworks to inform decision-making. McKinsey & Company, New York. Cerca con Google

Agri-footprint, 2014. Agri-footprint - Part 2 - Description of data - Version 1.0. Gouda, the Netherlands. Cerca con Google

Agri-footprint, 2017. Agri-footprint - Part 2 - Description of data. Gouda, the Netherlands. Cerca con Google

Ahlroth S., Finnveden G., 2011. Ecovalue08 – A new valuation set for environmental systems analysis tools. Journal of Cleaner Production 19, 1994-2003. Cerca con Google

Aivazidou E., Tsolakis N., Iakovou E., Vlachos D., 2016. The emerging role of water footprint in supply chain management: a critical literature synthesis and a hierarchical decision-making framework. J. Clean. Prod., 137, 1018-1037. Cerca con Google

Allan J.A., 1998. Virtual water: a strategic resource. Global solutions to regional deficits. Groundwater, 36(4):545-546. Cerca con Google

Andersen M.S., Søes Hansen M., Carstensen J., Kronvang B., Estrup Andersen H., Thodsen H., 2011. Monetary Valuation with Impact Pathway Analysis: Benefits of Reducing Nitrate Leaching in European Catchments. International Review of Environmental and Resource Economics 5, 199 244. Cerca con Google

Arbault D., Riviere M., Rugani B., Benetto E., Tiruta-Barna L., 2014. Integrated earth system dynamic modeling for life cycle impact assessment of ecosystem services. Science of Total Environment, 472 (0), 262-272. Cerca con Google

Ayres R.U., 2008. Sustainability economics: Where do we stand? Ecol Econ 2008;67:281–310. Cerca con Google

Bakkenes M., de Zwart D., Alkemade J.R.M., 2002. MOVE national Model for the Vegetation. RIVM rapport 408657006/2002. Bilthoven. Cerca con Google

Banks J., Carson J. S., Nelson B. L., Nicol D., 2010. Discrete-Event System Simulation. (5 ed.). Upper Saddle River, NJ: Prentice Hall. Cerca con Google

Bare, J.C., P. Hofstetter, D. Pennington and H.A. Udo de Haes, 2000. Life Cycle Impact Assessment Workshop Summary: Midpoints vs Endpoints – The Sacrifices and Benefits. International journal of life cycle assessment 5(6): 319-326. Cerca con Google

Bates, B.C., Kundzewicz, Z.W., Wu, S., Palutikof, J.P., 2008. Climate Change and Water. In: Technical Paper of the Intergovernmental Panel on Climate Change. IPCC Secretariat, Geneva, p. 2010. Cerca con Google

Bayart J.B., Bulle C., Deschênes L., Margni M., Pfister S., Vince F., Koehler A., 2010. A framework for assessing off-stream freshwater use in LCA. Int J Life Cycle Assess 15(5):439–453. Cerca con Google

Bennet E.M., Carpenter S.R., Caraco N.F., 2001. Human impact on 151 erodible phosphorus and eutrophication: A global perspective. Bioscience 51(3):227–234. Cerca con Google

Berger M., Van der Ent R., Eisner S., Bach V., Finkbeiner M., 2014. Water accounting and vulnerability evaluation (WAVE): considering atmospheric evaporation recycling and the risk of freshwater depletion in water footprinting. Environ Sci Technol 48:4521–4528. Cerca con Google

BigEE, 2016. Wuppertal Institute for Climate, Environment and Energy. Available at: www.bigee.net. (Accessed February 2016). Vai! Cerca con Google

Boardman A.E., Greenberg D.H., Vining A.R., Weimer D.L., 2006. Cost-Benefit Analysis, Concepts and Practice. Cerca con Google

Boulay A.M., Bare J., Benini L., Berger M., Lathuillière M.J., Manzardo A., Margni M., Motoshita M., Núñez M., Pastor A.V., Ridoutt B., Oki T., Worbe S., Pfister S., 2018. The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on Available WAter REmaining (AWARE). Int J Life Cycle Assess 23(2):368–378. Cerca con Google

Boulay A.M., Bayart J.B., Bulle C., Franceschini H., Motoshita M., Muñoz I., Pfister S., Margni M., 2015. Analysis of water use impact assessment methods (part b): applicability for water footprinting and decision making with a laundry case study. Int. J. Life Cycle Assess, 20:865–879. Cerca con Google

Boulay A.M., Bouchard C., Bulle C., Deschênes L., Margni M., 2011a. Categorizing water for LCA inventory. Int J Life Cycle Assess 16: 639–651. Cerca con Google

Boulay A.M., Bulle C., Bayart J.B., Deschênes L., Margni M., 2011b. Regional characterisation of freshwater use in LCA: modeling direct impacts on human health. Environ Sci Technol 45:8948–8957. Cerca con Google

Boulay A.M., Hoekstra A.Y., Vionnet S., 2013. Complementarities of Water-Focused Life Cycle Assessment and Water Footprint Assessment. Environmental Science and Technology. Cerca con Google

Brito L., Stafford-Smith M., 2012. State of the Planet Declaration. Planet Under Pressure: New Knowledge Towards Solutions conference, London, 26-29 March 2012. Cerca con Google

Brown A., Matlock M.D., 2011. A review of water scarcity indices and methodologies. White Paper #106, Sustainability Consortium, University of Arkansas: Fayetteville, AR. Cerca con Google

Bruel A., Troussier N., Guillaume B., Sirina N., 2016. Considering Ecosystem Services in Life Cycle Assessment to Evaluate Environmental Externalities, Procedia CIRP, 48: 382-387. Cerca con Google

Bulle C., Weidema B.P., Margni M., Humbert S., Rosenbaum R.K., Jolliet O., 2014. Comparing IMPACT World+ with other LCIA methodologies at end-point level using the Stepwise weighting factors. In SETAC Europe 24th Annual Meeting. Cerca con Google

Cao V., Margni M., Favis B.D., Deschênes L., 2015. Aggregated indicator to assess land use impacts in life cycle assessment (LCA) based on the economic value of ecosystem services. Journal of Cleaner Production, 94, 56-66. Cerca con Google

Castellani V., Benini L., Sala S., Pant R., 2016. A distance-to-target weighting method for Europe 2020. Int J Life Cycle Assess 21:1159–1169. Cerca con Google

CBD, 2010. Convention on Biological Diversity. The Strategic Plan for Biodiversity 2011 - 2020 and the Aichi Biodiversity Targets. United Nations Environmental Program, New York. Cerca con Google

CBD, 2014. CBD High-Level Panel. Resourcing the Aichi Biodiversity Targets: An Assessment of Benefits, Investments and Resource needs for Implementing the Strategic Plan for Biodiversity 2011-2020. Second Report of the High-Level Panel on Global Assessment of Resources for Implementing the Strategic Plan for Biodiversity 2011-2020. Montreal, Canada. Cerca con Google

CDP, 2015. Accelerating action, CDP global water report 2015: CDP Worldwide. Cerca con Google

Cecchinato L., Corradi M., Minetto S., 2010. Energy performance of supermarket refrigeration and air conditioning integrated systems. Appl. Therm. Eng., 30 (14–15), 1946-1958. Cerca con Google

Chapagain A.K., Tickner D., 2012. Water footprint: help or hindrance? Water Altern 5:563-581. Cerca con Google

