Glimpsing at the primordial perturbation field

Tesi redatta con il contributo finanziario di INFN

Vice coordinatore: Ch.ma Prof. Cinzia Sada
Supervisore: Ch.mo Prof. Nicola Bartolo
Co-Supervisore: Ch.mo Dott. Michele Liguori

Dottorando: Andrea Ravenni
Abstract

In this thesis I will focus on “non-minimal” properties of the primordial perturbation field; both analysing data, and assessing the constraining power of novel probes. In particular, I will address the problem of finding deviations from a power-law primordial power spectrum, the possibility of better constraining compensated isocurvature perturbations, and detect primordial non-Gaussianity in an ample range of scales.

I present a minimally parametric, model independent reconstruction of the shape of the primordial power spectrum. We use a comprehensive set of the state-of the art cosmological data: *Planck* observations of the temperature and polarisation anisotropies of the cosmic microwave background (CMB), WiggleZ and Sloan Digital Sky Survey Data Release 7 galaxy power spectra, and the Canada-France-Hawaii Lensing Survey correlation function. This reconstruction strongly supports the evidence for a power law primordial power spectrum with a red tilt and disfavours deviations from a power law power spectrum including small-scale power suppression such as that induced by significantly massive neutrinos. This offers a powerful confirmation of the inflationary paradigm, justifying the adoption of the inflationary prior in cosmological analyses.

We develop a linear perturbation theory for the spectral y-distortions of the CMB. The y-distortions generated during the recombination epoch are usually negligible because the energy transfer due to the Compton scattering is strongly suppressed at that time, but they can be significant if there is are compensated isocurvature perturbations with large amplitude. Since y-distortions explicitly depend on the baryon density fluctuations, they can be used to detect and constrain compensated isocurvature perturbations (CIPS) models. We compute the cross correlation functions of the y-distortions with the CMB temperature and the
E-mode polarization anisotropies (T, E respectively). We investigate how well measurements of y-anisotropies provided by a PIXIE-like and a PRISM-like survey, LiteBIRD, and a cosmic variance limited (CVL) survey, will constrain $f' = \Delta^2 \zeta_{\text{CIP}} / \Delta^2 \zeta$, and find that the degradation in constraining power due to the presence of Sunyaev Zel’dovich effect from galaxy clusters will prevent detections unless the amplitude of CIP is unnaturally high, with forecasted upper limits of, e.g., $f' < 2 \times 10^5$ (68% C.L.) with LiteBIRD, and $f' < 2 \times 10^4$ (68% C.L.) with CVL observations.

Cross-correlations between CMB temperature and y-distortions anisotropies have been previously proposed as a way to measure the local bispectrum parameter f_{NL}^loc in a range of scales much smaller than those accessible to CMB primary anisotropies. Unfortunately, the primordial y-T signal is strongly contaminated by the late-time correlation between the Integrated Sachs Wolfe and Sunyaev-Zeldovich (SZ) effects. Moreover, SZ itself generates a large noise contribution in the y-parameter map. We consider two original ways to address these issues: To remove the bias due to the SZ-CMB temperature coupling, while also adding new signal, we include in the analysis the y-E cross-correlation. In order to reduce the noise, we propose to clean the y-map by subtracting a SZ template, reconstructed via cross-correlation with external tracers. We combine this SZ template subtraction with the previously adopted solution of directly masking detected clusters. Our forecasts show that, using y-distortions, a PRISM-like survey can achieve $f_{\text{NL}}^\text{loc} < 300$ (68% C.L.), while an ideal experiment will achieve $f_{\text{NL}}^\text{loc} < 130$, with improvements of a factor ~ 3 from adding the y-E signal, and a further $20 \sim 30\%$ from template cleaning. These forecasts are much worse than current f_{NL}^loc boundaries from Planck, but we stress again that they refer to completely different scales.
Acknowledgements

The story of this thesis starts much before any of the following have been typed for the first time. It even starts much before the beginning of my PhD studies. Actually it does not even start with a when, but rather with a where. I had the privilege to live in Padova and to study and work at the Dipartimento di Fisica for most of my adult life. It is thanks to all the wonderful people that I have met there that I am now in the position to write these words. And I have to be grateful to two in particular, that have been first my teachers, then my supervisors, and now my mentors. Nicola, Michele, thank you for helping me fulfil my childhood dream.

A similar thanks goes to Jens, as you decided it was fine for me to bug you for months, got me in as if I was part of the crew, and patiently guided me on a path that was completely knew.

A thank to the many companions that shared this path with me: Abir, Aditya, Boris, Dionysis, Giampà, Giorgio, Maria Chiara, Mathieu, Luke, Pippo, Purnendu. Working with you I learnt all the things you cannot find on arXiv, and often those are the more important.

Clara, Ele, Giulia, Jacy, Maddy, Pie e Rebe non potete immaginare quanto voglia dire sentirvi vicini, e sapere che ci siete sempre. Grazie per essere la mia costante.

Grazie alla mia miglior compagna di ufficio Valentina, a Davide e a Pobbe, avete portato il sole nelle giornate di nebbia.

Un ringraziamento speciale va a Ave, Carlo e Marco, che in troppe occasioni, con la scusa di fare uno scozzino, siete stati la voce della ragione. Per non parlare dell’aiuto nello stimare ogni singolo valore numerico.

Thanks Slada. It was by luck that you entered my life when everything seemed to be working against me. But it was your merit that I never hit rock bottom.
Concludo con le due persone più importanti su questa lista, Mamma e Babbo. Come ho scritto, questa tesi è il punto fermo al termine di qualcosa molto più lungo del solo dottorato. Dunque vi ringrazio per tutto quello che mi donate ed avete donato da sempre, per essere stati al mio fianco ed avermi sempre dato fiducia (con l’unica — l’unica! — eccezione di quando dovevo dare Analisi 1). Grazie di tutto l’amore del mondo.
3.2. Compensated isocurvature perturbations
 3.2.1. Linear order spectral distortions anisotropies
 3.2.2. Detecting CIP using y-distortions anisotropies
 3.2.3. Bias, variance, and Fisher results
 3.2.4. Discussion

4. Testing the bispectrum
 4.1. Primordial non-Gaussianity and spectral distortions anisotropies
 4.1.1. Primordial contributions
 4.1.2. Secondary sources
 4.1.3. f_{NL} forecast
 4.1.4. $f_{y_{NL}}$ forecast
 4.1.5. Discussion

Conclusions

A. Useful mathematical relation involving spherical functions
 A.1. Spherical Harmonics
 A.2. Wigner 3-j symbols
 A.3. Wigner 6-j symbols
 A.4. Spherical Bessel functions

Bibliography

List of figures

List of tables
“I love deadlines.
I love the whooshing noise they make as they go by.”

— Douglas Adams, The Salmon of Doubt
Introduction

All recent cosmological observations are in excellent agreement with the standard ΛCDM model: a spatially flat cosmology model, with matter-energy density dominated by a cosmological constant and cold dark matter, where neutrinos are effectively massless and where the primordial perturbation field was adiabatic and Gaussian, with a power spectrum that is a (almost scale invariant) power law. State-of-the art cosmological observations such as those of the Planck satellite [1], measuring cosmic microwave background (CMB) temperature and polarization anisotropies (respectively T and E), provided us with very precise measurements of the parameters of this standard cosmological model [2]. The same kind of observations strongly suggest that the primordial density perturbations were adiabatic; this implies that the number densities of photons, baryons, cold dark matter, and neutrinos fluctuate in the same way [2]. Moreover, the tightest constraints on all parametrizations and models of primordial non-Gaussianity (NG), which also come from Planck measurements, in this case of the bispectrum of the CMB anisotropies, are all compatible with 0 [3].

However, does this allow us to be satisfied with our current understanding of the Universe, or should this spur us to search for deviations from the established model, and develop new test that might shed light on new physics? Moved by this second approach, in this thesis I will focus on “non-minimal” properties of the primordial perturbation field; both analysing data, and assessing the constraining power of novel probes. In particular, I will address the problem of finding deviations from a power-law primordial power spectrum, the possibility of further constraining compensated isocurvature perturbations, and detecting primordial non-Gaussianity on an ample range of scales.

Most cosmological analyses assume a power-law primordial power spectrum with a fixed spectral index, and deviations from this assumption are often in the form of a “running” of the spectral index. A nearly scale invariant power spectrum is a generic prediction of the simplest models of inflation, but there are models with (small) deviations from this prediction (e.g., [4–7]). Indeed, small deviations from scale invariance constitute
a critical and generic prediction of inflation. For this reason a model-independent reconstruction of the primordial power spectrum (PPS) shape can be a powerful test of inflationary models. In Section 3.1 which is based on the paper

I will show the results of a minimally parametric reconstruction of the PPS using smoothing spline interpolation in combination with cross validation.

Departure from adiabatic perturbations, such as isocurvature perturbations change the CMB temperature angular power spectrum drastically, and they are therefore constrained very tightly. However in a specific model it is possible to have the baryon isocurvature perturbations cancel exactly with the cold dark matter ones — hence the name of compensated isocurvature perturbations (CIPs) — at linear level in the CMB spectra [8]. The CIPs are less constrained compared to the observed adiabatic perturbations and the other isocurvature perturbations, so it is in principle interesting to propose novel ways to constrain them. In section Section 3.2 I will review the possibility of observing the CIPs using CMB spectral distortion anisotropies as proposed in

Current CMB data tightly constrain primordial non-Gaussianity, but leave completely unanswered the question if there might have been one of more field driving cosmological inflation. Multi-field Inflation in fact predicts a potentially detectable bispectrum of the local type, peaking in the so-called squeezed-limit (i.e., on wavenumber triangles with one side much smaller than the other two, indicating a correlation between large and small wavelengths). In a futuristic scenario, the authors of [9] have considered the cross-correlation between CMB temperature and μ-spectral distortion anisotropies as a potentially very powerful probe of squeezed-type bispectra. While fascinating, this scenario is out of reach not only with current experimental noise levels, but also taking into account proposed ambitious next generation surveys, such as PRISM [10]. Nonetheless, measurements of f_{NL} via correlations between CMB temperature (polarization) and CMB distortion anisotropies are interesting even before achieving such exquisite levels of sensitivity, as they allow to test possible deviations of f_{NL} from scale independence.
In this respect, not only μ, but also y-distortions can provide useful and interesting information, as pointed out in [10]. In Section 4.1 based on

A. Ravenni, M. Liguori, N. Bartolo, and M. Shiraishi. “Primordial non-Gaussianity with μ-type and y-type spectral distortions: exploiting Cosmic Microwave Background polarization and dealing with secondary sources”. JCAP 2017, no. 09 042. arXiv:1707.04759,

I will extend previous analyses by considering not only y-T, but also including the cross-correlation with polarization, y-E, and by exploiting cross-correlations between SZ and external tracers (CMB and galaxy lensing) in order to minimize foregrounds.
Chapter 1.

The standard cosmological model

The need to develop a cosmological concordance model able to explain, and fit together, a plethora of different observations \[11\] — we will discuss some of them in the following, \[12–18\] is a non-exhaustive list — resulted in the conception of the ΛCDM model.

This model relies on few principles:

- There is no preferred spatial position in the Universe.
- The Universe is statistically isotropic.
- General Relativity is the correct description of gravity.
- The Universe is filled with photons, baryonic matter, neutrinos, cold dark matter, and a cosmological constant, in proportions that are experimentally determined.

While the last three points can be tested, and have been indeed tested to high degrees of accuracy, the first one is different in that it is a philosophy standpoint called Copernican principle.

The Copernican principle, together with Universe isotropy, would guarantee spatial homogeneity. Instead, everyday experience teaches us that the Universe is far from isotropic and homogeneous, however, these conditions are restored on scales larger than $\approx 100\text{ Mpc}$ \[19\] \[21\].

If we also assume the validity of GR, the metric that describes the universe is the Friedmann-Lemaître-Robertson-Walker (FLRW) metric that I will discuss in Section 1.1.
Using the fourth ansatz we can write the Friedmann equations that describe the evolution of the Universe expansion and of its content. Those will be discussed in Section 1.2.

While not being technically included in the ΛCDM model, all the anisotropies and inhomogeneities we observe today can be evolved within the ΛCDM framework from a certain primordial perturbations field with 0 mean and power-law power spectrum. Such a field can for example be generated by an inflationary model that we will discuss in Section 1.4.

Apart from this caveats, the true power of the ΛCDM stands in the fact that is able to be highly predictive, in the sense that it can fit (almost) all the physics of the universe (at least on large scales) using only 6 free parameters

$$\omega_b, \omega_{cdm}, h, \tau_{reio}, A_s, n_s,$$

related respectively with: the abundance of baryonic matter, and cold dark matter, the local expansion rate, the optical depth to reionization, the amplitude, and tilt of the primordial perturbations power spectrum. We will properly define all of those parameters in the rest of this chapter.

1.1. The metric, the distances

In General Relativity, space-time is described by a manifold. The presence of a matter-energy distribution gravitationally generates curvature in it and, reciprocally, space-time curvature influences the trajectory of the matter-energy distribution, which is bounded to follow the geodesics [22]. Therefore, gravitational interaction is described by the metric tensor g, which, given a coordinate system $\{x^\alpha\}$, has components $g_{\mu\nu}$.

If $T^{\mu\nu}$ is the energy-momentum tensor of the matter-energy distribution, the metric $g_{\mu\nu}$ and its evolution are described by Einstein equations

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi GT_{\mu\nu}.$$ (1.2)

\footnote{Throughout the thesis we will use Greek letters to indicate 4-dimensional objects ($\mu = 0, 1, 2, 3$), and Latin letters to indicate the 3-dimensional spacial components ($i = 1, 2, 3$).}
The standard cosmological model

The LHS is often referred to as the \textit{Einstein tensor}. Here \(G \) is the Newton’s gravitational constant, and \(R_{\mu\nu} \) and \(R \) are respectively the \textit{Ricci tensor} and \textit{scalar}, that are defined contracting repeatedly the \textit{Riemann tensor}, defined below, as \(R_{\mu\nu} \equiv R^\alpha_{\mu\alpha\nu}, \ R \equiv R^\alpha_\alpha \). Using the \textit{Christoffel symbols}

\[
\Gamma^\rho_{\mu\nu} \equiv \frac{1}{2}g^{\rho\alpha} \left(\partial_\nu g_{\alpha\mu} + \partial_\mu g_{\alpha\nu} - \partial_\alpha g_{\mu\nu} \right),
\]

(1.3)

the Riemann tensor can be written as

\[
R^\rho_{\sigma\mu\nu} \equiv \partial_\mu \Gamma^\rho_{\nu\sigma} - \partial_\nu \Gamma^\rho_{\mu\sigma} + \Gamma^\rho_{\mu\alpha} \Gamma^\alpha_{\nu\sigma} - \Gamma^\rho_{\nu\alpha} \Gamma^\alpha_{\mu\sigma}.
\]

(1.4)

In principle we should be able to derive the expression for the metric sourced by a given energy momentum tensor solving the Einstein eq. [1.2], but this task is usually too cumbersome. Often, a useful operational approach consists in building a suitable metric based on the symmetries of the system. Since the cosmological principle ensures that the background 3-dimensional space at fixed time is maximally symmetric, it can been shown that, on large enough scales, space-time can be described by the Friedmann-Lemaître-Robertson-Walker (FLRW) metric, which is characterized by the invariant line element

\[
ds^2 = -(cdt)^2 + a^2(t) \left[\frac{dr^2}{1 - kr^2} + r^2 \left(d\theta^2 + \sin^2\theta \ d\phi^2 \right) \right].
\]

(1.5)

Experimentally we observe that the FLRW metric applies at present time on scales \(\geq 100 \text{ Mpc} \). The time dependence of the metric — which is in this case solely related to the expansion of the universe — is enclosed in the \textit{scale factor} \(a \), quantity that we are free to normalise to be unity today \(a(t_0) = 1 \). Finally, the parameter \(k \) is the curvature of the 3-dimensional spatial submanifold: for \(k > 0 \) the universe is closed, for \(k = 0 \) it is flat, and for \(k < 0 \) it is hyperbolic. Current observations measure \(k \) compatible with 0 [14].

