Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Colucci, Giulia (2018) A fast ionization chamber for the detection of fusion-evaporation residues produced by the exotic beams of SPES: design, tests and first experiments. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document - Submitted Version
16Mb

Abstract (italian or english)

This thesis work is divided in two parts: (i) designing and constructing a new ionization chamber with fast response (FastIC) for the study of near- and sub-barrier fusion of exotic systems using the very neutron-rich beams of the SPES facility in construction at the Laboratori Nazionali di Legnaro (LNL) of INFN, and (ii) carrying out, analyzing and interpreting the results of the sub-barrier fusion experiment for the two systems 36S + 50Ti,51V, performed using the FastIC.
A new set-up for fusion cross-section measurements, especially designed for the low-intensity beams delivered by the SPES facility, has been developed at the LNL.
This new set-up includes a fast IC designed to withstand a high counting rate particle identification for fusion studies involving exotic beams up to 105 pps. The readout of the FastIC was optimised and extensive tests using stable heavy-ion beams demonstrated its ability to operate up to rates of about140 kHz, compared to few kHz of the previous IC chamber. This feature and the much larger solid angle coverage will allow to detect fusion-evaporation residues with an efficiency close to 100%.
The new FastIC has been employed for the experimental study of sub-barrier fusion in the 36S + 50Ti, 51V systems. The possible effect of the non-zero spin of 51V ground state on the sub-barrier excitation function and on the shape of the barrier distribution has been investigated. The two excitation functions have been measured down to cross sections of about 20 ub, and it appears that they are very similar to each other. A coupled channels analysis has been performed in order to highlight differences between the two systems, and a modified coupled-channels code was used in order to treat the odd nucleus 51V. The experimental excitation functions and the extracted barrier distributions have been compared to the theoretical predictions.
This comparison suggests a small difference between the two systems above the barrier, that might be experimentally observed by measuring the backward-angle quasi-elastic scattering in that energy region.

Abstract (a different language)

Il lavoro di tesi si divide in due parti: (i) la progettazione e costruzione di una nuova camera di ionizzazione con risposta veloce (FastIC), per lo studio di processi di fusioni di sistemi esotici ad energie in prossimità e sotto la barriera Coulombiana. Si useranno fasci ricchi di neutroni che saranno forniti dalla facility SPES, in costruzione presso i Laboratori Nazionali di Legnaro (LNL) dell'INFN.
La seconda parte della tesi riguarda la realizzazione, l’analisi e l’interpretazione dei risultati dell'esperimento di fusione sotto barriera dei due sistemi 36S + 50Ti, 51V, eseguito utilizzando il nuovo rivelatore FastIC.
Un nuovo set-up per le misure della sezione d’urto di fusione, appositamente progettato per fasci a bassa intensità forniti da SPES, è stato sviluppato presso i LNL.
Questo nuovo set-up prevede l’utilizzo della FastIC progettata per resistere ad alti rate di conteggio per lo studio di processi di fusione con fasci esotici con intensità dell’ordine dei 10^5 pps. Il readout della FastIC è stato ottimizzato ed approfonditi test, eseguiti con fasci di ioni stabili, hanno dimostrato la sua capacità di operare fino a rate di 140 kHz, rispetto ai pochi kHz della precedente camera IC. L’alto rate di conteggio insieme al più ampio angolo solido consentiranno di rilevare i residui di evaporazione di fusione con un'efficienza vicina al 100%.
La nuova FastIC è stata utilizzata durante l’esperimento di fusione sotto barriera dei due sistemi 36S+50Ti e 36S+51V. L’esperimento era finalizzato allo studio dei possibili effetti dello spin non nullo dello stato fondamentale del 51V, sulla funzione di eccitazione sotto barriera e sulla forma della distribuzione di barriere. La sezione d’urto di fusione è stata misurata fino a 20 μb e le funzioni di eccitazioni dei due sistemi mostrano andamenti simili.
Un'analisi a canali accoppiati è stata eseguita al fine di evidenziare le differenze tra i due sistemi. In particolare, è stato utilizzato il codice CCFULL appositamente modificato per trattare il nucleo dispari 51V. Le funzioni di eccitazione sperimentali e le distribuzioni di barriera estratte sono state confrontate con le previsioni teoriche che suggeriscono una piccola differenza tra i due sistemi ad energie sopra barriera. Questo potrebbe essere osservato sperimentalmente mediante misure di diffusione quasi-elastica ad angoli all’indietro rispetto alla direzione del fascio.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Stefanini, Alberto
Supervisor:Montagnoli, Giovanna
Ph.D. course:Ciclo 31 > Corsi 31 > FISICA
Data di deposito della tesi:30 November 2018
Anno di Pubblicazione:2018
Key Words:fusion/sub-barrier/ionization chamber/fast response/Radioactive ion beams/barrier distribution/fusion cross section/PISOLO/tilted electrodes
Settori scientifico-disciplinari MIUR:Area 02 - Scienze fisiche > FIS/04 Fisica nucleare e subnucleare
Struttura di riferimento:Dipartimenti > Dipartimento di Fisica e Astronomia "Galileo Galilei"
Codice ID:11479
Depositato il:08 Nov 2019 10:47
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] C. Y.Wong. “Interaction barrier in charged-particle nuclear reactions”. In: Physical Review Letters 31.12 (1973), pp. 766–769. ISSN: 00319007. Cerca con Google