Chwif L., Medina A.C., 2007. Modelagem e Simulação de Eventos Discretos: Teoria e Aplicações. São Paulo: Ed. dos Autores, 254p. Cerca con Google

CIESIN/CIAT, 2005. Gridded population of the world version 3 (GPWv3): population density grids 2005. Future estimates. NASA Socioecon. Data Appl Cent. Cerca con Google

Ciroth A., Becker H., 2006. Validation. The missing link in life cycle assessment. Towards pragmatic LCAs. Int. J. LCA, 11, 295-297. Cerca con Google

Collen B., Loh J., Whitmee S., McRae L., Amin R., Baillie J.E.M., 2009. Monitoring Change in Vertebrate Abundance: The Living Planet Index. Conservation Biology 23 (2): 317–327. Cerca con Google

Costanza R., d’Arge R., de Groot R., Farber S., Grasso M., Hannon B., Limburg K., Naeem S., Oneill R.V., Paruelo J., Raskin R.G., Sutton P., van den Belt M., 1997. The value of the world's ecosystem services and natural capital. Nature 387, 253-260. Cerca con Google

Crutzen P. J., 2002. Geology of mankind: the Anthropocene. Nature 415:23. Cerca con Google

Curran M.A., 2006. Life Cycle Assessment: Principles and Practice. Paper No. EPA/600/R-06/060, Cincinnati, US. Cerca con Google

Curran M.A., de Baan L., de Schryver A.M., van Zelm R., Hellweg S., Koellner T., 2011. Toward meaningful end points of biodiversity in life cycle assessment. Environmental of Science and Technology, 45, 70–9. Cerca con Google

Dal Pozzo A., Guglielmi D., Antonioni G., Tugnoli A., 2017. Sustainability analysis of dry treatment technologies for acid gas removal in waste-to-energy plants. J. Cleaner Prod., 162, 1061– 1074. Cerca con Google

Davidson M.D., Boon B.H., van Swigchem J., 2005. Monetary Valuation of Emissions in Implementing Environmental Policy. Journal of Industrial Ecology 9, 145-154. Cerca con Google

Davidson N.C., 2014. How much wetland has the world lost? Long–term and recent trends in global wetland area. Marine and Freshwater Research 65 (10): 934-941. Cerca con Google

de Baan L., Alkemade R., Koellner T., 2013. Land use impacts on biodiversity in LCA: a global approach. International Journal of Life Cycle Assessment, 18, 1216–30. Cerca con Google

de Groot R., Brander L., van der Ploeg S., Costanza R., Bernard F., Braat L., Christie M., Crossman N., Ghermandi A., Hein L., Hussain S., Kumar P., McVittie A., Portela R., Rodriguez L.C., ten Brink P., van Beukering P., 2012. Global estimates of the value of ecosystems and their services in monetary units. Ecosystem Services 1, 50-61. Cerca con Google

Desaigues B., Ami D., Bartczak A., Braun-Kohlová M., Chilton S., Czajkowski M., Farreras V., Hunt A., Hutchison M., Jeanrenaud C., Kaderjak P., Máca V., Markiewicz O., Markowska A., Metcalf H., Navrud S., Nielsen J.S., Ortiz R., Pellegrini S., Rabl A., Riera R., Scasny M., Stoeckel M.E., Szántó R., Urban J., 2011. Economic valuation of air pollution mortality: A 9-country contingent valuation survey of value of a life year (VOLY). Ecological Indicators 11, 902-910. Cerca con Google

Dietz T., 2017. Drivers of Human Stress on the Environment in the Twenty-First Century. Annual Review of Environment and Resources, 42:1, 189-213. Cerca con Google

EC-JRC, 2010. ILCD Handbook: Analysis of Existing Environmental Impact Assessment Methodologies for use in Life Cycle Assessment Publications Office of the European Union. Cerca con Google

EC-JRC, 2011. Recommendations based on existing environmental impact assessment models and factors for life cycle assessment in European context. ILCD handbook—International Reference Life Cycle Data System, European Union. Cerca con Google

EC, 1999. ExternE: Externalities of Energy. Methodology 1998 Update. European Commission, Directorate-General XII, Science Research and Development, Luxembourg. Cerca con Google

EC, 2000. Directive 2000/60/EC of the European Parliament and of the Council of establishing a framework for Community action in the field of water policy, Official Journal of the European Union (OJ L 327). Cerca con Google

EC, 2005. ExternE - Externalities of Energy - Methodology 2005 Update, in: EC (Ed.). Office for Official Publications of the European Communities, Luxemburg. Cerca con Google

EC, 2007. Communication from the Commission to the Council and the European Parliament, Addressing the challenge of water scarcity and droughts in the European Union. Brussels, 18.07.07, COM (2007) 414 final. Cerca con Google

Ecoinvent, 2014. Ecoinvent data v3.1. Swiss center for Life Cycle Inventories, Dübendorf. Cerca con Google

Ecoinvent, 2018. Ecoinvent data v3.4. Swiss center for Life Cycle Inventories, Dübendorf. Cerca con Google

EEA, 2016, European water policies and human health - Combining reported environmental information, EEA Report No 32/2016, European Environment Agency. Cerca con Google

EEC, 1992. Council Regulation (EEC) No 2081/92 of 14 July 1992 on the protection of geographical indications and designations of origin for agricultural products and foodstuffs. Cerca con Google

EU, 2013. Commission Recommendation of 9 April 2013 on the use of common methods to measure and communicate the life cycle environmental performance of products and organizations. 2013/179/EU. Cerca con Google

Facchi A., Ortuani B., Maggi D., Gandolfi C., 2004. Coupled SVAT-groundwater model for water resources simulation in irrigated alluvial plains. Environ Model Softw 19:1053-1063. Cerca con Google

Falkenmark M., 1986. Fresh water – time for a modified approach. Ambio 15:192-200. Cerca con Google

FAO, 2014. Understanding AQUASTAT - FAO's global water information system. FAO-UNESCO-ISRIC. Cerca con Google

FAO, 2016. AQUASTAT website. Available at: http://www.fao.org/nr/water/aquastat/About_us. Food and Agriculture Organization of the United Nations. (Accessed July 2018). Vai! Cerca con Google

FAO, 2017. Water for Sustainable Food and Agriculture. A report produced for the G20 Presidency of Germany. Rome. Cerca con Google

Finnveden G., 1997. Valuation methods within LCA - where are the values? Int. J. LCA 2, 163–169. Cerca con Google

Finnveden G., Eldh P., Johansson J., 2006. Weighting in LCA based on ecotaxes: Development of a mid-point method and experiences from case studies. International Journal of Life Cycle Assessment 11, 81-88. Cerca con Google

Finnveden G., Hauschild M., Ekvall T., Guinée J., Heijungs R., Hellweg S., Koehler A., Pennington D., Suh S., 2009. Recent developments in life cycle assessment, Journal of Environmental Management, 91, 1: 1-21. Cerca con Google

Frischknecht R., 2010. LCI modelling approaches applied on recycling of materials in view of environmental sustainability risk perception and eco-efficiency. Int. J. Life Cycle Assess., 15 (7), 666-671. Cerca con Google

Frischknecht R., Knöpfel S.B., 2013. Swiss eco-factors 2013 according to the ecological scarcity method. Methodological fundamentals and their application in Switzerland. Federal Office for the Environment FOEN, Bern. Cerca con Google