The scale factor relates the \textit{physical distance} \(d \) between two point at a given time with the comoving distance

\[
d(t) = a(t) r.
\]

(1.6)
Since physical distances increase with time as the Universe expand, photons directed towards an observer get redshifted along their path. The wavelength λ_{em} of a photon emitted by a source at time t scales as a, hence its wavelength at present time will be

$$\lambda_0 = \frac{\lambda_{em}}{a(t)} \quad (1.7)$$

If we define the redshift as

$$z = \frac{\lambda_0 - \lambda_{em}}{\lambda_0}, \quad (1.8)$$

we get

$$1 + z(t) = \frac{1}{a(t)} \quad (1.9)$$

Therefore, the redshift of a comoving object is only a function of the ratio of scale factors of the times when the photons were emitted and detected.

In the special case of FLRW metric the information stored in the Einstein equation can be usefully expressed in terms of the Friedmann equations that we will discuss in the next section.

1.2. The background evolution

Isotropy and homogeneity ensure that in FLRW the Einstein tensor is invariant under under diffeomorphism in the isometry group. Consequently the energy-momentum tensor sourcing the FLRW metric has to be invariant under the same isometry group, hence it can be shown that T^{00} is a scalar and $T^{ij} \propto g^{ij}$. This means that the cosmological fluid can be described by a relativistic perfect fluid, as we can identify T^{00} with the energy density $\rho(t)$, and the proportionality constant in $T^{ij} = p(t)g^{ij}$ with the isotropic pressure. The fluid peculiar velocity and anisotropic stresses are instead forced to be identically 0. This argument, implicitly built upon choosing the frame comoving with the fluid, can be generalized imposing that $T^{\mu\nu}$ has to transform as a tensor, to find the definition of the

2 This descend from the fact that T^{00}, T^{0i}, and T^{ij} are maximally symmetric tensors on the fixed time 3-dimensional spatial submanifold.
cosmological fluid energy-momentum tensor valid in a generic frame

\[T^{\mu\nu} = (\rho + p)u^\mu u^\nu - pg^{\mu\nu}, \]

(1.10)

where \(u^\mu \) is the fluid 4-velocity.

Inserting the explicit expression of the FLRW metric and the perfect fluid energy-momentum tensor in the Einstein eq. (1.2) one can easily derive the three Friedmann equations [23,24].

The time-time component is equivalent to

\[H^2 \equiv \frac{\dot{a}}{a} = \frac{8\pi G}{3} \rho - \frac{k}{a^2}, \]

(1.11)

while the trace is equivalent to

\[\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} (\rho + 3p), \]

(1.12)

and using the conservation of the energy-momentum tensor, \(T^{\nu,\mu}_{\nu,\mu} = 0 \)

\[\dot{\rho} + 3H(\rho + p) = 0. \]

(1.13)

Here we have defined the Hubble parameter \(H \equiv \dot{a}/a \). Usually it is parametrized as

\[H \equiv \frac{\dot{a}}{a} = h \frac{100 \text{ km s}^{-1}}{\text{Mpc}}, \]

(1.14)

where \(h \) is the dimensionless reduced Hubble constant.

Only two of the three Friedmann equations are independent. This is a consequence of the fact that the Bianchi identity

\[R_{\alpha\beta[\mu
u,\rho]} = 0 \]

(1.15)

guarantees that the LHS of Einstein’s equation is covariant conserved, so the energy-momentum tensor is too.

Since only two of the Friedmann equations are linearly independent, it is necessary to specify a third constraint in order to determine the time evolution of the universe energy density, the pressure and the growth factor. To do so we specify the relation between the energy density and the pressure, that is called the equation of state of the fluid. It can
be parametrized as

$$\rho = w \, P .$$ \hspace{1cm} (1.16)$$

If we assume that the fluid is *barotropic*, w is a function of the sole energy density. Loosely speaking $-1 \leq w \leq 1$ \(^\text{(25)}\), and in general the value of w evolves broadly in time for the cosmological fluid. However, each of its constituent that is of interest in the cosmological context assume in practice only one discrete value:

$$w = \begin{cases}
 \frac{1}{3} & \text{for radiation} \\
 0 & \text{for a pressure-less fluid} \\
 -1 & \text{for the cosmological constant.}
\end{cases} \hspace{1cm} (1.17)$$

Both cold dark matter and baryons behave as a pressure-less fluid, with $w = 0$.

In the epochs we are interested in, the comoving number density of particles is practically conserved, and the inter-species energy exchange is negligible. Therefore the continuity equation eq. (1.13) can be applied separately to each species. Since, as we have seen, for each species w is constant, we can integrate the equation analytically finding

$$\rho = \rho_\star \left(\frac{a}{a_\star} \right)^{-3(1+w)} ,$$

where ρ_\star and a_\star are respectively the species energy density and scale factor at an arbitrary time t_\star. It immediately follows that the energy density scales like $\rho_\gamma \propto a^{-4}$ for radiation, $\rho_m \propto a^{-3}$ for matter, and $\rho_\Lambda \equiv \text{constant}$ for the cosmological constant, and that the total energy density follows

$$\rho = \frac{\rho_{\gamma,0}}{a^4} + \frac{\rho_{m,0}}{a^3} + \rho_{\Lambda,0} .$$

Here, and throughout the whole thesis, the subscript 0 indicates that the quantity is evaluated today, e.g. $\rho_{\gamma,0} \equiv \rho_{\gamma}(t_0)$.

It is useful to define the *critical density* ρ_c which is the total energy density in a flat universe cfr. eq. (1.11)

$$\rho_c = \frac{3H^2}{8\pi G} .$$ \hspace{1cm} (1.20)$$

The standard cosmological model
The standard cosmological model

The critical density is used to express the energy density of each species α in terms of the relative density and physical density parameters, respectively

$$\Omega_\alpha \equiv \frac{\rho_\alpha}{\rho_c}, \quad \omega_\alpha \equiv \Omega_\alpha h^2. \quad \text{(1.21)}$$

Using this definition in the first Friedmann eq. (1.11) we can rewrite it as

$$H = H_0 \sqrt{\frac{\Omega_{\gamma,0}}{a^4} + \frac{\Omega_{m,0}}{a^4} + \frac{\Omega_{k,0}}{a^2} + \Omega_{\Lambda,0}}. \quad \text{(1.22)}$$

and defining $E(z) = H(z)/H_0$ we can write the critical density at a given redshift as $\rho_c = E^2(z)\rho_{c,0}$.

Using the third Friedmann equation we found how the energy density evolves as a function of the scale factor. Now we will use the second Friedmann eq. (1.12) to calculate the time evolution of the scale factor, and consequently of the energy density.

As before, for a single species with constant equation of state the solution is analytic

$$a = \begin{cases} a_s \left(\frac{t}{t_s} \right)^{2/[3(1+w)]} & \text{for } w \neq -1 \\ a_s e^{H t} & \text{for } w = -1. \end{cases} \quad \text{(1.23)}$$

It is worth noticing that for $w = -1$ the Universe undergoes an exponential expansion called de Sitter stage.

1.3. Cosmological thermalization

Regardless of the specific model and the exact composition of the Universe, the direct consequence of the Friedmann equations is that going backward in times, as the Universe was smaller and smaller, it also had bigger and bigger energy density as we see from eq. (1.18). This is the main underlying idea of the Hot Big Bang model (HBB) (see, e.g., [26], [27]).

The whole thermal history of the Universe is basically characterized by the comparison between the expansion timescale $t_H = H^{-1}$ and the interaction timescale $t_\Gamma = \Gamma^{-1}$, where Γ is the rate of interaction, for different physical phenomena: if the interaction
timescale exceed the expansion timescale

\[t_\Gamma \gg t_H \] \hspace{1cm} (1.24)

it means that the interaction has become ineffective, as the mean time between two scatterings is of the order of the age of the universe. Generally speaking, in a hotter and denser universe interaction were more likely, coupling the evolutions of different species. As the universe became colder and colder with time, one interaction after the other started freezing-out preventing certain particles from, for example, decay, or thermalize with others.

To prove our point we use this very general argument. Consider a particle with number density \(n \), that has a self interaction with cross section \(\sigma \). If the interaction is mediated by a massless particle we can see, from dimensional analysis, that \(\langle \sigma_L v \rangle \approx \frac{\alpha^2}{T^2} \), where \(v \) is the relative velocity of the interacting particles, \(\alpha \) is the coupling constant, and the brackets indicates the average over the velocity distribution. On the other hand, if the mediator is massive, \(\langle \sigma_H v \rangle \approx \frac{\alpha^2 v^2}{m_M^4} \), where \(m_M \) is the mass of the mediator. Since the particles numerical density scales like \(n \propto T^3 \), the interaction rate scales like

\[\Gamma = \langle \sigma v \rangle n \propto \begin{cases}
\alpha^2 T & \text{for light mediators} \\
\frac{\alpha^2 T^5}{m_M^4} & \text{for heavy mediators}
\end{cases} \] \hspace{1cm} (1.25)

The interaction rate has to be compared with the Hubble parameter, which scales like \(H \approx \frac{T^2}{M_{\text{Pl}}} \) during radiation domination, when \(\rho \propto T^4 \). Therefore, it results that

\[t_H \approx \frac{\alpha^2 M_{\text{Pl}}^2}{T} t_{\Gamma_L} \approx \frac{10 \times 10^{16} \text{GeV}}{T} t_{\Gamma_L}, \]

\[t_H \approx \frac{\alpha^2 M_{\text{Pl}}^2 T^5}{m_M^4} t_{\Gamma_H}. \] \hspace{1cm} (1.26)

This means that below the Planck scale (in the second equality of the first line we assumed \(\alpha \approx 0.01 \)) interactions mediated by light particles are effective. In the case of interaction mediated by massive particles, when the temperature is below the mass of the mediator, the interaction strength diminishes, fact that guarantees the decoupling at late enough times.\(^3\)

\(^3\)Obviously, at energies much greater than the mass of the mediator its mass can basically be neglected, and the interaction rate scales as in the case of massless mediator.
The standard cosmological model

<table>
<thead>
<tr>
<th>redshift</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{15}</td>
<td>Electro-Weak phase transition</td>
</tr>
<tr>
<td>10^{12}</td>
<td>QCD phase transition</td>
</tr>
<tr>
<td>?</td>
<td>(Possible) Thermal dark matter freeze-out</td>
</tr>
<tr>
<td>6×10^9</td>
<td>Neutrino decoupling</td>
</tr>
<tr>
<td>2×10^9</td>
<td>Electron-positron annihilation</td>
</tr>
<tr>
<td>4×10^8</td>
<td>Big Bang nucleosynthesis</td>
</tr>
<tr>
<td>2×10^6</td>
<td>Double Compton freezes out; beginning of μ-distortions epoch</td>
</tr>
<tr>
<td>5×10^5</td>
<td>Compton freezes out; beginning of y-distortions epoch</td>
</tr>
<tr>
<td>5500</td>
<td>HeII recombination</td>
</tr>
<tr>
<td>3400</td>
<td>matter-radiation equality</td>
</tr>
<tr>
<td>1900</td>
<td>HeI recombination</td>
</tr>
<tr>
<td>1100</td>
<td>Hydrogen recombination</td>
</tr>
<tr>
<td>1000-1100</td>
<td>Photon decoupling</td>
</tr>
<tr>
<td>800</td>
<td>electron thermal decoupling</td>
</tr>
<tr>
<td>11-30</td>
<td>Reionization</td>
</tr>
<tr>
<td>0.4</td>
<td>Dark energy-matter equality</td>
</tr>
</tbody>
</table>

Table 1.1.: Main events in the thermal history of the universe. Based on [26], with additions from [28] and [29].

Most phenomena happening in the early universe can be described in term of interactions between different particles becoming or stopping to be effective, like the possible decoupling of thermal dark matter, that might have set the abundance of dark matter we observe today, or the decoupling of neutrinos. Here however we are mostly interested in the phenomena directly effecting the photon field. In Table 1.1 we report a list of the most important events in the Universe thermal history. We refer to [26] for a more extensive description of every phenomena.

Since we are now convinced that in the primordial universe all species were thermalized, we know that all particles distribution functions would follow a Bose-Einstein or Fermi-Dirac distribution, and in particular the photons would have a Planck distribution. This prediction has been experimentally proven in the early nineties by the measurements of COBE/FIRAS: the CMB spectrum is completely compatible with a Planck spectrum within experimental sensitivity, resulting to be the most perfect black-body known in nature.
As we already anticipated, the fact that CMB photons follow a black-body descends from them being in thermal equilibrium in the early universe. However, this is not a feature that we can take for granted, as it heavily relies on the effectiveness of scattering processes able to create or destroy photons, and change their energy frequency. In fact, after a generic interaction, the photon field will not follow a Planck distribution, even if it was before. For example, let us consider an interaction in which some energy is injected in the photon field, conserving the number of photons. Since in a black-body the photon number density is completely determined by the energy density, an appropriate number of photons needs to be added to the system to restore a Planckian. Moreover, this is not in general enough: even if the photons have the right number density, they still need to have their energies arranged suitably.

Photon thermalization in the early universe is therefore achieved thanks to three different processes: Compton scattering (CS), double Compton scattering (DC) and bremsstrahlung (BR) \[30\]. The last two processes do not conserve the photon number, and are therefore essential to create or destroy photons after any energy injection or subtraction, respectively. Interestingly enough, on average the extra photons are generated at low frequencies, making even more obvious the need for a different process able to rearrange the photon energy. Through multiple interactions with thermal electrons, the Compton scattering can effectively change the photons occupation number, conserving the total energy and number.

Around \(z = z_{\mu} \equiv 2 \times 10^6 \), both double Compton and bremsstrahlung had freezed-out, making energetically expensive to create new photons. As we will soon discuss properly, the fact that photon gained an “effective” chemical potential \(\mu \), introduced a departure from the black-body distribution, called \(\mu \)-distortion. Loosely speaking, for any energy injection happening before \(z_{\mu} \), the photon have time to properly thermalize and relax to a black-body; afterwards any injection results in a distortion that we might in principle detect today.

The \(\mu \)-era ends around \(z = z_{y} \equiv 5 \times 10^5 \), when also the Compton scattering becomes ineffective. Afterwards, the scatterings with, say, more energetic electrons leave an imprint in the occupation number, since the up-scattered photons cannot thermalize. This results in a so-called \(y \)-distortion, that can be seen in the CMB spectrum.
To describe the evolution of the photon distribution function f, and properly define μ- and y-distortions, we have to introduce the Boltzmann equation

$$\frac{df}{dt} = C[f]. \quad (1.27)$$

The term at LHS is called \textit{Liouville operator}, and, loosely speaking, it is responsible for the effect of gravity on the evolution of the distribution functions. This is clear in the case of non interacting particles, for which the Boltzmann equation reads $\frac{df}{dt} = 0$. On the other hand, the collision term $C[f]$ takes into account both the self-interactions and the interactions between different species. Since in all the cases relevant in cosmology the interactions happen on very short scales and in very brief times, the collision term is calculated in Minkowski space.

The explicit expression of the Liouville operator is

$$\frac{df}{dt} = \frac{\partial f}{\partial t} + \frac{dx}{dt} \cdot \frac{\partial f}{\partial x} + \frac{dp}{dt} \frac{\partial f}{\partial p} + \frac{d\hat{n}}{dt} \cdot \frac{\partial f}{\partial \hat{n}}. \quad (1.28)$$

Since we are interested in the homogeneous part of the distribution, the derivatives with respect to the position and the propagation direction are identically zero. Moreover, the derivative of the momentum is not affected by any density and gravitational potential fluctuation, therefore we only have to account for the redshift due to cosmological expansion \cite{23}, so we get

$$\frac{df}{dt} = \frac{\partial f}{\partial t} + H_p \frac{\partial f}{\partial p}. \quad (1.29)$$

The collision term takes into account all the interactions that affect the photon bath, and therefore reads

$$C[f] = C[f]_{CS} + C[f]_{DC} + C[f]_{BR}, \quad (1.30)$$

but as we already discussed, when the DC and BR terms are effective, the photon bath eventually relax to a Planck distribution \cite{28}. Therefore, the interesting limit is the one in which only the CS term is present.

Consider a Compton scattering process

$$e^{-}(p) + \gamma(k) \rightarrow e^{-}(p') + \gamma(k'). \quad (1.31)$$
The relative Compton collision term is \[C[f]_{\text{CS}} = c \int d^3 p \frac{d^2 \mathbf{k}}{d \Omega} \left\{ f_e(p') f(k') [1 + f(k)] - f_e(p) f(k) [1 + f(k')] \right\}, \] (1.32)

where \(f_e \) is the electron distribution function — a Maxwell-Boltzmann in the scope of this thesis — and

\[
\frac{d \sigma}{d \Omega} = \frac{3 \sigma_T}{16 \pi} \left[1 + (\hat{k} \cdot \hat{k}')^2 \right] \tag{1.33}
\]

is the differential cross section. In the limit of small energy exchange the expression further simplify, and it can be shown to be

\[
C[f]_{\text{CS}} = c \sigma_T N_e \frac{\theta_e}{x_e^2} \frac{\partial}{\partial x_e} x_e^2 \left[\frac{\partial}{\partial x} f + f(1 + f) \right], \tag{1.34}
\]

where we introduced the two adimensional energy parameters \(\theta_e = k_B T_e / m_e c^2 \) and \(x_e = \hbar \nu / m_e c^2 \).