[2] R. G. Stokstad et al. “Measurements of fusion cross sections for heavy-ion systems at very low energies”. In: Physical Review Letters 37.14 (1976), pp. 888–891. Cerca con Google

[3] C. H. Dasso, S. Landowne, and A. Winther. “A study of Q-value effects on barrier penetration”. In: Nuclear Physics A 407.12 (1983), pp. 221–232. Cerca con Google

[4] C. H. Dasso, S. Landowne, and A.Winther. “Channel-coupling effects in heavy ion fusion reactions”. In: Nuclear Physics A 405 (1983), pp. 381–396. Cerca con Google

[5] C. H. Dasso, S. Landowne, and A. Winther. “Barrier penetration in the presence of coupling to intrinsic degrees of freedom”. In: Nuclear Physics A 432 (1985), pp. 495–513. Cerca con Google

[6] G. R. Satchler N. Rowley and P. H. Stelson. “On the “distribution of barriers” interpretation of heavy-ion fusion”. In: Reviews of Modern Physics 254 (1991), pp. 25–29. Cerca con Google

[7] C. L. Jiang et al. “Unexpected behavior of heavy-ion fusion cross sections at extreme sub-barrier energies.” In: Physical review letters 89.5 (2002). Cerca con Google

[8] K. Hagino and N. Takigawa. “Subbarrier fusion reactions and many-particle quantum tunneling”. In: 128.6 (2012). Cerca con Google

[9] Ö. Akyüz and A. Winther. “Nuclear Structure and Heavy-Ion Collisions”. In: Proc. Int. School of Physics “Enrico Fermi” Course LXXVII, Varenna (1979). Cerca con Google

[10] R. A. Broglia and A.Winther. Heavy-Ion Reactions. Addison-Wesley, New York, 1991. Cerca con Google

[11] G. Bertsch et al. “Interactions for inelastic scattering derived from realistic potentials”. In: Nuclear Physics A 284 (1977), pp. 399–419. Cerca con Google

[12] S. Misicu and H. Esbensen. “Signature of shallow potentials in deep sub-barrier fusion reactions”. In: Physical Review C 75.3 (2007), pp. 1–14. Cerca con Google

[13] H. Esbensen, C. L. Jiang, and A. M. Stefanini. “Hindrance in the fusion of 48Ca+48Ca”. In: 054621 (2010), p. 8. Cerca con Google

[14] P. Fröbrich and R. Lipperheide. Theory of Nuclear Reactions. Clarendon Press, 1996. Cerca con Google

[15] R. Bass. Nuclear Reactions with Heavy Ions. Springer-Verlag, 1980. Cerca con Google

[16] D. L. Hill and J. A. Wheeler. “Nuclear constitution and the interpretation of fission phenomena”. In: Physical Review 89.5 (1953), pp. 1102–1145. Cerca con Google

[17] J. R. Leigh et al. “Nuclear constitution and the interpretation of fission phenomena”. In: Physical Review C 52.6 (1995), p. 3151. Cerca con Google

[18] M. Beckerman et al. “Dynamic influence of valence neutrons upon the complete fusion of massive nuclei”. In: Physical Review Letters 45.18 (1980), pp. 1472– 1475. ISSN: 00319007. Cerca con Google

[19] A. B. Balantekin, S. E. Koonin, and J. W. Negele. “Inversion formula for the internucleus potential using sub-barrier fusion cross sections”. In: Physical Review C 28.4 (1983), p. 1565. Cerca con Google