Frischknecht R., Steiner R., Jungbluth N., 2009. The ecological scarcity method - eco-factors 2006. A method for impact assessment in LCA. Environmental Studies No. 0906. Federal Office for the Environment, Bern. Cerca con Google

García-Rubio M.A., Ruiz-Villaverde A., González-Gómez F., 2015. Urban Water Tariffs in Spain: What Needs to Be Done? Water, 7: 1456-1479. Cerca con Google

Gear M., Sadhukhan J., Thorpe R., Clift R., Seville J., Keast M., 2018. A life cycle assessment data analysis toolkit for the design of novel processes – a case study for a thermal cracking process for mixed plastic waste. J. Clean. Prod., 180, 735-747. Cerca con Google

Gedeon M., Wemaere I., Marivoet J., 2007. Regional groundwater model of north-east Belgium. J Hydrol 335:133-139. Cerca con Google

GEMI, 2017. Integrated Monitoring Guide for SDG 6. Step-by-step monitoring methodology for indicator 6.4.2 on water stress. Cerca con Google

GHDx, 2017. Global Health Data Exchange, online database. Available at: https://tariffs.ib-net.org (Accessed: January 2017). Vai! Cerca con Google

Global Footprint Network, 2016. National Footprint Accounts, 2016 Edition. Available at: www.footprintnetwork.org/en/index.php/GFN/blog/national_footprint_accounts_2016_carbon_makes_up_60_of_worlds_footprint. (Accessed: May 2018). Vai! Cerca con Google

Goedkoop M., Heijungs R., Huijbregts M., De Schryver A., Struijs J., van Zelm R., 2012. ReCiPe 2008: a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. First edition (revised). Report I: Characterisation. Cerca con Google

Goedkoop M., Hofstetter P., Muller-Wenk R., Spriensma R., 1998. The Eco-Indicator 98 Explained, International Journal of LCA, Vol. 3, pp. 352 – 260. Cerca con Google

Goedkoop M., Spriensma R., 2000. The Eco-indicator 99: a damage oriented method for life cycle assessment, methodology report, 2nd edn. Pre´ Consultants, Amersfoort. Cerca con Google

Griggs D., Stafford-Smith M., Gaffney O., Rockström J., Öhman M.C., Shyamsundar P., Steffen W., Glaser G., Kanie N., Noble I. 2013. Sustainable development goals for people and planet. Nature. 495: 305-307. Cerca con Google

Guinée J. B., Heijungs R., Huppes G., Zamagni A., Masoni P., Buonamici R., Ekvall T., Rydberg T., 2011. Life Cycle Assessment: Past, Present, and Future. Environ. Sci. Technol. 2011, 45 (1): 90– 96. Cerca con Google

Guinée J.B., Gorre´e M., Heijungs R., Huppes G., Kleijn R., de Koning A., van Oers L., Wegener Sleeswijk A., Suh S., Udo de Haes H.A., de Bruijn J.A., van Duin R., Huijbregts M.A.J., 2002. Cerca con Google

Handbook on life cycle assessment: operational guide to the ISO standards, vol 7, - Eco-efficiency in industry and science. Springer, Dordrecht. Cerca con Google

Guinée J.B., Heijungs R., 1995. A proposal for the definition of resource equivalency factors for use in product life-cycle assessment. Environ Toxicol Chem 14:917-925. Cerca con Google

Hanafiah M.M., Xenopoulos M.A., Pfister S., Leuven R.S.E.W., Huijbregt M.A.J., 2011. Characterisation factors for water consumption and greenhouse gas emissions based on freshwater fish species extinction. Environ Sci Technol 45:5272–5278. Cerca con Google

Hanasaki N., Kanae S., Oki T., Masuda K., Motoya K., Shirakawa N., Shen Y., Tanaka K., 2008. An integrated model for the assessment of global water resources - Part 1: Model description and input meteorological forcing. Hydrol Earth Syst Sci 12:1007-1025. Cerca con Google

Hanemann M., 2005. The value of water, Berkeley, University of California. Cerca con Google

Hansen O.J., 1999. Status of Life Cycle Assessment (LCA) activities in the Nordic region. Int. J. LCA 44, 315–320. Cerca con Google

Hauschild M.Z., 2005a. Assessing environmental impacts in a life cycle perspective. Environ. Sci. Technol., 39, 81A-88A. Cerca con Google

Hauschild M.Z., Goedkoop M., Guinèe J., Heijungs R., Huijbregts M., Jolliet O., Margni M., De Schryver A., Humbert S., Laurent A., Sala S., Pant R., 2013. Identifying best existing practice for characterization modelling in life cycle impact assessment. Int J Life Cycle Assess 18(3):683–697. Cerca con Google

Hauschild M.Z., Huijbregts M.A.J., 2015. LCA compendium - the complete world of life cycle assessment: life cycle impact assessment. Springer, Dordrecht. Cerca con Google

Hauschild M.Z., Potting J., 2005b. Spatial differentiation in life cycle impact assessment - the EDIP2003 methodology. Environmental news No. 80. Danish Ministry of Environment, Environmental Protection Agency. Cerca con Google

Heijungs R., Guinneè J.B., 2012. An overview of the Life Cycle Assessment Method – Past, Present and Future; within Life Cycle Assessment Handbook Eds Mary Ann Curran. Wiley Cincinnati, OH, USA. Cerca con Google

Hillston J., 2016. Performance Modelling, Lecture 16: Model Validation and Verification. School of Informatics, The University of Edinburgh, Scotland. Cerca con Google

Hoekstra A. Y., 2003. Virtual water trade: Proceedings of the International Expert Meeting on Virtual Water Trade, 12-13 December 2002, Value of Water Research Report Series N° 12, UNESCO-IHE, Delft, Netherlands. Cerca con Google

Hoekstra A. Y., Chapagain A. K., Aldaya M. M., Mekonnen M. M., 2009. Water Footprint Manual: State of the Art 2009, Water Footprint Network, Enschede, the Netherlands. Cerca con Google

Hoekstra A.Y., 2017. Water footprint assessment: evolvement of a new research field. Water Resour. Manag., 1-21. Cerca con Google

Hoekstra A.Y., Chapagain A.K., Aldaya M.M., Mekonnen M.M., 2011. The Water Footprint Assessment Manual: Setting the Global Standard, Earthscan, London. Cerca con Google

Hoekstra A.Y., Mekonnen M.M., Chapagain A.K., Mathews R.E., Richter B.D., 2012. Global monthly water scarcity: blue water footprints versus blue water availability. PLoS ONE 7(2): e32688. Cerca con Google

Hosseinijou S., Mansour S., Shirazi M., 2014. Social life cycle assessment for material selection: A case study of building materials. Int. J. Life Cycle Ass. 2014, 19, 620–645 Cerca con Google

Humbert S., Loerincik Y., Rossi V., Margni M., Jolliet O., 2009. Life cycle assessment of spray dried soluble coffee and comparison with alternatives (drip filter and capsule espresso), Journal of Cleaner Production, 1-8. Cerca con Google

Hunt R., Franklin W.E., 1996. LCA - How it Came About. Personal Reflections on the Origin and the Development of LCA in the USA. International Journal of Life Cycle Assessment 1(1): 4–7. Cerca con Google

Huppes G., van Oers L., Pretato U., Pennington D.W., 2012. Weighting environmental effects: Analytical survey with operational evaluation methods and a meta‐method. International Journal of Life Cycle Assessment, 17(7): 876–891. Cerca con Google