We can finally plug eq. (1.29) and eq. (1.34) into eq. (1.27), parametrize the time in term of the optical depth \(d \tau = c \sigma_T N_e \, dt \), and express the momenta dependences in term of the variable \(x = \hbar \nu / k T_\gamma \) where \(T_\gamma = T_0 (1 + z) \) to absorb the term \(-H \frac{df}{dp}\) and get

\[
\frac{\partial f}{\partial \tau} = \theta_e \frac{\partial}{x^2} \frac{\partial}{\partial x} x^2 \left[\frac{\partial}{\partial x} f + T_\gamma T_e f(1 + f) \right], \tag{1.35}
\]

which is the Kompaneets equation [32]. Notice that the first term in the square brakets is related to the Doppler effect, whereas the second accounts for the recoil effects.

\(\mu \)-distortions. When the Compton scattering is efficient, in the period of time we called \(\mu \)-epoch, the photon distribution reaches a quasi-stationary solution \(\frac{df}{d \tau} \approx 0 \), hence, from eq. (1.35), we get

\[
\frac{\partial}{\partial x} f + \frac{T_\gamma}{T_e} f(1 + f) \approx 0. \tag{1.36}
\]

Notice that if \(T_e = T_\gamma \) the solution is a Planck distribution, as we would expect for photons in thermal equilibrium. In general we can integrate it to get

\[
f = \frac{1}{e^{x_e + \mu_0} - 1}, \tag{1.37}
\]
where μ_0 is an integration constant, that we can interpret as an effective chemical potential\footnote{Usually the proper chemical potential is defined with the opposite sign.} This do not conflict with the fact that massless particles should have 0 chemical potential because we are considering a system which is out of the equilibrium.

We now need to understand how the presence of a μ-distortion modifies the photon distribution, i.e., we want to define the distortion frequency spectrum. Expanding the distorted spectrum in eq. (1.37) for small values of μ_0 we get

\[f = \frac{1}{e^{x} - 1} - \frac{\mathcal{G}(x_e)}{x_e} \mu_0 + \mathcal{O}(\mu_0^2), \quad \mathcal{G} \equiv \frac{x e^x}{(e^x - 1)^2}, \quad (1.38) \]

where is important to notice that \mathcal{G} is the spectrum of a temperature shift

\[f_{\text{Pl}}(T + \Delta T) = f_{\text{Pl}}(T) + \mathcal{G} \frac{\Delta T}{T} + \mathcal{O} \left(\frac{\Delta T^2}{T^2} \right). \quad (1.39) \]

One might naively define the μ-distortion spectra as \mathcal{G}/x, but that definition would not satisfy the constrain on the fact that Compton scattering conserves the number of photons: $- \int x^2 \mathcal{G}/x \, dx \neq 0$. As it turns out a more sensible definition is \footnote{Usually the proper chemical potential is defined with the opposite sign.}

\[\mathcal{M}(x) = 1.401 \left(\frac{\pi^2}{18 \zeta(3)} - \frac{1}{x} \right) \mathcal{G}(x), \quad (1.40) \]

which also has the nice property that the relative change of photon energy density is normalized to 1. The two terms in the parenthesis have important physical interpretations: the $1/x$ term corresponds to the naive definition of the μ-distortion spectra we discussed before, while the other, being proportional to \mathcal{G} is a shift in the black-body temperature. In practice, if energy is injected in the photon bath during the μ-epoch, part of it is spent to create a new black-body with slightly higher temperature, and part is spent to create a distortion as described in eq. (1.38). The photons that would be needed to create the higher-temperature black-body exactly balance with those removed by the distortion in its naive definition.

It will be useful for future reference to provide an approximate estimate of the amount of μ-distortions generated in the primordial universe. We assume that the beginning and end of the μ-epoch are abrupt transitions — thing that, in reality, is far from true, see \footnote{Usually the proper chemical potential is defined with the opposite sign.}\footnote{Usually the proper chemical potential is defined with the opposite sign.}. In this regime, if some energy $\Delta \rho_\gamma$ is injected in the photon field, it will completely
converted in a μ-distortion such as

$$\mu \approx 1.401 \frac{\Delta \rho_2}{\rho_\gamma} \bigg|_{\mu}.$$ \hspace{1cm} (1.41)

y-distortions. When the Compton scattering becomes inefficient, we can write the response of a Planck distribution f_{Pl} to a scattering using again eq. (1.35)

$$\Delta f \approx \frac{\theta_e}{x^2} \partial x \left[\frac{\partial}{\partial x} f_{\text{Pl}} + \frac{T_e}{T_{\gamma}} f_{\text{Pl}} (1 + f_{\text{Pl}}) \right] \Delta \tau$$

$$\approx \mathcal{Y}(x) y,$$ \hspace{1cm} (1.42)

where we have defined the y-distortion spectrum

$$\mathcal{Y}(x) \equiv \mathcal{G}(x) \left(\frac{e^x + 1}{e^x - 1} - 4 \right),$$ \hspace{1cm} (1.43)

and the Compton-y parameter

$$y \equiv \int_0^\tau (\theta_e - \theta_\gamma) \, d\tau' = \int_0^t \frac{k_B (T_e - T_{\gamma})}{m_e c^2} \sigma_T N_e c \, dt'.$$ \hspace{1cm} (1.44)

For example, an important source of y distortions is the Sunyaev-Zeldovich effect \cite{33,34}. When photons travel through clusters of galaxies they can interact with hot electrons that can up-scatter them into higher frequencies through the mechanism we just described.

Assuming again abrupt transitions between the μ and y era, we can write the approximate relation

$$y \approx \frac{1}{4} \frac{\Delta \rho_\gamma}{\rho_\gamma} \bigg|_{y}.$$ \hspace{1cm} (1.45)

1.4. Inflation and the primordial perturbation field

Inflation is a period of accelerated expansion, that may have taken place before what is usually considered the initial time in the HBB model. It was firstly invoked in the early eighties of the last century to solve the main shortcomings of the standard HBB model \cite{35}, namely the horizon problem, the flatness problem, and the absence of relics (see for example \cite{23}), but today the feature that is widely considered its biggest success
The standard cosmological model is providing a mechanism that can set the primordial perturbation field which we will define in the following \cite{36,37}.

The inflationary paradigm as a whole has some telltale signs, namely a certain amount of primordial tensor modes being generated on the largest physical scales and of non-Gaussianity in the primordial perturbation field.

Whereas the most vanilla model does not predict any other additional features, there are huge classes of non-minimal models that can create a richer phenomenology \cite{38}. Moreover, these non-minimal model are often the most natural to build from a particle physics or string theory point of view. It is therefore important both to test the validity of the inflationary paradigm as a whole, and to investigate which kind of model might be the best description of the first instants of the Universe, shedding light over possible fundamental physics implications.

1.4.1. The inflaton classical evolution

From the first Friedmann eq. \eqref{eq:1.11}, we know that to achieve a period of accelerated expansion, the cosmic fluid have to satisfy $p \leq -\rho/3$. For example, this relation is satisfied if the energy density is dominated by the potential energy of a scalar field, condition that is easily achieved in the presence of a slow rolling scalar field, as we will discuss now discuss.

There are countless models that use a wide range of different mechanism to achieve an inflationary phase. Here we will briefly review the simplest one: highlighting all the simplifying assumption that might be broken in more general models.

The action of a single scalar field ϕ minimally coupled to the metric is

$$S = \int d^4x \sqrt{g} \left[\frac{M_{Pl}^2}{2} R + D_\mu \phi D^\mu \phi + V(\phi) \right].$$

In general there might be multiple fields that are active during inflation and that drive the accelerated expansion, and they might also be coupled with other spectator fields that do not contribute to the inflation dynamics themselves, but might be crucial for brief or later phases (see, \emph{e.g.,} \cite{39,44} and references therein). Whereas scalar degrees of freedom arise naturally from considerations related to the evident isotropy of our universe, there are models that predict vector or tensor fields active during inflation (see,
e.g., [45–50]). Finally, the inflaton can have a non-minimal coupling with the metric (see, e.g., [51]), including some of the very first inflation models to be proposed [52,53].

Going back to our minimal model, eq. (1.46) leads to the Klein-Gordon equation

\[\dddot{\phi} + 3H \dot{\phi} - \frac{\nabla^2 \phi}{a^2} = -V_{\phi}. \]

(1.47)

To understand the inflation mechanics, it is convenient to separate the classical background of the inflaton, i.e., its vacuum expectation value \(\phi_0(t) \equiv \langle \phi(x, t) \rangle \), and its quantum fluctuations \(\delta \phi(x, t) \equiv \phi(x, t) - \phi_0(t) \). The classical component is responsible for the energy density of the universe, and controls the universe background evolution, i.e., its expansion history. The quantum fluctuation modulate spatially the time evolution of the background (as we will explicitly see later), and are responsible of creating all the inhomogeneities that are present in all the later stages of the Universe evolution.

For this homogeneous field the Klein-Gordon eq. (1.47) reduces to

\[\dddot{\phi}_0 + 3H \dot{\phi}_0 = -V_{\phi}. \]

(1.48)

Since we assumed that the inflaton is minimally coupled to the metric, calculating its energy-momentum tensor is trivial

\[T_{\mu\nu} \equiv -\frac{2}{\sqrt{g}} \frac{\delta S}{\delta g^{\mu\nu}} = \partial_{\mu} \phi \partial_{\nu} \phi + \mathcal{L}_\phi g_{\mu\nu}. \]

(1.49)

where \(g \equiv -\det g_{\mu\nu} \). Therefore the inflaton energy density and its pressure are respectively

\[\rho_{\phi_0} = \frac{1}{2} \dot{\phi}_0^2 + V(\phi_0), \]

(1.50)

\[p_{\phi_0} = \frac{1}{2} \dot{\phi}_0^2 - V(\phi_0), \]

(1.51)

showing that if the energy density is dominated by the potential energy, i.e. if the inflaton satisfy the slow-roll condition

\[V(\phi_0) \gg \dot{\phi}_0^2, \]

(1.52)
the inflaton behave like a cosmological constant, with equation of state parameter \(w \approx -1 \). One might question how likely it is for a generic scalar field to respect the last condition. The crucial point is that flat enough potentials (in a way that we will soon quantify) actually constitute attractor solutions. In fact if the field is on the plateau it means that the scalar energy density due to the potential is approximately constant as the Universe expands. On the other hand using eq. (1.13) on the scalar field kinetic energy alone, i.e. by neglecting the potential in eq. (1.51) and eq. (1.50), we see that the kinetic term scales like \(a^{-6} \), ensuring the validity of the slow-roll condition.

During slow-roll, at sufficiently-late times, the evolution of the classical inflaton field is driven by the friction term,

\[
\ddot{\phi}_0 \ll 3H\dot{\phi}_0 ,
\]

so eq. (1.48) reduces to

\[
3H\dot{\phi}_0 + V_{\phi} = 0 ,
\]

whereas using eq. (1.52) in eq. (1.11), we get

\[
H^2 \approx \frac{8\pi G}{3} V .
\]

We can employ these results to write the inflaton potential Taylor expansion in an handy way: eq. (1.52) and eq. (1.53) are respectively equivalent to

\[
\epsilon \equiv \frac{M_{\text{Pl}}^2}{2} \left(\frac{V_{\phi}}{V}\right)^2 \ll 1 ,
\]

and

\[
\eta \equiv M_{\text{Pl}}^2 \frac{V_{\phi\phi}}{V} \ll 1 ,
\]

where we defined the slow-roll parameters \(\epsilon \) and \(\eta \). During the inflaton slow-roll phase the two parameters are small and constant at first order; direct calculation shows that \(\dot{\epsilon}, \dot{\eta} = \mathcal{O}(\epsilon^2, \eta^2) \). In particular, it is important to note that \(\epsilon \geq 1 \) implies the end of the inflationary phase. This does not prevent however from building viable models that briefly exit the inflationary phase before re-entering a “second” inflation, before the inflaton reaches its true minimum. The theoretical constraints on \(\eta \) are even more
relaxed, and it can, under certain conditions, exceed unity without stopping inflation (see, e.g., [53, 57, 61]).

Moreover some models display potentials with features that cannot easily be captured by an expansion in slow-roll parameters, such as, for example, oscillations [62, 64].

1.4.2. The inflaton quantum fluctuations and curvature perturbations

We now want to quantize the inflaton field around its VEV $\phi_0(t)$, and study the evolution of its linear perturbations $\delta\phi$.

It is mathematically convenient to renormalize the amplitude of the inflaton field by the scale factor. The renormalized field

$$\tilde{\delta}\phi = a\delta\phi$$

(1.58)

can be expressed in terms of its Fourier transform

$$\tilde{\delta}\phi(x, \tau) = \int \frac{d^3k}{(2\pi)^3} \left[u_k(\tau)a_k e^{i\mathbf{k}\cdot\mathbf{x}} + u^*_k(\tau)a^\dagger_k e^{-i\mathbf{k}\cdot\mathbf{x}} \right].$$

(1.59)

We apply second quantization promoting the fields to operators that satisfy the commutation relations

$$[a_k, a_{k'}] = 0, \quad [a_k, a^\dagger_{k'}] = \delta^{(3)}(\mathbf{k} - \mathbf{k'}),$$

(1.60)

and the normalization condition

$$u^*_ku'_k - u_k(u_k')' = -i.$$

(1.61)

We use the Bunch-Davies vacuum choice, i.e. the quantum fluctuations must reduce to quantum field theory in flat space-time on very small physical scales

$$u_k(\tau) \xrightarrow{k \gg aH} \frac{e^{i\mathbf{k}\cdot\mathbf{r}}}{\sqrt{2\omega_k}}.$$

(1.62)
However, even this choice is optional, as it can be argued, for example, that the initial condition should rather be set at a finite time in the past, on finite dimension scales [65,66].

Metric perturbations. To consistently write the equation of motion of the inflaton linear perturbations we also need to perturb the metric at linear order.

As we will discuss, it is convenient to organize the perturbations according to how they transform upon spatial diffeomorphisms. Considering only linear perturbations we can write the RW metric as [67,68]

\[
\text{d}s^2 = a^2(t) \left\{ -(1 + 2\Psi) \text{d}\tau^2 + w_\parallel \text{d}\tau \text{d}x^i + \left[(1 - 2\Phi)g_{ij} + h_{ij} \right] \text{d}x^i \text{d}x^j \right\} .
\] (1.63)

By construction, since \(\text{d}\tau^2, \text{d}\tau \text{d}x^i, \text{d}x^i \text{d}x^j\) are respectively a scalar, a vector and a tensor under spacial transformation, \(\Psi\) and \(\Phi\) are scalars, \(w_i\) is a vector and \(h_{ij}\) is a traceless symmetric tensor.

We can further decompose these quantities in objects with well-defined transformation properties under spatial rotations exploiting Helmholtz theorem. \(w_i\) can be written as

\[
w_i = \partial_i w_\parallel + w_i ,
\] (1.64)

where the *longitudinal component* \(w_\parallel\) is a scalar, and the *transverse component* \(w_i\) is a solenoidal vector (i.e., \(\partial^i w_i = 0\)). Similarly

\[
h_{ij} = D_{ij} h_\parallel + \partial_i h_\perp^j + h_{\text{TT}}^\perp_{ij} ,
\] (1.65)

where we introduced the differential operator \(D_{ij} \equiv \partial_i \partial_j - \delta_{ij} \partial_k \partial^k / 3\) to decompose \(h_{ij}\) in the longitudinal component \(h_\parallel\), the solenoidal *vector component* \(h_\perp^j\), and the *transverse-traceless tensor* \(h_{\text{TT}}^\perp_{ij}\).