[20] S. Yusa, K. Hagino, and N. Rowley. “Role of noncollective excitations in low energy heavy-ion reactions”. In: Physical Review C 82 (2010), pp. 1–7. Cerca con Google

[21] S. Yusa, K. Hagino, and N. Rowley. “Role of noncollective excitations in heavy ion fusion reactions and quasi-elastic scattering around the Coulomb barrier”. In: Physical Review C 85 (2012), pp. 1–8. Cerca con Google

[22] M. N. Harakeh and A. Van Der Woude. Giant Resonances. Oxford University Press, 2001. Cerca con Google

[23] O. Tanimura, J. Makowka, and U. Mosel. “Adiabatic approach to subcarrier fusion cross section”. In: Physics Letters B 163 (1985), pp. 317–322. Cerca con Google

[24] N. Takigawa et al. “Role of mass renormalization in adiabatic quantum tunneling”. In: Physics Review C 49.5 (1994), p. 2630. Cerca con Google

[25] M. Dasgupta et al. “Measuring Barriers to Fusion”. In: Annu. Rev. Nucl. Part. Sci. 48 (1998), pp. 401–461. Cerca con Google

[26] K. Hagino, N. Rowley, and A. T. Kruppa. “A program for coupled-channels calculations with all order couplings for heavy-ion fusion reactions”. In: Computer Physics Communications 123 (1999). Cerca con Google

[27] M. A. Nagarajan, A. B. Balantekin, and N. Takigawa. “Geometric interpretation of the adiabatic model for heavy-ion fusion”. In: Physical Review C 34.3 (1986), pp. 894–898. Cerca con Google

[28] A. M. Stefanini et al. “Influence of Complex Surface Vibrations on the Fusion of 58Ni + 60Ni”. In: Physical Review Letters 74.6 (1995), pp. 864–867. Cerca con Google

[29] H. Esbensen and S. Landowne. “Higher-order coupling effects in low energy heavy-ion fusion reactions”. In: Physical Review C 35.6 (1987), pp. 2090–2096. Cerca con Google

[30] C. L. Jiang et al. “Influence of nuclear structure on sub-barrier hindrance in Ni + Ni fusion”. In: Physical Review Letters 93.1 (2004). Cerca con Google

[31] B. B. Back et al. “Recent developments in heavy-ion fusion reactions”. In: Reviews of Modern Physics 86 (2014), pp. 317–360. Cerca con Google

[32] A. Mi¸sicu and H. Esbensen. “Hindrance of heavy-ion fusion due to nuclear incompressibility”. In: Physical Review Letters 96.11 (2006), pp. 1–4. Cerca con Google

[33] T. Ichikawa, K. Hagino, and A. Iwamoto. “Signature of smooth transition from sudden to adiabatic states in Heavy-Ion fusion reactions at deep Sub-Barrier energies”. In: Physical Review Letters 103.20 (2009), pp. 1–4. Cerca con Google

[34] T. Ichikawa. “Systematic investigations of deep sub-barrier fusion reactions using an adiabatic approach”. In: Physical Review C 92.6 (2015), pp. 1–19. Cerca con Google

[35] E. M. Burbidge et al. “Synthesis of the elements in stars”. In: Reviews of Modern Physics 29.4 (1957), pp. 547–650. Cerca con Google

[36] G. Montagnoli and A. M. Stefanini. “Recent experimental results in sub- and near-barrier heavy-ion fusion reactions”. In: European Physical Journal A 53.8 (2017). Cerca con Google

[37] V. Yu. Denisov. “Subbarrier heavy ion fusion enhanced by nucleon transfer”. In: European Physical Journal A 7.1 (2000), pp. 87–99. Cerca con Google

[38] V. I. Zagrebaev. “Sub-barrier fusion enhancement due to neutron transfer”. In: Physical Review C 67.6 (2003), p. 5. Cerca con Google

[39] A. M. Stefanini et al. “Fusion of 48Ca+90,96Zr above and below the Coulomb barrier”. In: Physical Review C 73.3 (2006), pp. 1–8. Cerca con Google

[40] A. M. Stefanini et al. “Sub-barrier fusion of 40Ca+94Zr: Interplay of phonon and transfer couplings”. In: Physical Review C 76.1 (2007), pp. 4–8. Cerca con Google

[41] H. Timmers et al. “A case study of collectivity, transfer and fusion enhancement”. In: Nuclear Physics A 633.3 (1998), pp. 421–445. Cerca con Google