Huysegoms L., Rousseau S., Cappuyns V., 2018. Friends or foes? Monetized Life Cycle Assessment and Cost-Benefit Analysis of the site remediation of a former gas plant. Science of the Total Environment, 619-620, 258-271. Cerca con Google

IBNET, 2017. International Benchmarking Network for Water and Sanitation Utilities, online database. Available at: https://vizhub.healthdata.org/sdg/ (Accessed: January 2017). Vai! Cerca con Google

IDF, 2015. Bulletin of the IDF No. 479/2015 - A common Carbon Footprint approach for the dairy sector - The IDF guide to standard life cycle assessment methodology. Cerca con Google

IES, 2017. International EPD System, General Program instruction for the international EPD system v.3.0 - Product Category rules PCR 2013:18 version 2.00 (2016-12-08) – Yoghurt, butter and cheese, CPC code 2223, 2224, 2225. Cerca con Google

IPCC, 2006, Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use, Chapter 10. Cerca con Google

IPCC, 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Field C.B., Barros V.R., Dokken D.J., Mach K.J., Mastrandrea M.D., Bilir T.E., Chatterjee M., Ebi K.L., Estrada Y.O., Genova R.C., Girma B., Kissel E.S., Levy A.N., MacCracken S., Mastrandrea P.R., White L.L. (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, 1132 pp. Cerca con Google

ISO 14040, 2006: Environmental Management - Life Cycle Assessment, Principles and Framework, International Organisation for Standardisation, Ginevra. Cerca con Google

ISO 14044, 2006: Environmental management – Life cycle assessment – Requirements and guidelines, International Organisation for Standardisation, Ginevra. Cerca con Google

ISO 14046, 2014. Environmental management - Water footprint - Principles, requirements and guidelines, International Organisation for Standardisation, Ginevra. Cerca con Google

ISO 14072, 2014. Environmental management - Life cycle assessment - Requirements and guidelines for organizational life cycle assessment, International Organisation for Standardisation, Ginevra. Cerca con Google

ISO, 2010. Environmental management - The ISO 14000 family of International Standards. A basic introduction to the ISO 14000 family of standards. Edition 2, International Organisation for Standardisation, Ginevra. Cerca con Google

ISO, 2018. Online standards catalogue. Available at: https://www.iso.org/committee/54808/x/ catalogue/p/1/u/0/w/0/d/0 (Accessed: May 2017). Vai! Cerca con Google

ISO/DIS 14008: Monetary valuation of environmental impacts and related environmental aspects — Principles, requirements and guidelines, International Organisation for Standardisation, Ginevra (under publication). Cerca con Google

ISPRA, 2017a, Non-municipal waste report. Cerca con Google

ISPRA, 2017b, Municipal waste report. Cerca con Google

Itsubo N., Inaba A., 2012a. LIME2, Life-cycle impact assessment method based on endpoint modelling: summary. Cerca con Google

Itsubo N., Sakagami M., Kuriyama K., Inaba A., 2012b. Statistical analysis for the development of national average weighting factors-visualization of the variability between each individual's environmental thoughts. International Journal of Life Cycle Assessment 17, 488-498. Cerca con Google

Itsubo N., Sakagami M., Washida T., Kokubu K., Inaba A., 2004. Weighting across safeguard subjects for LCIA through the application of conjoint analysis. International Journal of Life Cycle Assessment 9, 196-205. Cerca con Google

IUCN, 2013. The IUCN Red List of Threatened Species Strategic Plan 2013 - 2020. Version 1.0. Prepared by the IUCN Red List Committee. Cerca con Google

IWMI, 2007. Comprehensive Assessment of Water Management in Agriculture. Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture. London/Colombo, Earthscan/International Water Management Institute IWMI. Cerca con Google

Jiménez Cisneros B.E., Oki T., Arnell N.W., Benito G., Cogley J.G., Döll P., Jiang T., Mwakalila S.S., 2014. Freshwater resources. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 229-269. Cerca con Google

Jolliet O., Margni M., Charles R., Humbert S., Payet J., Rebitzer G., Rosenbaum R., 2003. IMPACT 2002+: a new life cycle impact assessment methodology. Int J Life Cycle Assess 8:324–330. Cerca con Google

Kaval P., 2011. Measuring and valuing environmental impacts. A Systematic Review of Existing Methodologies. NBS - Network for Business Sustainability, Richard Ivey School of Business University of Western Ontario, Canada. Cerca con Google

Ki-Moon B., 2013. The millennium development goals report, 2013. New York: United Nations. Cerca con Google

Koehler A, Aoustin E., 2008. UNEP/SETAC Life Cycle Initiative SETAC Europe Annual Meeting, Project group on assessment of use and depletion of water resources within LCA. Cerca con Google

Koh S.C.L., Gunasekaran A., Tseng C.S., 2012. Cross-tier ripple and indirect effects of directives WEEE and RoHS on greening a supply chain. Int. J. Prod. Econ. 140 (1): 305-317. Cerca con Google

Kounina A., Margni M., Bayart J.B., Boulay A.M., Berger M., Bulle C., Frischknecht R., Koehler A., Milà i Canals L., Motoshita M., Montserrat N., Peters G., Pfister S., Ridoutt B., Van Zelm R., Verones F., Humbert S., 2013. Review of methods addressing freshwater use in life cycle inventory and impact assessment. International Journal of Life Cycle Assessment, 18 (3), 707-721. Cerca con Google

Landers E.F., Urban R.A., Bakshi B.R., 2012. Accounting for Ecosystem Goods and Services in Life Cycle Assessment and Process Design, in Life Cycle Assessment Handbook: A Guide for Environmentally Sustainable Products (ed M. A. Curran), John Wiley & Sons, Inc., Hoboken, NJ, USA. Cerca con Google

Larsen F.W., Turner W.R., Mittermeier R.A., 2014. Will protection of 17% of land by 2020 be enough to safeguard biodiversity and critical ecosystem services? Oryx 49: 74–79. Cerca con Google

LAW A.M., 2006. How to build valid and credible simulation models. In: Proceedings of the 2006 Winter Simulation Conference, Monterey, CA, USA. Cerca con Google

Le Pochat, 2013. Monetization of environmental impacts. State of the art of existing methodologies. EVEA, France. Cerca con Google

Lewis S.L., Maslin M.A. 2015. Defining the Anthropocene. Nature, 519:171–80. Cerca con Google

Liu C., Kroeze C., Hoekstra A.Y., Gerbens-Leenes W., 2012. Past and future trends in grey water footprints of anthropogenic nitrogen and phosphorus inputs to major world rivers. Ecol Indic 18:42-49. Cerca con Google

Liu J., Yang H., Gosling S. N., Kummu M., Flörke M., Pfister M., Hanasaki N., Wada Y., Zhang X., Zheng Y., Alcamo J., Oki T., 2017. Water scarcity assessments in the past, present, and future. Earth’s Future, 5, 545–559. Cerca con Google

Loubet P., Roux P., Núñez M., Bellon-Maurel V., 2013. Assessing water deprivation at the sub-watershed scale in LCA including downstream cascade effects. Environ Sci Technol 47:14242–14249. Cerca con Google