It can be shown that at linear level the evolution equations of scalar, vector, and tensor perturbations are decoupled. Since in this thesis we will mainly be interested in scalar quantities we will not consider the vector and tensor perturbations in the metric. Moreover, we can always employ the *Newtonian* or *Longitudinal gauge* [69], in which \(w_\parallel = h_\parallel = 0\). Then we can rewrite the perturbed metric eq. (1.63) as

\[
\text{d}s^2 = a^2(t) \left\{ -(1 + 2\Psi) \text{d}\tau^2 + (1 - 2\Phi)g_{ij} \text{d}x^i \text{d}x^j \right\} .
\] (1.66)
Perturbed evolution equations. We are now ready to write the perturbed Klein-Gordon equation \[(1.47) \]

\[\delta \phi'' + 2H\delta \phi' - \nabla^2 \delta \phi + a^2V_{\phi\phi} \delta \phi + 2\Psi V_\phi - \phi'_0 \left(\Psi' + 3\Phi' + \nabla^2 \omega^\parallel \right) = 0. \] \hspace{1cm} (1.67)

In order to easily solve eq. (1.67), it is helpful to introduce the Mukhanov variable \[(1.68) \]

\[Q \equiv \delta \phi + \frac{\phi'_0}{H} \mathcal{R}, \]

where \(\mathcal{R} \equiv \Phi + h^\parallel /3 \) is the perturbation in the intrinsic spatial curvature, and reduces to \(\mathcal{R} \equiv \Phi \) in the Newtonian gauge we are working in. Contrary to \(\mathcal{R} \) or \(\delta \phi \), \(Q \) is a gauge-invariant quantity. To get some insight on its physical interpretation, we can notice that it is equivalent to the scalar field perturbations in the spatially flat gauge (\(Q = \delta \phi \) for \(\mathcal{R} = 0 \)), or to the spatial curvature perturbation in the comoving gauge (\(Q = \frac{\phi'_0}{H} \mathcal{R} \) for \(\delta \phi = 0 \)).

Using the fixed time 3-dimensional Fourier transform of \(aQ \) in a flat space, \(\chi_k \), the different modes decouple and eq. (1.67) becomes

\[\chi_k'' + \left(k^2 - \frac{a''}{a} + \mathcal{M}_\phi^2 a^2 \right) \chi_k = 0, \] \hspace{1cm} (1.69)

where we defined the effective mass term \(\mathcal{M}_\phi^2 = V_{\phi\phi} - 8\pi G\phi'_0^2 / H \).

During slow-roll we can approximate the terms in the parenthesis in terms of \(\epsilon \) and \(\eta \)

\[\frac{a''}{a} = \frac{2}{\eta}(1 + \frac{3}{2}\epsilon + O(\epsilon^2, \eta^2)), \quad \frac{\mathcal{M}_\phi^2}{H^2} = 3\eta - 6\epsilon, \] \hspace{1cm} (1.70)

that plugged into eq. (1.69) give

\[\chi_k''(\tau) + \left(k^2 - \frac{\nu^2 - 1/4}{\tau^2} \right) \chi_k(\tau) = 0, \quad \nu = \frac{3}{2} + 3\epsilon - \eta. \] \hspace{1cm} (1.71)

In the limit of constant \(\nu \), which is the case during slow roll, this equation is called Bessel equation, and it has known solutions

\[\chi_k(\tau) = \frac{\sqrt{\pi}}{2} e^{i(\nu + \frac{1}{2})} \sqrt{-\tau} H_\nu^{(1)}(-k\tau), \] \hspace{1cm} (1.72)
where $H^{(1)}_\nu$ is the Hankel function of the first kind, and we already imposed the Bunch-Davies vacuum choice eq. (1.62). We specify for future reference that the for small value of its parameter — which, in this case, correspond to the super-horizon regime — the Hankel function has the following asymptotic limit

$$H^{(1)}_\nu(x \ll 1) \sim \sqrt{2 \pi} e^{-i\frac{\pi}{2}} 2^{\nu - \frac{3}{2}} \frac{\Gamma(\nu)}{\Gamma(3/2)} x^{-\nu} \quad (1.73)$$

Curvature perturbations The inflaton fluctuations described here are the primordial seeds of all inhomogeneities we observe in the Universe today. However they are quantistic in nature, and generated on very small scales. During inflation a given perturbation mode with wavelength λ is stretched outside of the horizon by the accelerated expansion. When inflation ends a reheating phase takes place: when the inflaton field reaches the minimum of its potential inflation stops and it start decaying, repopulating the universe with matter and radiation. The fundamental point is that modes outside the horizon, being not causally connected with the modes inside the horizon, are effectively freezed and do not follow the same evolution. It can be shown that this difference in the evolution causes a decorrelation that makes the quantum fluctuation classical upon horizon re-entry.

Translating the inflaton fluctuations in the energy density fluctuation we observe today in various forms is not trivial either, as both are gauge-dependent quantities.

We can define another gauge-invariant variable, closely related to the Mukhanov variable \[67\] \[71\]

$$\zeta \equiv R - \mathcal{H} \frac{\delta \rho}{\rho'}, \quad (1.74)$$

which, in particular, during the slow-roll phase reduces to

$$\zeta = -\frac{\mathcal{H}}{\dot{\phi}} Q. \quad (1.75)$$

ζ has the useful property of being conserved on super-horizon scales, if the evolution is adiabatic \[67\] \[72\]. Hence, the perturbation field that re-enters the horizon during the radiation and matter dominated epoch is characterized by the amplitude of the ζ perturbations evaluated upon horizon-exit.

In the super-horizon limit $|k\tau| \ll 1$ we can expand eq. (1.72) at first order in the slow-roll parameter, remembering that the Fourier transform of the Mukhanov variable
is \(Q_k = \chi_k / a \). Hence we get

\[
|\zeta_k| = \frac{H^2}{\sqrt{2k^3}} \left(\frac{k}{aH} \right)^{\eta - 3c},
\]

expression that, as we will see in the next section, is fundamental to understand the generation of observable perturbations.

1.4.3. The primordial power spectrum

By construction, the curvature perturbations VEV is 0, but in general the \(n \)-points correlation might have non-vanishing expectation value

\[
\langle \zeta(x_1, t) \cdots \zeta(x_n, t) \rangle \neq 0.
\]

It is convenient to work in terms of the Fourier transforms of the \(n \)-points correlators, defining the \textit{power spectrum} as the transform of the 2-points correlation function, the \textit{bispectrum} for the 3-point and so forth.

Explicitly writing the curvature perturbations in term of their Fourier transform in the 2-points correlation function we get

\[
\langle \zeta(x_1, t) \zeta(x_2, t) \rangle = \int \frac{d^3k_1}{(2\pi)^3} e^{ik_1x_1} \int \frac{d^3k_2}{(2\pi)^3} e^{ik_2x_2} \langle \zeta_k \zeta_{k2} \rangle.
\]

\(\langle \zeta_{k1} \zeta_{k2} \rangle \) is in full generality a function of both \(k_1 \) and \(k_2 \). However, since we assume the universe to be homogeneous and isotropic, we can require the LHS to be a function of the sole correlation length, i.e., \(\langle \zeta(x_1, t) \zeta(x_2, t) \rangle = f(|x_1 - x_2|) \). If this is the case, it is easy to see that \(\langle \zeta_{k1} \zeta_{k2} \rangle \) must have the form \(\delta^{(3)}(k_1 + k_2) g(k_1) \). Therefore we define the primordial power spectrum \(P(k) \) through

\[
\langle \zeta_{k1} \zeta_{k2}^* \rangle \equiv (2\pi)^3 \delta^{(3)}(k_1 - k_2) P(k).
\]

It is often convenient to express this quantity in terms of the dimensionless power spectrum \(\Delta^2(k) \) defined as

\[
\Delta^2(k) \equiv \frac{k^3}{2\pi^2} P(k).
\]
Simple considerations about the symmetries of the Universe allowed us to understand what is the functional form of \(\langle \zeta_k \zeta^*_k \rangle \) and define the power-spectrum. Now we can evaluate \(\langle \zeta_k \zeta^*_k \rangle \) to compute the theoretical prediction of the power-spectrum from (standard single-field models of) inflation. Working in the spatially flat gauge \(\zeta = -\frac{H}{\dot{\phi}_0} Q \), hence we can directly employ the expressions we introduced quantizing the inflaton field.

\[
\langle \zeta_k \zeta^*_k \rangle = \left(\frac{H}{\dot{\phi}_0} \right)^2 \langle a_{k_1} a^\dagger_{k_2} \rangle = (2\pi)^3 \delta^{(3)}(k_1 - k_2) |\zeta_{k_1}|^2 ,
\]

(1.81)

where we used eq. (1.60) in the first equality. Therefore, \(P(k) = |\zeta_{k_1}|^2 \), i.e.,

\[
\Delta^2(k) = \left(\frac{H^2}{2\pi \phi} \right)^2 \left(\frac{k}{aH} \right)^{2\eta - 6\epsilon} .
\]

(1.82)

If the slow roll parameters \(\epsilon \) and \(\eta \) were constant throughout the whole inflationary phase, then the primordial power-spectrum is a power-law. Small deviations can still be parametrized choosing a pivot \(k \) and performing a Taylor expansion

\[
\Delta^2(k) = A_s \left(\frac{k}{k_p} \right)^{n_s - 1 + \frac{1}{2} \frac{dn_s}{d \ln k_p} \ln(k/k_p) + \cdots} ,
\]

(1.83)

where, for single-field slow-roll inflation, \(A_s = \left(\frac{H^2}{2\pi \phi} \right)^2 \bigg|_{k_p} \), and \(n_s - 1 = 2\eta - 6\epsilon \). The most common approach used when fitting data is however the opposite \[14,73\] the “phenomenological” parameters \(A_s \) and \(n_s \) are fit to data, and \textit{a posteriori} the various theoretical model parameters are mapped in \(A_s \) and \(n_s \).

1.4.4. The primordial bispectrum

As we have discussed in the previous section, the primordial power spectrum is closely related to the value of the potential and its derivatives along the inflaton trajectory, and as such it is a powerful probe of the inflationary physics. We can however argue that it is basically insensitive to the interactions that affected the inflaton, and to the physics that shaped the inflaton potential in the form it has. Therefore, completely different inflationary models can lead to very similar primordial power spectra.

Non-Gaussianity of the primordial perturbation field instead naturally arises from interactions of the field(s) driving inflation and therefore contains crucial information
about the physics that was operative at the time. Therefore, detecting primordial non-
Gaussianity would arguably be the most powerful probe of fundamental physics during
inflation \[74\text{–}78\].

In the single field slow-roll inflation with canonic kinetic term and Bunch-Davies vacuum, that we have described before, the perturbations are very close to Gaussian \[79\text{–}81\]. However, most of the various deviations from this minimal model that we
enumerated generate some amount of non-Gaussianity that can be detected measuring
higher order correlators \[75\text{–}77\]. In particular, here we will discuss about the primordial
bispectrum, \textit{i.e.}, the Fourier transform of the 3-point correlation functions. It is defined
in a similar fashion to the primordial power spectrum eq. (1.79)

\[
\langle \zeta_{k_1} \zeta_{k_2} \zeta_{k_3} \rangle \equiv (2\pi)^3 \delta^{(3)}(k_1 + k_2 + k_3) B(k_1, k_2, k_3),
\]

and likewise the Dirac delta reflects the translation invariance, and \(B\) depending only by
the norms of the wave-vector reflects the statistical isotropy of the universe.

It is important to notice that different classes of models generate signals that peak in
different bispectrum configurations, \textit{i.e.}, for different shapes of the triangle formed by
\(k_1, k_2, k_3\). Multi-field inflation generates large values of the bispectrum in the squeezed
configuration \((k_1 \approx k_2 \gg k_3)\) \[82\text{–}90\]. Non-canonical kinetic terms (\textit{i.e.}, kinetic terms
with higher-than-second-order derivatives) produce equilateral bispectrum configurations
\(k_1 \approx k_2 \approx k_3\) \[65,91\]. Folded shape bispectrum \((k_1 \approx k_2 \approx 2k_3)\) is generated, \textit{e.g.}, by
vacuum choices different from Bunch-Davies \[92,93\].

Local non-Gaussianity. Among the models that predict sizeable non-Gaussianity,
the simplest and probably the most studied is the \textit{local model} \[94\text{–}97\], which is built by
expanding the perturbation field in real space as a Taylor series in terms of its Gaussian
part

\[
\zeta(x) = \zeta_G(x) - \frac{3}{5} f_{\text{NL}}^{\text{loc}} \left[\zeta_G^2(x) - \langle \zeta_G^2(x) \rangle \right] + \ldots,
\]

where \(f_{\text{NL}}^{\text{loc}}\) is a dimensionless constant that quantifies the deviation from Gaussianity at
the second order in the perturbations.

The interest in this model lies in the fact that it acts as a proxy for models that
generate the local bispectrum shape, that can be derived from eq. (1.85) with easy
calculations
\[B^{\text{loc}}(k_1, k_2, k_3) = -\frac{6}{5} f_{\text{NL}}^{\text{loc}} [P(k_1)P(k_2) + P(k_2)P(k_3) + P(k_3)P(k_1)], \]
which strongly peaks on squeezed configurations. The importance of this shape comes also from the fact that, for any single field inflation model, a consistency relation holds in the squeezed limit \cite{80,98}:
\[B(k_1, k_2, k_3 \to 0) \to (1 - n_s)P(k_1)P(k_2). \]
which is of the local type (in the squeezed limit). Therefore, a detection of a local signal higher than this bound would automatically rule out all single field models in one go.

Up to now, the tightest constraints on this crucial parameter, \(f_{\text{NL}}^{\text{loc}} \) has been set by the Planck satellite studying the CMB anisotropies bispectrum (see Section \ref{sec:2.3.2}) \cite{3}: \(f_{\text{NL}}^{\text{loc}} = 0.8 \pm 5 \) (68\% C.L.). While impressive, this constraints is far from reaching the bound set by the consistency relation, and far from giving definitive answers in the search for non-Gaussianity.

Noticeably, Planck has set tight constraints also on the amplitude of many other bispectrum shapes, among which the equilateral and the orthogonal shape that we mentioned earlier. Respectively, the best fits are \(f_{\text{NL}}^{\text{eq}} = -4 \pm 43 \) and \(f_{\text{NL}}^{\text{ortho}} = -26 \pm 21 \) (68\% C.L.).

1.5. The perturbed Universe

1.5.1. CMB anisotropies

The CMB displays anisotropies that are closely related with the primordial perturbation field. A crucial feature of the CMB, object of a large number of observations, is the presence of small fluctuations in its average intensity, when we look in different directions in the sky. We often refer to them as the temperature anisotropies \(T(\hat{n}) \), with the understanding that we are assuming that in each direction the CMB follows a Planck distribution with temperature \(T(\hat{n}) \). Talking in these terms, it is useful to consider the

\footnote{see also \cite{99,100} and refs therein for further discussions on this consistency relation and its link to observations.}
temperature fluctuations with respect to the average temperature

\[\Theta(\eta, x, n) = \frac{T(\eta, x, n) - \bar{T}(z)}{\bar{T}(z)}. \] (1.88)

As we anticipated in Section 1.3, the CMB anisotropies are generated by small inhomogeneities of the metric and energy density that are present during the whole history of the universe, before, during, and after recombination.

Once the initial conditions are set, the evolution of the photon field is determined by its direct interaction with the baryons and the metric, which is in turn coupled with all the other species: dark energy, dark matter, baryons and radiation. Therefore, in order to describe the photon anisotropies, we need a set of evolution equations for every element in the universe. This is provided by a set of coupled Boltzmann equations

\[\frac{df}{dt} = C[f], \] (1.89)

where \(f_i(t, x, p \hat{n}) \) is the distribution function of the species \(i \). The difference with respect with Section 1.3 is that in this case we are interested to the spatially varying part rather then the homogeneous component alone.

To make its solution manageable, eq. (1.89) is usually expanded in perturbations up to a suitable order. In this thesis we will mainly deal with first order quantities, but we will also consider phenomena happening at second order. The theory of second order perturbations is well established \[101–107\] but its full analytical treatment is long and complex and beyond the scope of this work. In some of our applications, we will make use of second order analytical results, for specific numerical implementations. In such cases, we will refer the reader to the relevant literature, for the full analytical derivation. The aim of this section is mostly that of clarifying some useful general concepts at the basis of the full detailed treatment of CMB anisotropies. Therefore, for such illustrative purposes, it will suffice to keep the analytical treatment at first order.