[42] J. F. Liang et al. “Fusion of radioactive 132Sn with 64Ni”. In: Physical Review C 75.5 (2007), p. 054607. Cerca con Google

[43] Z. Kohley et al. “Near-barrier fusion of Sn+Ni and Te+Ni systems: Examining the correlation between nucleon transfer and fusion enhancement”. In: Physical Review Letters 107.20 (2011), pp. 1–5. Cerca con Google

[44] V. Yu. Denisov and S. Hofmann. “Formation of superheavy elements in cold fusion reactions”. In: Physical Review C 61 (2000), pp. 1–15. Cerca con Google

[45] N. Takigawa, H. Sagawa, and T. Shinozuka. “Fusion of a halo nucleus and synthesis of superheavy elements”. In: Nuclear Physics A 538 (1992), pp. 221– 228. Cerca con Google

[46] Z. Kohley et al. “Sub-barrier fusion enhancement with radioactive 134Te”. In: Physical Review C 87.6 (2013), pp. 1–6. Cerca con Google

[47] J. J. Kolata et al. “Fusion of 124,132Sn with 40,48Ca”. In: Physical Review C 85.5 (2012), pp. 1–7. Cerca con Google

[48] H . L. Ravn. “Experiments with intense secondary beams of radioactive ions”. In: Physics Reports 54 (1979), pp. 201–259. Cerca con Google

[49] M. Cogneau et al. “Production of a high purity 18F radioactive beam”. In: Nuclear Instruments and Methods in Physics 420 (1999), pp. 489–493. Cerca con Google

[50] J . F. Liang and C Signorini. “Fusion Induced by Radioactive Ion Beams”. In: International Journal of Modern Physics E 14.8 (2005), p. 1121. Cerca con Google

[51] T. J. M. Symons et al. “Observation of New Neutron-Rich Isotopes by Fragmentation of 205-MeV/Nucleon 40Ar Ions”. In: Physical Review Letters 42.1 (1979). Cerca con Google

[52] G. De Angelis et al. “The SPES radioactive ion beam project of INFN”. In: Journal of Physics: Conference Series 527.1 (2014). Cerca con Google

[53] G. Prete et al. “The SPES project: An ISOL facility for exotic beams”. In: AIP Conference Proceedings - 12th Conference on ‘Theoretical Nuclear Physics in Italy’ 1120 (2009), pp. 247–252. Cerca con Google

[54] SPES Beam Tables. URL: https://web.infn.it/spes/index.php/nuclearphysics/spes-beams-2014. Vai! Cerca con Google

[55] G. Prete et al. “The SPES project: An ISOL facility for exotic beams”. In: AIP Conference Proceedings - HIAT09, Venice, Italy 1120 (2009), pp. 247–252. Cerca con Google

[56] D. Shapira et al. “A high-efficiency compact setup to study evaporation residues formed in reactions induced by low-intensity radioactive ion beams”. In: Nuclear Instruments and Methods in Physics Research A 551.2-3 (2005), pp. 330–338. Cerca con Google

[57] G. Montagnoli et al. “The large-area micro-channel plate entrance detector of the heavy-ion magnetic spectrometer PRISMA”. In: Nuclear Instruments and Methods in Physics Research 547.2-3 (2005), pp. 455–463. Cerca con Google

[58] G. F. Knoll. Radiation Detection and Measurement. John Wiley Sons Inc, IV edition, 2010. Cerca con Google

[59] H. W. Fulbright. “Ionization Chambers”. In: Nuclear Instruments and Methods 162 (1979), pp. 21–28. Cerca con Google

[60] H. Stelzer. Detectors in Heavy-Ion Reactions. Springer - Verlag, 1982. Cerca con Google

[61] G. Montagnoli et al. “Fusion hindrance for the positive Q -value system 12C + 30Si”. In: Physical Review C 97.2 (2018), pp. 1–6. Cerca con Google

[62] G. Montagnoli et al. “Fusion of 28Si + 28,30Si: Different trends at sub-barrier energies”. In: Physical Review C 90.4 (2014). Cerca con Google

[63] G. Colucci et al. “Isotopic effects in sub-barrier fusion of Si + Si systems”. In: Physical Review C 97.4 (2018), pp. 1–8. Cerca con Google

[64] J. F. Liang et al. “Enhanced fusion-evaporation cross sections in neutron-rich 132Sn on 64Ni”. In: Physical Review Letters 91.15 (2003), pp. 1–4. Cerca con Google