Maes W.H., Heuvelmans G., Muys B., 2009. Assessment of land use impact on water-related ecosystem services capturing the integrated terrestrial-aquatic system. Environ Sci Technol 43:7324–7330. Cerca con Google

Margni M., Gloria T., Bare J., Seppäla J., Steen B., Struijs J., Toffoletto L., Jolliet O., 2010. Guidance on How to Move from Current Practice to Recommended Practice in Life Cycle Impact Assessment. United Nations Environment Programme (UNEP), PARIS, France, 2010. Cerca con Google

McDonald M.G., Harbaugh A.G., 1984. A modular three dimensional finite difference ground water flow model. U.S. Geological survey. Open report 83-875. Cerca con Google

McKone T.E., Hertwich E.G., 2001. The human toxicity potential and a strategy for evaluating model performance in life cycle assessment. J. LCA, 6, 106-109. Cerca con Google

Mekonnen M.M., Hoekstra A.Y. 2016. Four billion people facing severe water scarcity. Science Advances 2 (2): e1500323. Cerca con Google

Milà i Canals L., Chenoweth J., Chapagain A., Orr S., Antón A., Clift R., 2009. Assessing freshwater use impacts in LCA. Part I—inventory modelling and characterisation factors for the main impact pathways. Int J Life Cycle Assess 14:28–42. Cerca con Google

Millennium Ecosystem Assessment, 2005. Ecosystems and Human Well-Being: Synthesis. Island Press, Washington DC. Cerca con Google

Moore B.C., Coleman A.M., Wigmosta M.S., Skaggs R.L., Venteris E.R., 2015. A high spatiotemporal assessment of consumptive water use and water scarcity in the conterminous. United States, Water Resour. Manag. 29, 5185-200. Cerca con Google

Morel S., Traverso M., Preiss P., 2018. Discussion Panel—Assessment of Externalities: Monetisation and Social LCA. In: Benetto E., Gericke K., Guiton M. (eds). Designing Sustainable Technologies, Products and Policies. Springer, Cham. Cerca con Google

Morgan A.J., Orr S., 2015. The value of water: a framework for understanding water valuation, risk and stewardship. International Finance Corporation and WWF International. Cerca con Google

Morrison J., Morikawa M., Murphy M., Schulte, P., 2009. Water Scarcity & climate change. Growing risks for business and investors, Pacific Institute, Oakland, California. Cerca con Google

Motoshita M., Itsubo N., Inaba A., 2010. Development of impact factors on damage to health by infectious diseases caused by domestic water scarcity. Int J Life Cycle Assess 16:65–73. Cerca con Google

Motoshita M., Ono Y., Pfister S., Boulay A.M., Berger M., Nansai K., Tahara K., Itsubo N., Inaba A., 2014. Consistent characterisation factors at midpoint and endpoint relevant to agricultural water scarcity arising from freshwater consumption. Int J Life Cycle Assess. Cerca con Google

Murray C.; Lopez A., 1996. The global burden of disease. Harvard School of Public Health (on behalf of the World Health Organization, World Bank): Boston, MA, USA. Cerca con Google

Natural Capital Coalition, 2014. Valuing natural capital in business: Towards a Harmonized Framework. Natural Capital Coalition – ICAEW. Cerca con Google

Nguyen Thu Lan Thi, Laratte B., Guillaume B., Hua A., 2016. Quantifying environmental externalities with a view to internalizing them in the price of products, using different monetization models. Resour. Conserv. Recycl., 109: 13-23. Cerca con Google

Nielsen, 2017. Nielsen 2017 annual report. Investing and innovating for growth, efficiency and the future. Nielsen Holdings plc, New York, United States. Cerca con Google

Nijkamp P., Vindigni G., Nunes P.A.L.D., 2008. Economic valuation of biodiversity: A comparative study. Ecological Economics 67, 217-231. Cerca con Google

Norris G.A., 2001. The requirement for congruence in normalisation. Int J Life Cycle Assess. 6:85-88. Cerca con Google

Nunes P.A.L.D., van den Bergh J.C.J.M., 2001. Economic valuation of biodiversity: sense or nonsense? Ecological Economics 39, 203-222. Cerca con Google

Núnez M., Bouchard C.R., Bulle C., Boulay A.M., Margni M., 2016. Critical analysis of life cycle impact assessment methods addressing consequences of freshwater use on ecosystems and recommendations for future method development. Int J Life Cycle Assess 21: 1799–1815. Cerca con Google

Núñez M., Pfister S., Antón A., Muñoz P., Hellweg S., Koehler A., Rieradevall J., 2012. Assessing the environmental impact of water consumption by energy crops grown in Spain. J Ind Ecol 17:90–102. Cerca con Google

Núñez M., Rosenbaum R.K., Karimpour S., Boulay A.M., Lathuillière M.J., Margni M., Scherer L., Verones F., Pfister S., 2018. A multimedia hydrological fate modeling framework to assess water consumption impacts in life cycle assessment environmental, Science & Technology, 52 (8), 4658-4667. Cerca con Google

Oka T., 2005. The Maximum Abatement Cost Method for Assessing Environmental Cost - Effectiveness. Journal of Industrial Ecology 9, 22-23. Cerca con Google

Oka T., Ishikawa M., Fujii Y., Huppes G., 2005. Calculating cost-effectiveness for activities with multiple environmental effects using the maximum abatement cost method. Journal of Industrial Ecology 9, 97-103. Cerca con Google

Page G., Ridoutt B., Bellotti B., 2011. Fresh tomato production for the Sydney market: an evaluation of options to reduce freshwater scarcity from agricultural water use. Agric Water Manage 100:18-24. Cerca con Google

Pelletier G.J., Chapra S.C., Tao H., 2006. QUAL2Kw – A framework for modeling water quality in streams and rivers using a genetic algorithm for calibration. Environ Model Softw 21:419-425. Cerca con Google

Pennington D.W., Margni M., Ammann C., Jolliet O., 2005. Multimedia fate and human intake modeling: spatial versus nonspatial insights for chemical emissions in Western Europe. Environ Sci Technol 39(4):1119–1128. Cerca con Google

Pfister S., 2014. Water use. In: Hauschild M.Z., Huijbregts M.A.J. (eds) Life cycle impact assessment, LCA compendium—the complete world of life cycle assessment. Springer, pp 223–245. Cerca con Google

Pfister S., Boulay A.M., Berger M., Hadjikakou M., Motoshita M., Hess T., Ridoutt B., Weinzettel J., Scherer L., Döll P., Manzardo A., Núñez M., Verones F., Humbert S., Buxmann K., Harding K., Benini L., Oki T., Finkbeiner M., Henderson, A., 2017. Understanding the LCA and ISO water footprint: a response to Hoekstra (2016) “a critique on the water-scarcity weighted water footprint in LCA”. Ecol Indic, 72 (2017), pp. 352-359. Cerca con Google

Pfister S., Dominik S., Koehler A., 2010. The environmental relevance of freshwater consumption in global power production. The International Journal of Life Cycle Assessment, 16, 580-591. Cerca con Google

Pfister S., Koehler A., Hellweg S., 2009. Assessing the environmental impacts of freshwater consumption in LCA. Environ Sci Technol 43:4098–4104. Cerca con Google

Pfister S., Suh S., 2015. Environmental impacts of thermal emission to freshwater: spatially explicit fate and effect modelling for life cycle assessment and water footprinting. Int J Life Cycle Assess 20:927–936. Cerca con Google