For analogous reasons we will not derive all the equations for all the species, as they are well known from the literature (see \[23\] for a clear derivation). We will just focus on the Boltzmann equation for the photons, both because it provides a good explanatory example, and because in Section 3.2 we will generalize the standard treatment outlined here in order to take into account the generation of spectral distortions.
The Liouville operator. Like we did when treating the inflaton perturbation, we need to specify a perturbed metric and choose a gauge. We will work again in the Newtonian gauge eq. (1.66).

If we consider again the explicit expression of the Liouville operator eq. (1.28), and restrict ourselves to consider first order perturbations, we can drop the last term at RHS, as it is the product of two intrinsically first order quantities.

The logarithmic derivative of the momentum reads

\[
\frac{1}{p} \frac{dp}{dt} = -H - \frac{\partial \Phi}{\partial t} - \hat{n} \cdot \nabla \psi. \tag{1.90}
\]

It is important to notice for future reference that this quantity is \(p\)-independent for massless particles. Therefore, the Liouville operator for massless particles, valid at first order in the perturbations reads

\[
\frac{df}{dt} = \frac{\partial f}{\partial t} + \frac{\hat{n}}{a} \cdot \nabla f - p \frac{\partial f}{\partial p} \left(H + \frac{\partial \Phi}{\partial t} + \hat{n} \cdot \nabla \psi \right). \tag{1.91}
\]

Since the deviations from a black-body spectrum and the anisotropies are small, we can perturb the distribution function around its zero-order Planck value

\[
f(t, x, p\hat{n}) = \frac{1}{\exp \left\{ \frac{p}{T(t)[1+\Theta(t,x,n)]} \right\} - 1} + \Delta f(t, x, p\hat{n}), \tag{1.92}
\]

where \(\Delta f\) is a generic deviation from the direction-dependent Planck spectrum. Neglecting it, we can expand \(f\) in powers of \(\Theta\)

\[
f(t, x, p\hat{n}) \approx f^{(0)}(t, p) - p \frac{\partial f^{(0)}(t, p)}{\partial p} \Theta + \cdots, \tag{1.93}
\]

where the zeroth order distribution is an homogeneous Planck distribution with temperature \(T(t)\),

\[
f^{(0)}(t, p) \equiv \frac{1}{\exp \left\{ p/T(t) \right\} - 1}, \tag{1.94}
\]

and we used the property \(T \partial f^{(0)}/\partial T = -p \partial f^{(0)}/\partial p\).
Plugging eq. (1.93) in eq. (1.91), and noticing that
\[
p\frac{\partial}{\partial t}p\frac{\partial f^{(0)}}{\partial p}\Theta = +p\frac{\partial f^{(0)}}{\partial p} \frac{\partial \Theta}{\partial t} - p\Theta \frac{dT}{dt} \frac{\partial}{\partial p}p\frac{\partial f^{(0)}}{\partial p}
\]
(1.95)

we can rewrite the Liouville operator as
\[
\frac{df}{dt} = -p\frac{\partial f^{(0)}}{\partial p}\left(\frac{dT}{dt} + \frac{\partial \Theta}{\partial t} + \frac{\hat{n}}{a} \cdot \nabla \Theta + H + \frac{\partial \Phi}{\partial t} + \hat{n} \cdot \nabla \Psi\right)
- p\Theta \frac{\partial}{\partial p}p\frac{\partial f^{(0)}}{\partial p}\left(\frac{dT}{dt} + H\right).
\]

(1.96)

In a moment we will show that the second line is zero, therefore all the frequency dependence is factorized in the common factor \(p\frac{\partial f^{(0)}}{\partial p}\) and we can fully describe the evolution of anisotropies with the frequency-independent variables \(\Theta, \Psi, \Phi\). This is not the case if we consider second order perturbations of the primordial field \[101\], or if we consider non-negligible energy exchange in the interaction between photons and matter, as we will discuss in Section 3.2.

The collision operator. As we showed in Section 1.3, the collision operator contains all the possible interaction terms. However, Thomson scattering, i.e., the Compton scattering in the limit of zero energy exchange, is in practice the only one which is relevant for the generation of CMB anisotropies. In this limit the collision term reads \[23\]
\[
C_T[f] = n_e \sigma_T \left[f_0 - f + \hat{n} \cdot v_b \left(-p\frac{\partial f^{(0)}}{\partial p}\right) \right. - \left. \frac{1}{2} P_2 f_2\right],
\]

(1.97)

and, similarly to the Liouville terms, using eq. (1.93), it can be massaged into
\[
C_T[f] = n_e \sigma_T \left(\Theta_0 - \Theta + \hat{n} \cdot v_b - \frac{1}{2} P_2 \Theta_2\right) \left(-p\frac{\partial f^{(0)}}{\partial p}\right).
\]

(1.98)

Here we introduced the baryonic velocity \(v_b\), and we also defined the \(\ell\)-th multipole moment of a field \(X\) as
\[
X_\ell = \frac{1}{(-i)^\ell} \int \frac{d\mu}{2} P_\ell(\mu) X(\theta).
\]

(1.99)
where we defined \(\mu = \hat{n} \cdot \hat{v}_b \).

Zeroth and first order Boltzmann equation for the photons We now have all the quantities we need to write the explicit expression of eq. (1.89), that we can divide by perturbation order. Since the collision term accounts for interactions, it is intrinsically a first order contribution, as we can directly see in eq. (1.98). Therefore, the zeroth order equation is

\[
d\frac{T}{T} + d\frac{a}{a} d\frac{t}{t} = 0
\]

(1.100)

Hence \(T(t) = T_0/a(t) \), as we anticipated in Section 1.3. This result guarantees that the second line of eq. (1.96) is identically zero, and we can completely drop the frequency dependence from the first order Boltzmann equation. Doing that it reads

\[
\frac{\partial \Theta}{\partial t} + \hat{n} \cdot \nabla \Theta + \frac{\partial \Phi}{\partial t} + \hat{n} \cdot \nabla \Psi = n_e \sigma_T \left(\Theta_0 - \Theta + \hat{n} \cdot \mathbf{v}_b - \frac{1}{2} P_2 \Theta_2 \right) .
\]

(1.101)

Solving the Boltzmann equation The same approach we have outlined here can be applied to all the other species to derive all the Boltzmann equations. Then they can be solved alongside the linearised Einstein equation.

The first step is to write the Boltzmann equations in Fourier space. The Fourier transform of the real space linear \(\Theta \) can be defined as

\[
\Theta(t, \mathbf{k}, \hat{n}) \equiv \int d^3 x e^{-i\mathbf{k} \cdot \mathbf{x}} \Theta(t, \mathbf{x}, \mathbf{n}) ,
\]

(1.102)

and, switching from proper time to conformal time, we get

\[
\dot{\Theta} + ik \mu \Theta + \dot{\Phi} + ik \mu \Psi = -\tau \left(\Theta_0 - \Theta + \mu \mathbf{v}_b - \frac{1}{2} P_2 \Theta_2 \right) ,
\]

(1.103)

where we defined the optical depth\(^7\)

\[
\tau(\eta) \equiv \int_{\eta}^{\eta_0} d\eta' n_e \sigma_T a .
\]

\(^6\)Strictly speaking, this is not always true, but it holds if the baryon velocity is irrotational, thing that we assume here for simplicity.

\(^7\)To avoid awkward notation here we use \(\eta \) instead of \(\tau \) to indicate the conformal time.
A possible approach would be to decompose it in a hierarchy of coupled differential equations for each multipole moment. Since with current experiment resolution we can easily probe angular scale up to $\ell \gg 1000$ this might still prove to be infeasible to the required accuracy in a time short enough to be used in a MCMC for parameter estimation (see Section 2.2).

A smarter approach is to use the formal integral solution of eq. (1.103) and solve a very limited number of hierarchy equations to obtain its source function [108]. The line-of-sight solution of eq. (1.103), conveniently evaluated at $\eta = \eta_0$ is

$$\Theta(\eta_0) = \Theta(\eta_{in})e^{ik\mu(\eta_{in}-\eta_0)}e^{-\tau(\eta_{in})} + \int_{\eta_{in}}^{\eta_0} d\eta \left[-\dot{\Phi} - ik\mu \Psi - \dot{\tau} \left(\Theta_0 + \mu v_b - \frac{1}{2} P_2 \Theta_2 \right) \right] e^{ik\mu(\eta-\eta_0)} e^{-\tau(\eta)} .$$

 Provided that the initial condition are set early enough, the first line in the RHS is vanishingly small, since it exponentially suppressed by the extremely large optical depth. For the same reason the second term can be arbitrarily extended from η_{in} to the origin of time, hence

$$\Theta(\eta_0, k, \hat{n}) = \int_0^{\eta_0} d\eta e^{ik\mu(\eta-\eta_0)} S(k, \eta) ,$$

where $g(\eta) \equiv -\dot{\tau}e^{-\tau}$ is the visibility function.

Since, as we already discussed, perturbation are sourced by the primordial perturbation field ζ_k we can define a source function $\Delta(k, \eta)$ “renormalized” to the amplitude of the primordial perturbations

$$S(k, \eta) = \Delta(k, \eta) \zeta_k .$$
Now we can decompose the line of sight solution in multipoles using the definition eq. (1.99), and since it holds
\[
\int \frac{d\mu}{2} P_\ell(\mu)e^{ik\mu(\eta-\eta_0)} = (-i)^\ell j_\ell[k(\eta_0 - \eta)], \tag{1.110}
\]
we get
\[
\Theta_\ell(k, \eta_0) = T_\ell(k) \zeta_k. \tag{1.111}
\]
where we defined the transfer functions
\[
T_\ell(k) = \int_0^{\eta_0} d\eta \Delta(k, \eta) j_\ell[k(\eta_0 - \eta)]. \tag{1.112}
\]

It is somewhat useful to point out that we can rewrite eq. (1.108) as
\[
\Theta(\eta_0, k, \hat{n}) = \sum_\ell (-i)^\ell (2\ell + 1) P_\ell T_\ell(k) \zeta_k. \tag{1.113}
\]

In general, eq. (1.111) can be evaluated numerically using Boltzmann codes such as CLASS \cite{109}. However an approximated analytical discussion can give us some insights on its properties.

Since the visibility function is strongly peaked around recombination, we can evaluate all functions multiplied by it at \(\eta = \eta_{\text{rec}} \). Moreover we can use \(v_b \approx -3i\Theta_1 \) at recombination, and integrate that term by part. With some massaging, we get
\[
\Theta_\ell(k, \eta_0) \approx [\Theta_0(k, \eta_{\text{rec}}) + \Psi(k, \eta_{\text{rec}})] j_\ell[k(\eta_0 - \eta_{\text{rec}})] + 3\Theta_1(k, \eta_{\text{rec}}) \left\{ j_{\ell-1}[k(\eta_0 - \eta_{\text{rec}})] - \frac{(\ell + 1)j_\ell[k(\eta_0 - \eta_{\text{rec}})]}{k(\eta_0 - \eta_{\text{rec}}}) \right\} + \int_0^{\eta_0} e^{-\tau} \left[\dot{\Psi}(k, \eta) + \dot{\Phi}(k, \eta) \right] j_\ell[k(\eta_0 - \eta)]. \tag{1.114}
\]

The first line of the RHS is the value of the “effective” monopole at recombination on a scale \(k \). The physical monopole is side by side with the potential \(\Psi \) because photons that were in a potential well at recombination had to climb out of it before propagating to us. Each mode \(k \) is then projected by the spherical Bessel function on the sphere taking into account the distance that separate us from the last scattering surface \(\eta_0 - \eta_{\text{rec}} \). As a zeroth order approximation a perturbation of wavelength \(k \) is projected onto an
angular scale with $\ell \approx k(\eta_0 - \eta_{\text{rec}}) - 1/2$, with smaller contribution to larger angular scales too \[110\]. It can be shown that the monopole is constant on large scales, that were outside of the horizon at recombination, and equal to the Newtonian potential $\Theta_0(k, \eta_{\text{rec}}) + \Psi(k, \eta_{\text{rec}}) \approx -\Phi(k, \eta_{\text{rec}})/3$. This behaviour gets the name of Sachs-Wolfe effect (SW). On smaller scales the monopole displays an oscillatory behaviour, that is due to the plasma acoustic oscillations in the gravitational wells before and during recombination.

The second line describes the contribution due to the local dipole at recombination, which account for the bulk motion of the plasma. Like the monopole on small scales, it follows an oscillatory pattern, which is out of phase with the monopole oscillations. This means that its main effect is to increase the power in the troughs of the monopole oscillation.

The third line accounts for the integrated effect of the evolution of the potential on the photon propagation along the line of sight, the integrated Sachs-Wolfe effect (ISW). If a photon traverse a potential well that evolves in time, it gets redshifted or blueshifted by the well becoming deeper or shallower while the photon is in it.

Temperature anisotropies harmonic decomposition It is useful, mainly for observational purposes, to express the anisotropies of the 2-dimensional projection of a field, as seen from our position in space and time, in harmonic coefficients. They are defined as

$$a_{\ell m} \equiv a_{\ell m}(x_0, \eta_0) = \int d^2\hat{n} Y_{\ell m}(-\hat{n}) \Theta(\eta_0, x_0, \hat{n}) =$$

$$= \int \frac{d^3k}{(2\pi)^3} e^{i\hat{k} \cdot x} \int d^2\hat{n} Y_{\ell m}(-\hat{n}) \Theta(\eta_0, k, \hat{n}) \tag{1.115}$$

where the minus sign in the spherical harmonics is due to the fact that looking in the direction $-\hat{n}$ we can detect photons travelling along \hat{n}. Using the eq. (1.113) and the identity (A.9) we get

$$a_{\ell m} = 4\pi i^\ell \int \frac{d^3k}{(2\pi)^3} \zeta(k) T_{\ell}(k) Y_{\ell m}(\hat{k}). \tag{1.116}$$

By construction the harmonic coefficients have ensemble average equal to 0. Instead, their variance, far from being negligible, is one of the most important observables we
Figure 1.1.: CMB Temperature power spectrum as measured by Planck. Taken from [14].

have at our disposal in cosmology. As we will discuss in more length in Section 2.3 it is

$$\langle a_\ell m a_{\ell'} m' \rangle = \delta_{\ell \ell'} \delta_{mm'} C_\ell, \quad (1.117)$$

where C_ℓ is the Temperature power spectrum. As we can see in Figure 1.1 it displays all
the features we discussed before: a plateau on larger angular scales given by the SW and
ISW, and acoustic peaks with non-vanishing troughs given by the combined contribution
of monopole and dipole oscillations.

1.5.2. Large scale structures

The second family of phenomena that, alongside the CMB anisotropies, can give us
information about the primordial perturbation field is the 3-dimensional distribution of
matter. It can be probed through a huge variety of tracers, such as gravitational lensing,
Sunyaev-Zeldovich, and direct detection of galaxy clusters and their peculiar velocities.
Here however we are not interested in discussing the properties of the specific tracers, but
rather to sketch how the primordial perturbations evolve into the density perturbations
we observe today. As usual we will make a number of simplifying assumptions that allow
solving the problem analytically. The same Boltzmann codes used to calculate the CMB anisotropies offer a solid tool to numerically solve the complete problem.

On larger scales the evolution of the perturbations is linear and therefore quite well understood. We will start by describing them during the matter domination epoch.

On smaller scales, non-linearities become more and more important, and they need to be accounted for with more sophisticated methods. A viable approach is to expand perturbations at some higher perturbation order. Otherwise one can resort to different approximate non-perturbative methods, such as the halo model, that we will here apply to galaxy clusters to calculate the angular power spectrum of the Sunyaev-Zeldovich effect.

Evolution of the linear perturbation in matter domination

A convenient way to parametrize density fluctuations is to define the fractional over-density with respect to the background

\[\delta(\tau, x) \equiv \frac{\rho(\tau, x) - \bar{\rho}(\tau)}{\bar{\rho}(\tau)}. \]

(1.118)

Is implicit in the definition, as we are treating \(\rho \) as a classical field, that the local density is smoothed over some typical scale \(1/k \). In this section we are interested only to scales large enough to guarantee that \(\delta \ll 1 \) and in particular small enough to be effectively described using linear perturbations \[68, 70 \]. \(k \leq k_{\text{lin}} \equiv 0.1 \text{ Mpc}^{-1} \) is a safe assumption.