[65] K. Kimura et al. “High-rate particle identification of high-energy heavy ions using a tilted electrode gas ionization chamber”. In: Nuclear Instruments and Methods in Physics Research 538.1-3 (2005), pp. 608–614. Cerca con Google

[66] K. Y. Chae et al. “Construction of a fast ionization chamber for high-rate particle identification”. In: Nuclear Instruments and Methods in Physics Research A 751 (2014), pp. 6–10. Cerca con Google

[67] L. Corradi. “The Tandem-ALPI-PIAVE Accelerator Facility Usage Operation , Maintenance and Developments of LNL Heavy Ion Accelerator Complex”. In: LNL Annual Report (2009), pp. 177–179. Cerca con Google

[68] M. Mazzocco. “TANDEM-ALPI-PIAVE Accelerator Complex : Facility Usage”. In: LNL Annual Report (2016), p. 152. Cerca con Google

[69] J. F. Ziegler. SRIM - The Stopping and Range of Ions in Matter. URL: http://www.srim.org/. Vai! Cerca con Google

[70] PACE 4 : evaporation code operating under MS Windows. URL: http : / / lise.nscl.msu.edu/pace4.html. Cerca con Google

[71] H. Esbensen. “Complete fusion of 9Be with spherical targets”. In: Physical Review C - Nuclear Physics 81.3 (2010), pp. 1–8. Cerca con Google

[72] P. R. S. Gomes et al. “Comprehensive study of reaction mechanisms for the 9Be + 144Sm system at near- and sub-barrier energies”. In: Physical Review C -Nuclear Physics 73.6 (2006), pp. 1–11. Cerca con Google

[73] J. Randrup and J. S. Vaagen. “On the proximity treatment of the interaction between deformed nuclei”. In: Physics Letters B 77.6 (1978), pp. 170–173. Cerca con Google

[74] E. F. Aguilera et al. “Sub-barrier fusion of 27Al + 70,72,73,74,76Ge: Evidence for shape transition and structure effects”. In: Physical Review C 41.3 (1990), pp. 910-919. Cerca con Google

[75] H. Esbensen. “Fusion reactions with germanium isotopes”. In: Physical Review C - Nuclear Physics 68.3 (2003), p. 12. Cerca con Google

[76] C. L. Jiang et al. “Fusion hindrance for 27Al + 45Sc and other systems with a positive Q value”. In: Physical Review C - Nuclear Physics 81.2 (2010), pp. 1–7. Cerca con Google

[77] N. J. Stone. “Table of nuclear magnetic dipole and electric quadrupole moments”. In: Atomic Data and Nuclear Data Tables 90 (2005), pp. 75-176. Cerca con Google

[78] National Nuclear Data Center - 36S. URL: http://www.nndc.bnl.gov/chart/getdataset.jsp?nucleus=36S&unc=nds. Vai! Cerca con Google

[79] National Nuclear Data Center - 50Ti. URL: http://www.nndc.bnl.gov/chart/getdataset.jsp?nucleus=50TI&unc=nds. Vai! Cerca con Google

[80] S. Raman et al. “Transition probability, B(E2)↑, from the ground to the first excited 2+ state of even-even nuclides”. In: Atomic Data and Nuclear Data Tables 36 (1987), pp. 1–96. Cerca con Google

[81] T. Kibédi and R. H. Spear. “Reduced electric-octupole transition probabilities, B(E3;0+1 → 3−1 ) - An update”. In: Atomic Data and Nuclear Data Tables 80.1 Cerca con Google

(2002), pp. 35–82. ISSN: 0092640X. Cerca con Google

[82] J. Childs. “Hyperfine Structure of Nine Levels in Two Configurations of 51V”. In: Physical Review 156 (1967), pp. 71–82. Cerca con Google

[83] National Nuclear Data Center - 51V. URL: http://www.nndc.bnl.gov/chart/ Vai! Cerca con Google

getdataset.jsp?nucleus=51V&unc=nds. Cerca con Google

[84] E. Piasecki et al. “Barrier distributions in 160+116,119Sn quasielastic scattering”. In: Physical Review C 65.5 (2002), p. 054611. Cerca con Google

[85] E. Piasecki et al. “Structure of barrier distributions; probing the role of neutron transfer channels”. In: International Journal of Modern Physics E 16.2 (2007),pp. 502–510. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record