Pichler M., Schaffartzik A., Haberl H., Görg C., 2017. Drivers of society-nature relations in the Anthropocene and their implications for sustainability transformations. Current Opinion in Environmental Sustainability, 26–27: 32-36. Cerca con Google

Pizzol M., Laurent A., Sala S., Weidema B., Verones F., Koffler C., 2017. Normalisation and weighting in life cycle assessment: quo vadis? The International Journal of Life Cycle Assessment 22(6):853–866. Cerca con Google

Pizzol M., Weidema B., Brandão M., Osset P., 2015. Monetary valuation in life cycle assessment: a review. J. Clean. Prod., 86: 170–179. Cerca con Google

Point E., Tyedmers P., Naugler C., 2012. Life cycle environmental impacts of wine production and consumption in Nova Scotia, Canada, J. Clean Prod., 27, 11-20. Cerca con Google

Prado-Lopez V., Seager T.P., Chester M., Laurin L., Bernardo M., Tylock S., 2014. Stochastic multi-attribute analysis (SMAA) as an interpretation method for comparative life-cycle assessment (LCA). Int. J. Life Cycle Assess., 19, 405-416. Cerca con Google

PRé Consultants, 2018. Software SimaPro version 8.5.2.0. PRé Consultants BV, the Netherlands. Cerca con Google

QGIS Development Team, 2018. QGIS Geographic Information System. Open Source Geospatial Foundation Project. Available at: http://qgis.osgeo.org. (Accessed: January 2018). Vai! Cerca con Google

Quinteiro P., Ridoutt B., Arroja L., Dias A.C., 2017. Identification of methodological challenges remaining in the assessment of a water scarcity footprint: a review. Int. J. Life Cycle Assess. Cerca con Google

Raskin P., Gleick P., Kirshen P., Pontius G., Strzepek K., 1997. Comprehensive assessment of the freshwater resources of the world. Water futures: assessment of long-range patterns and problems. Stockholm Environment Institute. Stockholm. Cerca con Google

Revenga C., Brunner J., Henniger N., Kassem K., Payne R., 2000. Pilot Analysis of Global Ecosystems, Freshwater Systems, World Resources Institute, Washington, DC. Cerca con Google

Richardson K., Steffen W., Liverman D., 2011. Climate Change: Global Risks, Challenges and Decisions. Cambridge University Press, Cambridge, UK. Cerca con Google

Ridoutt B.G., Pfister S., 2010a. Reducing humanity’s water footprint. Environ Sci Technol 44:6019–6021. Cerca con Google

Ridoutt B.G., Pfister S., 2010b. A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity. Glob Environ Chang 20:113–120. Cerca con Google

Riera P., Mhawej A., Mavsar R., Brey R., 2006. Fixed-effects hedonic price model for statistical value of live estimations. Transport Reviews 26, 487-500. Cerca con Google

Rijsberman F.R., 2006. Water scarcity: Fact or fiction? Agric. Water Manag. 80, 5-22. Cerca con Google

Risz Y., Weidema B., Reich-Weiser C., Hauschild M., 2012. Monetizing Environmental Impacts – Opportunities and Challenges. Enviance whitepaper. Cerca con Google

Rockström J., Sachs J. D., 2013. Sustainable Development and Planetary Boundaries. Background Research Paper Submitted to the High Level Panel on the Post-2015 Development Agenda. Cerca con Google

Rockström J., Steffen W., Noone K., Persson A., Chapin III F.S., Lambin E.F., Lenton T.M., Scheffer M., Folke C., Schellnhuber H.J. et al., 2009. Planetary boundaries: Exploring the safe operating space for humanity. Ecological Society 14 (2): 32. Cerca con Google

Rosenbaum R.K., Bachmann T.M., Swirsky Gold L., Huijbregts M.A.J., Jolliet O., Juraske R., Koehler A., Henrik F., MacLeod M.L., Margni M., McKone E.T., Payet J., Schuhmacher M., Meent V.D., Hauschild M.Z, 2008. USEtox - The UNEP-SETAC toxicity model: recommended characterization factors for human toxicity and freshwater. International Journal of Life Cycle Assessment 13: 532-546. Cerca con Google

Sachs J. D., 2012. From millennium development goals to sustainable development goals. Lancet, 379(9832): 2206–2211. Cerca con Google

Sala S., Cerutti A.K., Pant R., 2018. Development of a weighting approach for the Environmental Footprint, Publications Office of the European Union, Luxembourg. Cerca con Google

Sander H.A., Haight R.G., 2012. Estimating the economic value of cultural ecosystem services in an urbanizing area using hedonic pricing. Journal of Environmental Management 113, 194-205. Cerca con Google

Santos J., Flintsch G., A. Ferreira, 2017. Environmental and economic assessment of pavement construction and management practices for enhancing pavement sustainability. Resour. Conserv. Recycl., 116, 15-31. Cerca con Google

Scherer L., Pfister S., 2016. Dealing with uncertainty in water scarcity footprints Environ. Res. Lett. 11 (5), 54008. Cerca con Google

Seppala J., Hamalainen R.P., 2001. On the meaning of the distance-to-target weighting method and normalisation in life cycle assessment. International Journal of Life Cycle Assessment, 6, 211-218. Cerca con Google

SETAC, 1997. Life Cycle Impact Assessment: The State of the art. Barnthouse L., Fava J., Humphreys K., Hunt R., Laibson L., Noessen S., Owens J.W., Todd J.A., Vigon B., Wietz K., Young, J. (eds.). Society of Environmental Toxicology and Chemistry, 2ND edition. Cerca con Google

Smakhtin V., Iwra M., Water I., 2004. A pilot global assessment of environmental water requirements and scarcity. Int Water Resour Assoc Water Int 29:307-317. Cerca con Google

Sonderegger T., Dewulf J., Drielsma J., Fantke P., Maia de Souza D., Pfister S., Stössel F., Verones F., Vieira M., Weidema B., Hellweg S., 2017. Towards harmonizing natural resources as an area of protection in life cycle impact assessment. Int J Life Cycle Assess., 22 (12), 1912–1927. Cerca con Google

Sonderegger T., Pfister S., Hellweg S., 2015. Criticality of water: aligning water and mineral resources assessment. Environ. Sci. Technol., 49 (20), pp. 12315-12323. Cerca con Google

Sonnemann G, Schuhmacher M, Castells F., 2004, Integrated Life-Cycle and Risk Assessment for Industrial Processes, CRC Press, Boca Raton. Cerca con Google

Steen B., 1999a. A systematic approach to environmental priority strategies in product development (EPS). Version 2000 - General system characteristics; CPM report 1999:4, Chalmers University of Technology, Gothenburg. Cerca con Google

Steen B., 1999b. A systematic approach to environmental strategies in product development (EPS). Version 2000 - Models and data of the default methods. CPM report 1999:4, Chalmers University of Technology, Gothenburg. Cerca con Google

Steffen W., Persson A., Deutsch L., 2011. Zalasiewicz J., Williams M., Richardson K., Crumley C., Crutzen P., Folke C., Gordon L., Molina M., Ramanathan V., Rockstrom J., Scheffer M., Schellnhuber H.J., Svedin U. The Anthropocene: From Global Change to Planetary Stewardship. AMBIO, 40: 739. Cerca con Google