The set of equations describing the evolution of the perturbations can be derived perturbing the Einstein equations, in a similar fashion as it can be done with background quantities. In Section 1.4.2 we already described the linear metric perturbation in the conformal gauge. With long, but straightforward calculations, one can use the eq. (1.63) to calculate the perturbed Einstein tensor (see e.g. [101] for the explicit calculation and expression).
The energy-momentum tensor can be perturbed in the same way. Its component, in the longitudinal gauge are

\[\delta T^0_0 = -\bar{\rho}\delta,\] (1.119)

\[\delta T^0_i = -\delta T^i_0 = (\bar{\rho} + \bar{p})v_i,\] (1.120)

\[\delta T^i_j = -c^2_s\bar{\rho}\delta\delta^i_j + \Sigma^i_j.\] (1.121)

Where \(v_i\) is the fluid velocity field, \(\Sigma^i_j\parallel\) is the anisotropic shear perturbation, a traceless symmetric tensor. As discussed before, \(v_i\) and \(\Sigma_{ij}\) can be decomposed according with how they transform under spatial rotations thanks to the Helmholtz theorem. Considering scalar perturbations we can neglect the vector and tensor components and just consider the longitudinal components.

The various components of the linearised Einstein equation, conveniently expressed in Fourier space, read

\[k^2\Phi + 3\mathcal{H}(\Phi' + \mathcal{H}\Psi) = -4\pi G a^2 \bar{\rho}\delta,\] (1.122)

\[k^2(\Phi' + \mathcal{H}\Psi) = 4\pi G a^2 (\bar{\rho} + \bar{p})\theta,\] (1.123)

\[\Phi'' + \mathcal{H}(\Psi' + 2\Phi') + \left(2\frac{a''}{a} - \mathcal{H}^2\right)\Psi + \frac{k^2}{3}(\Phi - \Psi) = \frac{4\pi}{3} G a^2 c^2_s \bar{\rho}\delta,\] (1.124)

\[k^2(\Phi - \Psi) = 12\pi G a^2 (\bar{\rho} + \bar{p})\sigma.\] (1.125)

Here we defined the velocity divergence

\[\theta \equiv ik \cdot v,\] (1.126)

and the shear stress

\[(\bar{\rho} + \bar{p})\sigma \equiv -\left(k^i k_j - \frac{1}{3}\delta_{ij}k^2\right)\Sigma^i_j.\] (1.127)

From the conservation of the energy-momentum tensor — which we stress again is not independent from the Einstein equations — we get instead

\[\delta' = -(1 + w)(\theta - 3\Phi') - 3\mathcal{H}(c^2_s - w)\delta,\] (1.128)

\[\theta' = -\mathcal{H}(1 - 3w)\theta - \frac{w'}{1 + w}\theta + k^2\Psi - k^2\sigma + \frac{w}{1 + w}k^2\delta.\] (1.129)
These two relations are exact so they can be evaluated at any time. Here we are interested in describing the evolution of the matter fluctuations, both baryonic and cold dark matter, that on large scales contribute in the same way to the formation of structures. They are well described by a collision-less fluid with \(w = c_s^2 = 0 \), therefore, eq. (1.128) combined with eq. (1.129) gives

\[
\delta_m'' + H \delta_{cdm}' = -k^2 \Psi + 3(\Phi'' + H \Phi').
\]

(1.130)

Deep inside the Hubble radius the comoving gradient \(-k^2 \Psi\) dominates the source term. In the absence of shear it can be approximate by \(-k^2 \Phi\) thanks to eq. (1.125), and finally using the Poisson eq. (1.122) we get

\[
\delta_{cdm}'' + H \delta_{cdm}' \approx 4\pi G a^2 \delta \rho.
\]

(1.131)

It is important to notice for later reference (see Section 3.1.2) that \(\delta \rho \) is the total energy density perturbation, i.e.,

\[
\delta \rho = \delta \rho_{rad} + \delta \rho_{cdm} + \delta \rho_b + \delta \rho_\nu + \delta \rho_\Lambda + \cdots =
\rho_{rad} \delta_{rad} + \rho_{cdm} \delta_{cdm} + \rho_b \delta_b + \rho_\nu \delta_\nu + \rho_\Lambda \delta_\Lambda + \cdots.
\]

(1.132)

For simplicity we will focus on the matter dominated epoch, and we will not consider any exotic species. Neutrinos instead display an interesting behaviour: on scales larger that their free-streaming scale \(k_{fs} \) \([11]\), they behave like normal matter. On smaller scales instead their perturbations are completely smoothed out by the free-streaming itself, hence \(\delta_\nu \ll \delta_{cdm} \). Therefore

\[
\delta \rho = \begin{cases}
(\rho_{cdm} + \rho_b + \rho_\nu) \delta_{cdm} & \text{for } k < k_{fs} \\
(\rho_{cdm} + \rho_b) \delta_{cdm} & \text{for } k_{fs} < k < k_{lin}.
\end{cases}
\]

(1.133)

Even though there could be both massive and massless neutrino, it is safe to assume that \(\rho_\nu \) is dominated by the massive ones, so it scales just like matter energy density \(a^{-3} \) \([11]\). Then we know that the quantity

\[
f_\nu = \frac{\rho_\nu}{\rho_{cdm} + \rho_b + \rho_\nu}
\]

(1.134)

is approximately a constant.
Solving eq. (1.12) for $\rho \propto a^{-3}$ we get $a(\tau) \propto \tau^2$. Then eq. (1.131) is (cf. Ref. [111])

\[\delta''_{\text{cdm}} + \frac{2}{\tau} \delta'_{\text{cdm}} - \frac{6}{\tau^2} (1 - f_\nu) \delta_{\text{cdm}} = 0, \]

(1.135)

that can be easily solved imposing the ansatz $\delta_{\text{cdm}} \propto \tau^{2p}$: the two roots for p are

\[p = \frac{-1 \pm \sqrt{1 + 24(1 - f_\nu)}}{4}. \]

(1.136)

so expanding at first order in f_ν, we get the result

\[\delta_{\text{cdm}} = D_+(\tau) \delta_1 + D_-(\tau) \delta_1 \approx D^+(\tau) \delta_1, \]

(1.137)

where we defined the linear growth functions

\[D_+(\tau) = a^{1+\frac{3}{2}f_\nu}, \quad D_-(\tau) = a^{-\frac{3}{2}+\frac{3}{2}f_\nu}. \]

(1.138)

During the matter domination, for scales bigger than the one typical of neutrino relativistic to non-relativistic transition, the growth of cold dark matter perturbation is damped by the presence of massive neutrino, as described in eq. (1.137).

Exactly as in the case of CMB temperature anisotropies, the matter fractional overdensity averages to 0 by construction. Therefore we can refer to its 2-points correlation function to gain some insight on its physical properties, or to its Fourier transform, the matter power spectrum, which is defined in a similar fashion to the primordial one (cf. eq. (1.79))

\[\langle \delta_{k_1,z} \delta_{k_2,z}^* \rangle \equiv (2\pi)^3 \delta^{(3)}(k_1 - k_2) P_m(k, z). \]

(1.139)

It can be shown that the matter power spectrum can be related to the primordial one through [23]

\[P_m(k, z) = \frac{3}{5} \frac{k^4}{\Omega_m^2 H_0^4} P_\zeta(k) T_m^2(k) D_+^2(z). \]

(1.140)

We will not discuss the details here, as they will not be relevant for the scope of this thesis; we refer to [23] for an accurate explanation. Here we just want to point out that varying the neutrino masses modify their total energy density, which in turn suppresses the linear matter power spectrum on small scales, as we can infer from eq. (1.140) even
just through our very simplified analytic discussion, or as we can see in Figure 1.2 where the exact equations have been solved numerically.

Halo distribution and Sunyaev-Zeldovich effect

Often, we are interested in describing processes that happen on scales similar to or smaller than k_{lin}, the scale where the linear perturbation theory breaks down. One way to describe this processes is using the *halo model*, an approximate non-perturbative formalism that relies on the assumption that all matter in the universe resides in collapsed halos, that can in principle span the whole spectrum of possible masses. The description of physical processes is then divided in two. Since we will be interested in modelling the Sunyaev-Zeldovich power spectrum we will talk of the electron pressure distribution in the universe, that sources it. Instead of providing a full description in the whole universe, we can use a model of how electrons behave inside the single halo, and then combine it with the statistical distribution of halos with a given mass at a given time.

Halo mass function. When the over-density, which as we saw is a random field, exceeds a certain threshold δ_c in a region, the gravitational forces prevail over the universe expansion, and the region start collapsing. Therefore the gravitational collapse can be described as a stochastic process, and the halo number density per mass interval, called *halo mass function* (HMF) can be calculated in that framework.
In [112], Press and Schechter (PS) derived analytically the functional forms of the HMF that is (with some small adjustments) still in use. In a given point \(\mathbf{x} \) we can consider the density field smoothed over a radius \(R \)

\[
\delta(\mathbf{x}, R) = \int \frac{d^3 k}{(2\pi)^3} \delta(\mathbf{k}) W(k, R) e^{-i k \cdot \mathbf{x}},
\]

where \(W \) is a window function. We can then define the variance of the over-density field

\[
\sigma(R)^2 \equiv \langle \delta^2(\mathbf{x}, R) \rangle = \int dk \frac{k^2}{2\pi^2} P_m(k) |W(k, R)|^2.
\]

Notice that for \(R \to \infty \), \(\delta(\mathbf{x}, R) \to 0 \) and also \(\sigma(R) \to 0 \), and as \(R \) decreases, \(\sigma \) increases monotonically. Therefore we can formally invert the relation and express \(R \) as a function of \(\sigma \).

Assuming Gaussian perturbations, for a given \(\sigma \), the probability of \(\delta(\mathbf{x}, \sigma) > \delta_c \), i.e., the probability of starting the collapse on the scale \(\sigma \), is

\[
P_{\delta > \delta_c}(\sigma) = \int_{\delta_c}^{\infty} d\delta \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{\delta^2}{2\sigma^2}},
\]

resulting in the HMF

\[
\frac{dn}{dM} = \frac{1}{\sqrt{2\pi} 3M^2} \bar{\rho} \frac{\delta_c}{\sigma} e^{-\frac{\delta_c^2}{2\sigma^2}} \left(-\frac{R d\sigma}{\sigma dR} \right).
\]
the Press and Schechter HMF would correspond to

$$f(\sigma) = 2 \frac{\delta_c}{\sqrt{2\pi\sigma}} e^{-\frac{\delta_c^2}{2\sigma^2}},$$ \hspace{1cm} (1.146)$$

whereas the HMF fitted to N-body provided in \[119\], that we will use throughout the thesis is

$$f(\sigma) = A \left[\left(\frac{b}{\sigma} \right)^a + 1 \right] e^{-\frac{\delta_c}{\sigma^2}},$$ \hspace{1cm} (1.147)$$

where $A, a, b,$ and c are redshift dependent free parameters.

Electron pressure profile. The SZ effect is sourced by hot electron that up-scatter the CMB photons we observe. Most of these hot electrons reside inside the *intra-cluster medium* (ICM) of each galaxy cluster that, according to the halo model, resides in halos. We are therefore interested in describing the electron distribution inside the halos, and to be precise, their pressure distribution that appears in the y-distortion definition eq. (1.44).

The fully analytic approaches to the problem \[120\] usually rely on some modified NFW profile for the matter density, and impose hydrodynamical equilibrium of the electrons to compute the pressure profile. However, direct measurements \[121\] proved how this simplistic models are disproved by data. Consequently different authors used different techniques to numerically or semi-analytically add baryonic effect to the model \[122,123\]. A different approach is fitting the ICM to a sample of clusters \[124\], that however being quite close and very massive might not be representative of the whole ensemble.

Sunyaev-Zeldovich angular power spectrum. To calculate the SZ power spectrum we use a halo model approach, following \[120,125,126\]. We parametrize the density of dark matter halos in terms of the matter overdensity distribution δ, using a halo bias parameter $b_H(z,M)$, which depends on redshift and mass of the halo. The mass distribution of halos is given in terms of the halo mass function $dn/dM(z,M)$. Since the SZ is sensitive to the electron distribution rather than to the matter distribution, this has to be convolved with the halo Compton y-parameter image

$$y_{3D}(z,M,x) = \frac{\sigma_T}{m_e c^2} P_e(z,M,x),$$ \hspace{1cm} (1.148)$$
where x is the distance from the center of the halo.

The SZ powerspectrum is given by the sum of the one- and two-halo terms 125,126, which, in the Limber approximation, respectively read

$$C_{1h}^\ell = \int dz \frac{d^2V}{dz d\Omega} \int dM \frac{dn}{dM} (z, M) |\tilde{y}_\ell(z, M)|^2,$$

$$C_{2h}^\ell = \int dz \frac{d^2V}{dz d\Omega} D_+(z) P_m(k) \left[\int dM \frac{dn}{dM} (z, M) b_H(z, M) \tilde{y}_\ell(z, M) \right]_k \left(\frac{\ell + 1/2}{\chi(z)} \right),$$

(1.149)

(1.150)

Here $P_m(k)$ is the linear matter power spectrum, $D_+(z)$ is the growth factor, $d^2V / dz d\Omega = c\chi^2(z)/H(z)$ is the comoving volume element per steradians and $\tilde{y}_\ell(z, M)$ is the 2D Fourier transform of the projected y-parameter image of the halo

$$\tilde{y}_\ell(z, M) = \frac{4\pi r_{s,y}^2}{\ell_{s,y}^2} \int dx x^2 j_0 \left(\frac{kx}{\ell_s} \right) yD(z, M, x),$$

(1.151)

$r_{s,y}$ is the typical scale radius of the y-image of the halo and $\ell_{s,y} = a(z)\chi(z)/r_{s,y}$. We refer to the appendix of 126 for a clear derivation of these two formulae.
Chapter 2.

Selected arguments of statistics and data analysis

In this chapter we provide a short summary of selected topics in statistics, which will be useful in the following. As it is customary in Cosmology we will take a Bayesian approach. According to the Bayesian interpretation, the probability expresses the degree of belief in a proposition.

From a more philosophical standpoint, this is the natural approach as cosmologists, because this interpretation is useful as it circumvents some shortcoming of the Frequentist approach, which is based on measuring the outcomes of repeated trials: in fact, it allows to make quantitative assessments about non-repeatable events. However its true power lies in the possibility to naturally address inverse probabilities using the Bayes theorem. Generally speaking, as physicists we are not interested in assessing how probable data are, given the true model of Nature, but rather in understanding how likely our model is, given the data we collected. Bayes theorem allow us to easily do that — even though, unfortunately, this interpretation is not exempt of possible critics.

From a practical standpoint, on the other hand, the Bayesian approach is linked to useful applications, such as Markov Chain Monte Carlo, that allow an easy treatment of nuisance parameters (via marginalization), and provides a consistent framework for model comparison and selection.

Bayes theorem and parameter estimation Let us start by considering two random events, A and B, with associated probability $P(A)$ and $P(B)$ — all the following also holds for a probability density function (PDF) $p(\theta)$ of a continuous random variable θ.

The joint probability of two events A and B is given by

$$P(A; B) \equiv P(A|B) P(B),$$

(2.1)

where we defined the conditional probability of A given B, $P(A|B)$. Since $P(A; B) = P(B; A)$ we can infer that the conditional probability of A to be true, given that B was already realized is

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}.$$

(2.2)

This is the Bayes theorem, which the cornerstone of the Bayesian statistical approach.

In Physics, we often describe our model in terms of a set of parameters θ. We then try to infer their value collecting some data x (see, e.g., [127] and references therein). In the frequentist approach, this is done building an estimator $\hat{\theta}$ of the parameters, and then quantifying how likely is that it lies a given range around the true value of θ. In the Bayesian interpretation instead one uses the Bayes theorem to quantify how probable a set of parameters θ is, given the data:

$$P(\theta|x) = \frac{P(x|\theta) P(\theta)}{P(x)}.$$

(2.3)

Let us discuss every term in this expression separately.

$P(\theta|x)$ is called the posterior probability, which usually is the relevant quantity we are interested in, as discussed.

$P(\theta)$ is the prior probability of the model. It parametrizes all previous knowledge we had about the model before performing the experiment. For example, it may carry information about previous measures of a parameter, or restrict the allowed domain of a parameter value (e.g., by requiring mass or intensities to be ≥ 0, or velocities to be $\leq c$). In general, the choice of prior can bias the evaluation of the posterior, especially if the prior is not chosen with care. As such, it is arguably the most criticized point of Bayesian probability. Dwelling in a discussion about prior legitimacy and sensible prior choices is outside the scope of this chapter, and we refer to [128] for a review of the possible criticalities.
\(P(x) \) is the evidence. In the scope of this thesis it can be treated a normalizing constant that is irrelevant for all the discussed results. It is instead important e.g. to deal with model selection \[129\].