Steffen W., Richardson K., Rockström J., Cornell S.E., Fetzer I., Bennet E.M., Biggs R., Carpenter S.R., De Vries W., De Wit C.A., et al., 2015. Planetary boundaries: Guiding human development on a changing planet. Science 347 (6223): 1259855-1 - 1259855-10. Cerca con Google

Stranddorf H.K., Hoffmann L., Schmidt A., 2003. LCA Guideline. Update on impact categories, normalisation and weighting in LCA – Selected EDIP97 data. Danish Environmental Protection Agency, Copenhagen. Cerca con Google

Sullivan C., 2011. Quantifying water vulnerability: a multidimensional approach. Stoch. Environ. Res. Risk Assess. 2011, 25 (4), 627−640. Cerca con Google

Tarne P., Lehmann A., Finkbeiner M., 2018. Introducing weights to life cycle sustainability assessment - how do decision-makers weight sustainability dimensions? Int J Life Cycle Assess., 1-13. Cerca con Google

Tassou S. A., De Lille G., Y.T. Ge, 2009. Food transport refrigeration – approaches to reduce energy consumption and environmental impacts of road transport, Applied Thermal Engineering 29 (8–9), 1467–1477. Cerca con Google

TEEB, 2010. The Economics of Ecosystems and Biodiversity: Mainstreaming the Economics of Nature: A synthesis of the approach, conclusions and recommendations of TEEB. Cerca con Google

Tekie H., Lindblad M., 2013. Methodologies for monetary valuation of environmental impacts - State of the art, CPM the Swedish Life Cycle Center, Gothenburg, 2013, pp. 22-25. Cerca con Google

The World Bank, 2017a. World Development Indicators, online database. Available at: http://databank.worldbank.org/data/reports.aspx?source=2&series=NY.GNP.PCAP.CD. (Accessed: January 2017). Vai! Cerca con Google

The World Bank, 2017b. World Development Indicators, online database. Available at: https://data.worldbank.org/indicator/ER.GDP.FWTL.M3.KD. (Accessed: March 2017). Vai! Cerca con Google

Tittensor D.P., Walpole M., Hill S.L.L., Boyce D.G., Britten G.L., Burgess N.D., Butchart S.H.M., Leadley P.W., Regan E.C., Alkemade R. et al., 2014. A mid-term analysis of progress toward international biodiversity targets. Science, 346 (6206): 241–244. Cerca con Google

Tuomisto H.L., Hodge I.D., Riordan P., Macdonald D.W., 2012. Exploring a safe operating approach to weighting in life cycle impact assessment - a case study of organic, conventional and integrated farming. Journal of Cleaner Production, 37, 147e153. Cerca con Google

U.S.G.S, 2016. United States Geological Survey, The water cycle. Available at: http://ga.water.usgs.gov/edu/watercycle.html (Accessed: June 2018). Vai! Cerca con Google

U.S.G.S., 2012. HYDRO1k elevation derivative database. Cerca con Google

Udo de Haes H.A., Finnveden G., Goedkoop M., Hauschild M.Z., Hertwich E., Hofstetter P., Kloopffer W., Krewitt W., Lindeijer E., Jolliet O., Mueller-Wenk R., Olsen S., Pennington D., Potting J., Steen B., 2002. Life cycle impact assessment: striving towards best practice. SETAC Press, Pensacola. Cerca con Google

Udo de Haes H.A., Jolliet O., Finnveden G., Hauschild M.Z., Krewitt W., Muller Wenk R., 1999. Best available practice regarding impact categories and category indicators in life cycle impact assessment. Int J Life Cycle Assess 4(2):66–74. Cerca con Google

Udo de Haes H.A., Lindeijer E., 2001. The conceptual structure of Life Cycle Impact Assessment. Final draft for the Second Working Group on Impact Assessment of SETAC-Europe (WIA-2), Brussels. Cerca con Google

UN DESA, 2014. Prototype Global Sustainable Development Report. United Nations Department of Economic and Social Affairs, Division for Sustainable Development (UN DESA), New York, NY. Cerca con Google

UN General Assembly, 2015. Resolution adopted by the General Assembly on 25 September 2015: Transforming our world: the 2030 Agenda for Sustainable Development A/RES/70/1. Cerca con Google

UN, 1993. Report of the United Nations Conference on Environment & Development, Volume I: Resolutions adopted by the Conferencezil. Cerca con Google

UN, 1998. Kyoto protocol to the United Nations framework convention on climate change. Available at: http://unfccc.int/resource/docs/convkp/kpeng.pdf (Accessed: 20 Apr. 2016). Vai! Cerca con Google

UN, 2000. United Nations Millenium Project, 2000. United Nations Millenium Declaration, adopted by the General Assembly of the United Nations, resolution 5512 of 8 September 2000. New York. Cerca con Google

UN, 2005. The millennium development goals report. United Nations, New York. Cerca con Google

UN, 2009. World Water Assessment Program. The United Nations World Water Development Report 3: Water in a Changing World. Cerca con Google

UN, 2012. UNs Secretary-General’s High-Level Panel on Global Sustainability. Resilient People, Resilient Planet: A future worth choosing. United Nations, New York. Cerca con Google

UN, 2015. The United Nation Global Goals for Sustainable Development. Available at: https://sustainabledevelopment.un.org/?menu=1300 (Accessed June 2016). Vai! Cerca con Google

UNEP, 2008. Vital Water Graphics – An Overview of the State of the World’s Fresh and Marine Waters. 2nd Edition. UNEP, Nairobi, Kenya. Cerca con Google

UNEP, 2012a. Global Environmental Outlook-5: Environment for the future we want. United Nations Environment Programme, Nairobi, Kenya. Cerca con Google

UNEP, 2012b. Measuring water use in a green economy. A Report of the Working Group on Water Efficiency to the International Resource Panel, United Nations Environment Programme. Cerca con Google

UNEP/GRID-Arendal. 2008. Vital Water Graphics. An Overview of the State of the World’s Fresh and Marine Waters (2nd edn). Nairobi, UNEP. Cerca con Google

UNESCO, 2015. International Initiative on Water Quality. Promoting scientific research, knowledge generation and dissemination, and effective policies to respond to water quality challenges in a holistic and collaborative manner towards ensuring water security for sustainable development. United Nations Educational, Scientific and Cultural Organization, Paris, France. Cerca con Google

UNESCO, 2015. The United Nations World Water Development Report: Water for a Sustainable World. UNESCO, United Nations Educational, Scientific and Cultural Organization. Paris. Cerca con Google

UNSC, 2015. Technical report by the Bureau of the United Nations Statistical Commission on the process of the development of an indicator framework for the goals and targets of the post-2015 development agenda. Working draft. Cerca con Google

UNSD, 1992. Agenda 21. In United Nations Conference on Environment & Development. United Nations Sustainable Development, Rio de Janerio, Brazil. Cerca con Google

UNSD, 2018. United Nations Statistics Division, Global SDG Indicators Database, online database. Available at: https://unstats.un.org/sdgs/indicators/database/ (Accessed: March 2017). Vai! Cerca con Google

Van Zelm R., Huijbregts M.A.J., Van De Meent D., 2009. USES-LCA 2.0 - a global nested multi-media fate, exposure, and effects model. International Journal of Life Cycle Assessment, 14 (2009), pp. 282-284. Cerca con Google

Van Zelm R., Schipper A.M., Rombouts M., Snepvangers J., Huijbregts M.A.J., 2011. Implementing groundwater extraction in life cycle impact assessment: characterisation factors based on plant species richness for The Netherlands. Environ Sci Technol 45:629–635. Cerca con Google

Vandemoortele J., 2011. If not the millennium development goals, then what? Third World Quarterly, 32(1): 9–25. Cerca con Google

Vanham D., Hoekstra A.Y., Wada Y., Bouraoui F., de Roo A., Mekonnen M.M., van de Bund W.J., Batelaan O., Pavelic P., Bastiaanssen W.G.M., Kummu M., Rockström J., Liu J., Bisselink B., Ronco P., Pistocchi A., Bidoglio G., 2018. Physical water scarcity metrics for monitoring progress towards SDG target 6.4: an evaluation of indicator 6.4.2. “Level of water stress”. Sci. Total Environ., 613–614, 218-232. Cerca con Google

Veisten K., Hoen H.F., Navrud S., Strand J., 2004. Scope insensitivity in contingent valuation of complex environmental amenities. Journal of Environmental Management 73, 317-331. Cerca con Google

Verones F., Hanafiak M.M., Pfister S., Huijbregts M.A.J., Pelletier G.J., Koehler A., 2010. Characterisation factors for thermal pollution in freshwater aquatic environments. Environ Sci Technol 44:9364–9369. Cerca con Google

Verones F., Saner D., Pfister S., Baisero D., Rondinini C., Hellweg S., 2013. Effects of Consumptive Water Use on Biodiversity in Wetlands of International Importance. Environ. Sci. Technol. 2013, 47 (21), 12248−12257. Cerca con Google

Vogtlander J., Bijma A., 2000. The ‘Virtual Pollution Prevention Costs ‘99’. The International Journal of Life Cycle Assessment 5, 113-120. Cerca con Google

Vogtlander J.G., Brezet H.C., Hendriks C.F., 2001. The virtual eco-costs '99 - A single LCA-based indicator for sustainability and the eco-costs-value ratio (EVR) model for economic allocation - A new LCA-based calculation model to determine the sustainability of products and services. International Journal of Life Cycle Assessment 6, 157-166. Cerca con Google

Vörösmarty C.J., Douglas E.M., Green P.A., Revenga C., 2005. Geospatial indicators of emerging water stress: an application to Africa AMBIO. J. Hum. Environ. 34, 230-6. Cerca con Google

Vörösmarty C.J., McIntyre P.B., Gessner M.O., Dudgeon D., Prusevich A., Green P., Glidden S., Bunn S.E., Sullivan C.A., Liermann C.R, Davies P.M., 2010. Global threats to human water security and river biodiversity. Nature. 467 (7315): 555-561. Cerca con Google

Vörösmarty C.J., Pahl-Wostl C., Bunn S.E., Lawford R., 2013. Global water, the Anthropocene and the transformation of a science. Current Opinion in Environmental Sustainability, 5 (6), 539-550. Cerca con Google

Waters C.N., Zalasiewicz J., Summerhayes C., Barnosky A.D., Poirier C., Gałuszka A., Cearreta A., Edgeworth M., Ellis E.C., Ellis M., Jeandel C., Leinfelder R., Mc Neill J.R., Richter D., Steffen W., Syvitski J., Vidas D., Wagreich M., Williams M., Zhisheng A., Grinevald J., Odada E., Oreskes N., Wolfe AP. 2016. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science, 351: 2622. Cerca con Google

WBCSD, 2010. Water fort businesses. Initiatives guiding the sustainable water management in the private sector. http://www.wbcsd.org/work-program/sector-projects/water.aspx. (Accessed June 2017). Vai! Cerca con Google

WCED, 1987. Our Common Future. World Commission on Environment and Development Oxford University Press, Oxford. Cerca con Google

Weber O., Hogberg G.S., 2018. Water management and corporate social performance in the food and beverage industry. Journal of Cleaner Production, 195, 963-977. Cerca con Google

Weidema B.P., 2009. Using the budget constraint to monetarize impact assessment results. Ecological Economics 68, 1591-1598. Cerca con Google

Weidema B.P., 2015. Comparing three life cycle impact assessment methods from an endpoint perspective. J Ind Ecol 19:20–26. Cerca con Google

Weidema B.P., Hauschild M.Z., Jolliet O., 2007. Preparing characterization methods for endpoint impact assessment. International Journal of Life Cycle Assessment. Cerca con Google

Weidema B.P., Pizzol M., Brandao M., 2013. The Use of Monetary Valuation of Environmental Impacts in Life Cycle Assessment: State of the art, strengths and weaknesses. 2.0-LCA Consultants, Aalborg University. Cerca con Google

Weiss M., Patel M., Heilmeier H., Bringezu S., 2007. Applying distance-to-target weighing methodology to evaluate the environmental performance of bio-based energy, fuels, and materials. Resour Conserv Recycl, 50:260–28. Cerca con Google

Wenzel H., Hauschild M., Alting L., 1997. Environmental Assessment of Products. Volume 1 - Methodology, tools and case studies in product development. Chapman & Hall, London. Cerca con Google

Wessman H., 2011. Water Footprint: Description and the state of the art, VVT Technical Research Center of Finland. Cerca con Google

WHO, 2017. Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and SDG Baselines. Geneva: World Health Organization and the United Nations Children’s Fund (UNICEF). Cerca con Google

World Bank, 2016. High and Dry: Climate Change, Water, and the Economy. World Bank, Washington, DC. Cerca con Google

World Economic Forum, 2016. The Global Risks Report 2016: 11th Edition, Working Papers, eSocialSciences. Cerca con Google

World Economic Forum, 2018. The Global Risks Report 2018: 13th Edition, Working Papers, eSocialSciences. Cerca con Google

WULCA, 2118. http://www.wulca-waterlca.org/mission.html. (Accessed March 2018). Vai! Cerca con Google

WWAP 2009. The United Nations World Water Development Report 3: Water in a Changing World. Paris/London, UNESCO Publishing/ Earthscan. Cerca con Google

WWAP, 2012. The United Nations World Water Development Report 4: Managing Water under Uncertainty and Risk. WWAP, World Water Assessment Programme. Paris, UNESCO. Cerca con Google

WWF, 2016. Living Planet Report 2016: Risk and Resilience in a New Era. WWF International, Gland, Switzerland. Cerca con Google

Xenopoulos M.A., Lodge D.M., Alcamo J., Marker M., Schulze K., Van Vuuren D.P., 2005. Scenarios of freshwater fish extinctions from climate change and water withdrawal. Glob Chang Biol 11:1557-1564. Cerca con Google

Xu H., Wu M.M., 2017. Water Availability Indices - A Literature Review. Argonne National Laboratory (ANL). Cerca con Google

Yano S., Hanasaki N., Itsubo N., Oki T., 2015. Water scarcity footprints by considering the differences in water sources. Sustainability 7:9753–9772. Cerca con Google

Zhang L., Dawes W.R., Walker G.R., 1999. Predicting the effect of vegetation changes on catchment average water balance. Technical report 99/12. Cooperative Research Centre for Catchment Hydrology. CSIRO Land and Water. Cerca con Google

Zhang Y., Baral A., Bakshi B.R., 2010. Accounting for ecosystem services in life cycle assessment, part II: toward an ecologically based LCA. Environmental Science and Technology, 44 (7), 2624−2631. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record