Finally, \(P(x|\theta) \) is the probability of collecting the measured data given the model. Conversely to the posterior, this quantity can be in principle — often simplifying assumptions need to be made — modelled and calculated knowing how the data have been collected and given a good knowledge of the instrument used. Interpreted as function of the sole model parameters, with the data evaluated on the one experimentally measured, this quantity is called likelihood.

\[
\mathcal{L}(\theta) \equiv p(x = x_{\text{exp}}|\theta).
\]

Regardless of the prior, two different datasets can be combined and used together, applying eq. (2.1) to the likelihood. Given two sets of data \(x \) and \(y \), the likelihood of the joint analysis is

\[
\mathcal{L}(x;y|\theta) = \mathcal{L}(x|y;\theta) \mathcal{L}(y|\theta) = \mathcal{L}(x|\theta) \mathcal{L}(y|\theta).
\]

The second equality holds only if the two datasets are independent (otherwise the appropriate covariance have to be accounted for). In that case the likelihoods of the two experiments can just be multiplied together. However, this operation cannot be performed mindlessly: the likelihood is insensitive to the possibility that the data are inconsistent with each other. If this is the case, the produced results are mathematically well defined, but might be physically nonsensical. We will see an instance of this case in Section 3.1.

One of the main goals in data analysis is that of finding a set of "best-fit" model parameters, given our observed data\[1\] This is called the problem of "parameter estimation". As mentioned, the approach to parameter estimation changes in a frequentist vs Bayesian framework. Even though the focus here is on Bayesian statistical inference, we will briefly discuss also the frequentist approach, as it allows us to introduce some important concepts about likelihoods.

\[1\]
the other being hypothesis testing, in a frequentist setting, or model selection, in a Bayesian scenario.

We do not discussed this here, as we never perform such tasks in the remainder of this thesis, and we focus instead on parameter estimation and forecasting.
Frequentist parameter estimation The general idea in the frequentist approach is to use the data we possess x to build an estimate $\hat{\theta}$ of the parameters θ, whose true value is θ_0. The best estimate would be the one that is unbiased

$$\langle \hat{\theta} \rangle = \theta_0,$$ \hspace{1cm} (2.6)

and minimizes the parameters variance

$$\text{Var}(\theta_i) = \langle \hat{\theta}_i^2 \rangle - \langle \hat{\theta}_i \rangle^2.$$ \hspace{1cm} (2.7)

An estimator attaining this properties is said to be optimal.

In this optics, the maximum likelihood estimator (MLE) θ_{ML} such that

$$L(\theta_{\text{ML}}) = \max_{\theta} L(\theta)$$ \hspace{1cm} (2.8)

is the best choice, whenever its explicit computation is possible. With best we mean that MLE has the following two crucial properties \[127\]

1. The MLE is asymptotically the unbiased estimator with minimum variance.
2. If an unbiased estimator with minimum variance (i.e., the Cramér-Rao bound that we will introduce in the next section) exist, it is equivalent to the MLE.

The first properties ensures that the MLE is the best estimate when dealing with a large enough amount of data, whereas the second guarantees that if an optimal estimator exist, than it can be found maximising the likelihood.

Bayesian parameter estimation In a Bayesian context one uses the posterior to assess the probability, therefore one of the most sensible estimates is the posterior mean, that coincides with the expectation value in the limit in which the posterior recover the right parameter PDF

$$\langle \theta \rangle = \int \theta p(\theta|x) \, d\theta ,$$ \hspace{1cm} (2.9)

Calculating the MLE or the posterior mean might appear as an harmless process by the definition, but often, when the likelihood is a particularly complicated, or if the problem has a large dimensionality, one has to resort to sophisticated numerical approaches to get it (see Section 2.2).
Estimates are meaningless without quantifying their errors. In a frequentist setting, these are computed by sampling the likelihood distribution, and building suitable confidence intervals. We do not discuss this here (see e.g. [127] for a comprehensive treatment) and focus just on the Bayesian approach instead. In Bayesian statistics, confidence regions (CR) (also called credible regions, to distinguish from the frequentist limits) are defined in parameter spaces such that

$$\int_{\text{CR}} p(\theta|x) \, d\theta = \text{CL}$$

where the confidence level CL is usually set to 68.3% or 95.4% (values chosen because they respectively correspond to 1\(\sigma\) and 2\(\sigma\) fora a Gaussian distribution). There is some arbitrariness in choosing the region that would satisfy eq. (2.10) [130]. Common choices are selecting a region that is symmetric around the maximum likelihood, or selecting it in such a way that \(P(\theta|x) > P(\theta'|x) \forall \theta \in \text{CR} \land \theta' \notin \text{CR}\), but other criteria are often used. Note that by construction the confidence region depend on the prior. In cases when it is desirable to quote prior-independent results, the Likelihood ratio might get employed instead. A set of parameters \(\theta\) is compared with the maximum of the likelihood via

$$Z = -2 \ln \left[\frac{\mathcal{L}(\theta)}{\mathcal{L}_{\text{max}}} \right]$$

The interpretation of \(Z\) is clear in the case of Gaussian likelihood as parameters deviating \(z\sigma\) from the MLE have \(Z = z^2\).

More often than not, in multi-parameter analysis we are interested in providing estimates and confidence regions for a single parameter, regardless of the value of the others. For example, we may want to remove some nuisance parameters needed to represent foregrounds, or detector properties. Or we may want to study the bounds on a single parameter out of the many required by our physical model of interest. In both cases, in order to get the posterior of the parameters we are interested in (say \(\theta_1, \cdots, \theta_m\)) we need to marginalize over “uninteresting” parameters (say \(\theta_{m+1}, \cdots, \theta_n\)) integrating the posterior over their whole parameter space.

$$p(\theta_1, \cdots, \theta_m|x) = \int p(\theta_1, \cdots, \theta_n|x) \, d\theta_{m+1} \cdots d\theta_n$$

\(^2\)In cosmology often the covariance depends on the model, therefore the normalization of the Gaussian distribution depends on the model too. For this reason data may be Gaussian distributed and still the \(\chi^2\) and likelihood ratio analysis may give different results [131].
As in the case of the CR selection, the marginalization is prior dependent. In general, the location of the posterior mean before and after marginalization over some parameters might not coincide. Which one of the two estimates is the most relevant one depends on the specific circumstances of the problem, and shall be evaluated on a case-by-case basis.

In the case in which a flat prior (\textit{i.e.}, a box prior probability between some minimum and maximum allowed parameter values) is used, the posterior probability is proportional to the Likelihood. This means that the maximum of the posterior coincide with the maximum of the Likelihood, and shares its properties. This is exactly the case in the analysis we present in Section \[3.1\].

2.1. Fisher information matrix

If the likelihood is unimodal and smooth, its logarithm can be Taylor-expanded around its maximum.

\[
\ln \mathcal{L} = \ln \mathcal{L}(\theta_{\text{ML}}) + \frac{1}{2} \sum_{ij} (\theta_i - \theta_{\text{ML},i}) \frac{\partial^2 \ln \mathcal{L}}{\partial \theta_i \partial \theta_j} \bigg|_{\theta_{\text{ML}}} (\theta_j - \theta_{\text{ML},j}) + \ldots \tag{2.13}
\]

If we can neglect the cubic and higher-order terms, the information about the parameters (Co)variance is embedded in the Hessian of the likelihood. The Fisher information matrix is defined as its expectation value

\[
F_{ij} = -\left\langle \frac{\partial^2 \ln \mathcal{L}}{\partial \theta_i \partial \theta_j} \right\rangle \tag{2.14}
\]

therefore it is related to the covariance of the parameters through

\[
\text{Cov}(\theta_i, \theta_j) \equiv \langle \theta_i \theta_j \rangle - \langle \theta_i \rangle \langle \theta_j \rangle = [F^{-1}]_{ij} . \tag{2.15}
\]

In this context the expectation value has to be intended as the ensemble average over the observational data we would gather if the Universe were described by the considered fiducial model.

The usefulness of the Fisher matrix comes from the Cramér-Rao inequality \[129\]. It states that for any unbiased estimator holds the relation

\[
\sigma(\theta_i) = \sqrt{\text{Var}(\theta_i)} \geq \sqrt{[F^{-1}]_{ii}} . \tag{2.16}
\]
The quantity defined at RHS is commonly referred to as *marginal error*, as it is the value one would obtain marginalizing over all the other parameters θ_j, $j \neq i$, if the likelihood were Gaussian. It is worth noticing that it is greater or equal than the *conditional error* $1/\sqrt{F_{ii}}$, that is the error over θ_i assuming perfect knowledge of all the other parameters true value. The two errors coincide if and only if the estimator $\hat{\theta}_i$ is uncorrelated with the other parameters estimators, i.e., if F is block-diagonal.

It descends trivially from the property of the likelihood eq. (2.5) that the joint Fisher matrix of two independent experiment is the sum of the Fisher matrices.

Besides allowing a rigorous definition of the information content of the data and of estimator optimality, the Fisher matrix is also a crucial quantity for forecasting how well an experiment might perform even before collecting data. It must be noted that, due to the Cramér-Rao inequality, a Fisher matrix forecast is only an upper limit on what a given survey might achieve in term of constraining power. However, the ability of quickly assess at least the order of magnitude, is a valuable information when comparing many different possible experimental design.

2.1.1. Fisher matrix for Gaussian likelihood

If we are willing to approximate the data distribution with a Gaussian, the definition of the Fisher information matrix in eq. (2.14) can be massaged into a much more handy expression [129], that we will use in the following chapters.

Let μ be the mean and D the data matrix

$$D = (x - \mu)(x - \mu)^T. \tag{2.17}$$

If the model is evaluated at the true value of the parameters θ, the mean coincides with the data expectation value, and the expectation value of the data matrix is the covariance, i.e.,

$$\mu = \langle x \rangle, \quad \langle D \rangle = \text{Cov}. \tag{2.18}$$

Extracting the logarithm from the definition of a multivariate Gaussian

$$\mathcal{L} = \frac{1}{(2\pi)^{n/2}\sqrt{\det \text{Cov}}} \exp \left[-\frac{1}{2} (x - \mu)\text{Cov}^{-1}(x - \mu)^T \right], \tag{2.19}$$
we get

\[
2 \ln L = \ln \det \text{Cov} + (x - \mu)\text{Cov}^{-1}(x - \mu)^T + n \ln(2\pi)
\]

\[
= \text{Tr} \left[\ln \text{Cov} + \text{Cov}^{-1} \mathbf{D} \right].
\]

(2.20)

Where, in the second line, we used the matrix identity \(\ln \det \text{Cov} = \text{Tr} [\ln \text{Cov}]\) and we dropped the irrelevant addend \(n \ln(2\pi)\). Notice that in full generality both the mean and the covariance matrix are functions of the model parameters \(\theta\).

It is straightforward to calculate the first and second derivatives of the likelihood with respect to the model parameters \(\theta_i\) and \(\theta_j\). They respectively read

\[
2 \ln L, i = \text{Tr} \left[\text{Cov}^{-1} \text{Cov}, i - \text{Cov}^{-1} \text{Cov}, i \text{Cov}^{-1} \mathbf{D} + \text{Cov}^{-1} \mathbf{D}, i \right],
\]

(2.21)

and

\[
2 \ln L, ij = \text{Tr} \left[- \text{Cov}^{-1} \text{Cov}, i \text{Cov}^{-1} \text{Cov}, j + \text{Cov}^{-1} \text{Cov}, ij \right.
\]

\[
+ \text{Cov}^{-1} (\text{Cov}, i \text{Cov}^{-1} \text{Cov}, j + \text{Cov}, j \text{Cov}^{-1} \text{Cov}, i) \text{Cov}^{-1} \mathbf{D}
\]

\[
- \text{Cov}^{-1} (\text{Cov}, i \text{Cov}^{-1} \mathbf{D}, j + \text{Cov}, j \text{Cov}^{-1} \mathbf{D}, i)
\]

\[
- \text{Cov}^{-1} \text{Cov}, ij \text{Cov}^{-1} \mathbf{D} + \text{Cov}^{-1} \mathbf{D}, ij \right].
\]

(2.22)

Taking the expectation value of eq. (2.21), and using the relations

\[
\langle \mathbf{D}, i \rangle = 0, \quad \langle \mathbf{D}, ij \rangle = \mu, i \mu, T, j + \mu, j \mu, T, i.
\]

(2.23)

we obtain

\[
\langle L, i \rangle = 0.
\]

(2.24)

On the ensemble average, the likelihood has an extreme on the true value of the parameters. Since by definition the extreme point is the maximum likelihood, this shows the unbiasedness of MLE.

We can now use eqs. (2.22), (2.18), and (2.23) in the definition of the Fisher matrix eq. (2.14). With some algebra we get

\[
F_{ij} = \langle L, ij \rangle = \frac{1}{2} \text{Tr} \left[\text{Cov}^{-1} \text{Cov}, i \text{Cov}^{-1} \text{Cov}, j + \text{Cov}^{-1} (\mu, j \mu, T, i) \right],
\]

(2.25)
This equation shows that the Fisher matrix depends on the physical model, and on the characteristics of the hypothetical experiment that would collect the data, but do not depends on data themselves. As mentioned earlier, this allows using a Fisher matrix approach to quickly forecast the maximum expected performance of an experiment before it is even operational.

2.2. Inference and Monte Carlo Markov Chains

The general goal, working in the Bayesain inference framework, is accurately sampling the posterior distribution. Unless we are in very simple cases, the posterior can be very complicated and in general not treatable analytically. Therefore it is necessary to resort to numerical approaches to sample it.

Markov chain monte carlo (MCMC) [132,133] are useful to map probabilities in high dimensional parameter space in an efficient and accurate way. The evaluation time for a grid of fixed spacing scales exponentially with the number of dimension and the grid doesn’t adjust to get more precision where is needed. On the other hand MCMC scales approximately linearly with the number of parameters and by construction has a larger point density in places where the likelihood is bigger, thus giving more accuracy around the maxima, which eventually are what we are interested in.

The goal is to generate a collection of points in parameters space, called steps, distributed according to a desired PDF, in this case the posterior. The MCMC is a method that uses the properties of Markov processes to do that. In particular, the MCMC is purposely build to be a Markov process that asymptotically reaches a unique stationary distribution \(\pi_x(\theta) \), proportional to the posterior \(p(\theta|x) \).

A generic discrete-time stochastic process is a system in which a “time”-dependent random variable \(\Theta(t) \) exist [134]. Given a set of times \(t_0 \leq t_1 \leq \cdots \leq t_n \), the stochastic process is described by the joint probability of measuring the value \(\theta^{(i)} \) of \(\Theta(t) \) at each time \(t_i \)

\[
p \left(\theta^{(n)}, t_n; \theta^{(n-1)}, t_{n-1}; \theta^{(n-2)}, t_{n-2}; \ldots \right).
\]

(2.26)

\(^{3}\)For explanatory purpose we refer here to a “time” in loose sense. In an MCMC it is replaced the iteration index.
Therefore, the probability of measuring $\theta^{(n+1)}$ at time t_{n+1} conditional to the previous evolution of the system is

$$p \left(\theta^{(n+1)}, t_{n+1} \mid \theta^{(n)}, t_n; \theta^{(n-1)}, t_{n-1}; \ldots \right) = \frac{p \left(\theta^{(n+1)}, t_{n+1} \mid \theta^{(n)}, t_n; \theta^{(n-1)}, t_{n-1}; \ldots \right)}{p \left(\theta^{(n)}, t_n; \theta^{(n-1)}, t_{n-1}; \ldots \right)}.$$

(2.27)

Markov processes are a subset of stochastic processes that satisfy the condition

$$p \left(\theta^{(n+1)}, t_{n+1} \mid \theta^{(n)}, t_n; \theta^{(n-1)}, t_{n-1}; \ldots \right) \equiv p \left(\theta^{(n+1)}, t_{n+1} \mid \theta^{(n)} \right).$$

(2.28)

The conditional probability at the time t_n is completely determined by the knowledge of the most recent condition alone, and $p \left(\theta^{(n+1)}, t_{n+1} \mid \theta^{(n)} \right)$ can be interpreted as the transition probability from state $\theta^{(n)}$ to $\theta^{(n+1)}$ at the time t_n. One of the fundamental properties of Markov processes that we will exploit is that they might admit a unique stationary distribution π such that for any $n > \bar{n}$ for some \bar{n}

$$p(\theta^{(n)}, t_n | \theta^{(n-1)}, t_{n-1}) = \pi(\theta) \Rightarrow p(\theta^{(n+1)}, t_{n+1} | \theta^{(n)}, t_n) = \pi(\theta),$$

(2.29)

that also is the limiting distribution regardless of the Markov process initial conditions.

MCMC are generally constructed with algorithms that exploit this property. One of the most widely spread, and easy to understand, is Metropolis-Hastings (MH). A sufficient condition for a Markov process to admit a stationary solution π_x is to satisfy the detailed balance relation

$$\pi_x(\theta^{(n+1)}) p \left(\theta^{(n+1)}, t_{n+1} \mid \theta^{(n)}, t_n \right) = \pi_x(\theta^{(n)}) p \left(\theta^{(n)}, t_n \mid \theta^{(n+1)}, t_{n+1} \right).$$

(2.30)

MH builds a Markov process with transition probability that satisfies the detail balance condition with $\pi_x(\theta) = p(\theta | x)$, as described.

The chain is initialized by selecting a random point in parameter space and adding it to the chain. Then an iterative process takes place.

1. Start from the last step in the chain, a set of parameters $\theta^{(n)}$, and it computes the associated posterior probability $p_n \equiv p(\theta^{(n)} | x)$.

2. Select a random point θ' in parameter space following a proposal distribution $g_{\theta^{(n)}}(\theta)$.

The parameters describing the proposal distribution can in principle depend on the
previous point $\theta^{(n)}$, hence the lower-script. To give an example, in the application we will describe in Section 2.2 it will be a multivariate Gaussian distribution.

3. Compute the new posterior in the proposed point $p' \equiv p(\theta'|x)$.

4. Calculate the acceptance threshold

$$\alpha(\theta', \theta^{(n)}) = \min \left(1, \frac{p' g_{\theta'}(\theta^{(n)})}{p_n g_{\theta^{(n)}}(\theta')} \right)$$ (2.31)

5. Draw a uniform random number in $[0, 1]$. If it exceed the acceptance probability the new proposed point is accepted in the chain: $\theta^{(n+1)} \equiv \theta'$. Otherwise the previous point is duplicated: $\theta^{(n+1)} \equiv \theta^{(n)}$.

6. Iterate.

Using this algorithm eq. (2.30) is verified by construction. The transition probability is in fact the product of the proposal distribution times the acceptance probability $p \left(\theta^{(n+1)}, t_{n+1} \parallel \theta^{(n)}, t_n \right) = \alpha(\theta', \theta^{(n)}) \ g_{\theta^{(n)}}(\theta^{(n+1)})$, hence

$$\frac{p \left(\theta^{(n+1)}, t_{n+1} \parallel \theta^{(n)}, t_n \right)}{p \left(\theta^{(n)}, t_n \parallel \theta^{(n+1)}, t_{n+1} \right)} = \frac{p^{(n+1)}}{p^{(n)}}.$$ (2.32)

When running a chain we need to know when it has converged and if it has explored the whole parameter space. Therefore, it is crucial to select a priori a convergence criterion to tell when it is appropriate to stop the iteration.

One possible choice is the Gelman-Rubin method [135]. M chains are started in different points in parameter space, and every of them collects $2N$ steps. The first N points of each chain are discarded as burn in. Now we can refer to the i-th element of the j-th chain as $\theta^{(i,j)}$ with $i = 1, \ldots, N$ and $j = 1, \ldots, M$.

The mean of the j-th chain is

$$\bar{\theta}^{(j)} = \frac{1}{N} \sum_{i=1}^{N} \theta^{(i,j)},$$ (2.33)
Figure 2.1.: Pictorial representation of the idea underlying the Gelman-Rubin criteria. On the left side 3 chains that haven’t explored the parameter space properly. On the right side the same chains when they begin to converge

and the mean of the sample is

$$\hat{\theta} = \frac{1}{NM} \sum_{i,j=1}^{N,M} \theta^{(i,j)}.$$

(2.34)

Then the variance between the chains is

$$B = \frac{1}{M-1} \sum_{j=1}^{M} (\bar{\theta}^{(j)} - \bar{\theta})^2,$$

(2.35)

and the mean of the variances within single chains

$$W = \frac{1}{M(N-1)} \sum_{i,j=1}^{M,N} (\bar{\theta}^{(i,j)} - \bar{\theta}^{(j)})^2.$$

(2.36)

We can define the ratio between two estimates of the variance of the distribution

$$R = \frac{N-1}{N} W + (1 + \frac{1}{M}) B.$$

(2.37)

The numerator is an unbiased estimator of the variance if the distribution is stationary, but is otherwise an overestimation. On the other hand the denominator underestimates the variance if the individual sequences have not converged yet. In Figure 2.1 we give a qualitative representation of the quantities used to compute R.

Before the sampling is performed, a threshold value of R is selected, and the iterations are not stopped before the value of R is inferior to the threshold. $R < 1.03$ is generally considered a good choice that guarantees proper convergence [136].
Once the chain converge the burn-in are discarded and what is left is merged together. By construction the density of the chains point in parameter space is proportional to the posterior probability of said point. It is therefore trivial to deduce best fit parameters and confidence levels: The posterior mean eq. (2.9) is

\[\langle \theta \rangle \approx \frac{1}{N} \sum_{i=1}^{N} \theta^{(i)}, \]

and the marginal probability for parameter for parameter \(\theta_j \) in eq. (2.12) is constructed by removing from each point of the chain the information about all \(\theta_i \) with \(i \neq j \). What is left, is \(N \) steps drawn from the \(\theta_j \) parameter space with density proportional to the marginal probability. All information about variance and confidence intervals are therefore constructed building binning the marginal probability in an histogram.

The same marginalization procedure can be use to produce the 2D marginal probability of a couple of parameters. The resulting data can be showed in a scatter plots to describe the parameters correlations. The triangle plots that we will later show (e.g., in Figure 3.13a) are an example.

MH is just one of many possible approaches to MCMC sampling. Other useful and powerful methods are e.g. Gibbs sampling or Hamiltonian sampling, but which method is best depends on the problem at hand. For a detailed discussion see e.g. [128].

2.3. Statistic of a statistically isotropic random field on a sphere

Here we are interested in discussing the general properties of the projection on a sphere of a statistically homogeneous and isotropic scalar random field, regardless of the underlying physical properties. To fix the notation and help the interpretation, we consider here of the concrete physical example of the CMB temperature anisotropy field here. Of course all results can be directly applied or easily generalized to any scalar field on the sphere (e.g. CMB E and B polarization modes, the galaxy overdensity field in tomographic spherical shells, etc.).
Temperature anisotropies are represented by the coefficients $a_{\ell m}$ of the spherical harmonic expansion of the CMB sky

$$T(\hat{n}) = \sum_{\ell m} a_{\ell m} Y_{\ell m}(\hat{n}) .$$

(2.39)

where

$$a_{\ell m} \equiv \int d\hat{n} T(\hat{n}) Y_{\ell m}^*(\hat{n}) .$$

(2.40)

To obtain the projection of a 3D field $T(x)$ on the sphere, we ought to integrate the field along the line of sight, in the required direction \hat{n}. For temperature the leading order term, as seen in 1.5.1 (cfr. [137]), has the form

$$T(\hat{n}) = \int_0^{\tau_0} d\tau \int \frac{d^3k}{(2\pi)^3} e^{i k \cdot \hat{n} \chi} \Delta(k, \tau) \zeta_k$$

(2.41)

for some known source function Δ, and where $\chi = \tau_0 - \tau$ is the comoving distance. Plugging this equation in eq. (2.40), and using identity (A.7), it is straightforward to find

$$a_{\ell m} = 4\pi i^{\ell - \ell'} \int \frac{d^3k}{(2\pi)^3} \zeta_k T_\ell(k) Y_{\ell m}(\hat{k}) Y_{\ell m}^*(\hat{k'}) \langle \zeta_k \zeta_{k'} \rangle$$

(2.42)

where we defined the transfer function $T_\ell(k)$ as

$$T_\ell(k) \equiv \int_0^{\tau_0} d\tau \Delta(k, \tau) j_\ell(k\chi) .$$

(2.43)

2.3.1. Angular power spectrum

The variance of the harmonic coefficients is

$$\langle a_{\ell m} a_{\ell' m'}^* \rangle = (4\pi)^2 i^{\ell - \ell'} \int \frac{d^3k}{(2\pi)^3} \int \frac{d^3k'}{(2\pi)^3} T_\ell(k) T_{\ell'}(k') Y_{\ell m}(\hat{k}) Y_{\ell m}^*(\hat{k'}) \langle \zeta_k \zeta_{k'} \rangle$$

$$= \delta_{\ell \ell'} \delta_{mm'} \frac{2}{\pi} \int dk k^2 T_\ell^2(k) P(k)$$

(2.44)

$$\equiv \delta_{\ell \ell'} \delta_{mm'} C_\ell ,$$

where, in the second line we used the statistical homogeneity and isotropy properties of the random field ζ_k expressed in eq. (1.79), and in the third we defined the angular power spectrum C_ℓ.
If we wish to estimate the power-spectrum from data (real or simulated) we can resort to the MLE. Since in the rest of this thesis we will mainly be interested assessing future detectability of physical effect through Fisher matrix analysis, in this chapter we will consider a very idealized setting, assuming Gaussian likelihoods and without delving into all the practical complications of e.g. correlated noise, systematics, foreground contamination, partial sky coverage, etc. Under these assumptions the MLE is

\[\hat{C}_\ell = \frac{1}{2\ell + 1} \sum_m |a_{\ell m}|^2. \]

(2.45)

The power spectrum covariance computation is straightforward from the definition

\[\text{Cov}(\hat{C}_\ell, \hat{C}_{\ell'}) = \langle \hat{C}_\ell \hat{C}_{\ell'} \rangle - \langle \hat{C}_\ell \rangle \langle \hat{C}_{\ell'} \rangle. \]

(2.46)

The first term reads

\[\langle \hat{C}_\ell \hat{C}_{\ell'} \rangle = \frac{1}{(2\ell + 1)(2\ell' + 1)} \sum_{m,m'} \langle a_{\ell m} a^*_{\ell m'} a_{\ell' m'} a^*_{\ell' m'} \rangle = \frac{1}{(2\ell + 1)(2\ell' + 1)} \sum_{m,m'} \left(\langle a_{\ell m} a^*_{\ell m'} \rangle \langle a_{\ell' m'} a^*_{\ell' m'} \rangle + \langle a_{\ell m} a_{\ell' m'} \rangle \langle a^*_{\ell m'} a^*_{\ell' m'} \rangle + \langle a_{\ell m} a^*_{\ell m'} \rangle \langle a_{\ell' m'} a^*_{\ell' m'} \rangle + \langle a_{\ell m} a^*_{\ell m'} a_{\ell' m'} a^*_{\ell' m'} \rangle \right) \approx C_\ell C_{\ell'} + \delta_{\ell\ell'} \frac{2C_\ell C_{\ell'}}{2\ell + 1}, \]

(2.47)

where in the second equation we used the Wick theorem to expand the 4-points correlations in its connected contributions, and in the third we used the weakly non-Gaussian approximation to neglect the 4-points connected function. Hence

\[\text{Cov}(\hat{C}_\ell, \hat{C}_{\ell'}) = \delta_{\ell\ell'} \frac{2C_\ell C_{\ell'}}{2\ell + 1}. \]

(2.48)

In the weakly non-Gaussian approximation the Covariance matrix is diagonal, i.e., each \(C_\ell \) is independent from the other coefficients with \(\ell \neq \ell' \).

Thanks to this property, it is trivial to generalize this treatment to the joint analysis of multiple observables like CMB temperature and polarization. In full generality, the covariance matrix for \((C^T\ell)_{\ell=1,\ldots,\ell_{\max}}, [C^E\ell]_{\ell=1,\ldots,\ell_{\max}}\) would be a \(2\ell_{\max} \times 2\ell_{\max} \) matrix
The bispectrum is defined in a similar way, as the harmonic transform of the three point

\[\text{Cov}(\hat{C}_{\ell}^{\Xi \Xi}, \hat{C}_{\ell}^{\Xi' \Xi'}) = \left(\begin{array}{cc} \langle a_{\ell m} * T_{\ell m} * a_{\ell' m'} * T_{\ell' m'} \rangle & \langle a_{\ell m} * T_{\ell m} * E_{\ell m'} * E_{\ell' m'} \rangle \\ \langle a_{\ell m} * E_{\ell m} * a_{\ell' m'} * T_{\ell' m'} \rangle & \langle a_{\ell m} * E_{\ell m} * E_{\ell m'} * E_{\ell' m'} \rangle \end{array} \right), \]

(2.49)

where \(\Xi = T, E \). However, due to the decorrelation of different multipoles in the weekly non-Gaussian limit, we can just analyse the power-spectrum \(\ell \) by \(\ell \).

For instance, the one dimensional Fisher matrix for the angular power spectrum amplitude (that is, the detectability of the angular power spectrum itself) is

\[F(\{C_{\ell}^{TT}\}_{\ell=1, \ldots, \ell_{\text{max}}}, \{C_{\ell}^{EE}\}_{\ell=1, \ldots, \ell_{\text{max}}}) = \sum_{\ell=1}^{\ell_{\text{max}}} F_{\ell}(C_{\ell}^{TT}, C_{\ell}^{EE}) = \]

\[= \sum_{\ell=1}^{\ell_{\text{max}}} \frac{2}{2\ell + 1} \left(\begin{array}{c} C_{\ell}^{TT} \\ C_{\ell}^{EE} \end{array} \right) \cdot \left(\begin{array}{cc} C_{\ell}^{TT} C_{\ell}^{TT} & C_{\ell}^{TT} C_{\ell}^{EE} + 2(C_{\ell}^{TE})^2 \\ C_{\ell}^{TT} C_{\ell}^{EE} + 2(C_{\ell}^{TE})^2 & C_{\ell}^{EE} C_{\ell}^{EE} \end{array} \right)^{-1} \left(\begin{array}{c} C_{\ell}^{TT} \\ C_{\ell}^{EE} \end{array} \right). \]

(2.50)

2.3.2. Angular bispectrum

The bispectrum is defined in a similar way, as the harmonic transform of the three point correlation function

\[B_{m_1 m_2 m_3}^{\ell_1 \ell_2 \ell_3} \equiv \langle a_{\ell_1 m_1} a_{\ell_2 m_2} a_{\ell_3 m_3} \rangle \]

\[= (4\pi)^3 \int \frac{d^3 k_1}{(2\pi)^3} \int \frac{d^3 k_2}{(2\pi)^3} \int \frac{d^3 k_3}{(2\pi)^3} T_{\ell_1}(k_1) T_{\ell_2}(k_2) T_{\ell_3}(k_3) \times \]

\[\times Y_{\ell_1 m_1}(\hat{k}_1) Y_{\ell_2 m_2}(\hat{k}_2) Y_{\ell_3 m_3}(\hat{k}_3) \left\langle \xi_{\ell_1} \xi_{\ell_2} \xi_{\ell_3} \right\rangle = \]

\[= (4\pi)^3 \int \frac{d^3 k_1}{(2\pi)^3} \int \frac{d^3 k_2}{(2\pi)^3} \int \frac{d^3 k_3}{(2\pi)^3} T_{\ell_1}(k_1) T_{\ell_2}(k_2) T_{\ell_3}(k_3) \times \]

\[\times Y_{\ell_1 m_1}(\hat{k}_1) Y_{\ell_2 m_2}(\hat{k}_2) Y_{\ell_3 m_3}(\hat{k}_3) \left(2\pi\right)^3 \delta^{(3)}(k_1 + k_2 + k_3) B_{\ell}(k_1, k_2, k_3) = \]

\[= \left(\frac{2}{\pi}\right)^3 \int \frac{d\ell_1 d\ell_2 d\ell_3}{\ell_1^2 \ell_2^2 \ell_3^2} T_{\ell_1}(k_1) T_{\ell_2}(k_2) T_{\ell_3}(k_3) B_{\ell}(k_1, k_2, k_3) \times \]

\[\times \int d\xi \, x^2 j_{\ell_1}(k_1 \xi) j_{\ell_2}(k_2 \xi) j_{\ell_3}(k_3 \xi) \int d^2 \hat{x} \, Y_{\ell_1 m_1}(\hat{x}) Y_{\ell_2 m_2}(\hat{x}) Y_{\ell_3 m_3}(\hat{x}). \]

(2.51)

Here in the second equation we used the definition of the primordial bispectrum eq. (1.84),
and to get the last equation we used the Rayleigh expansion of the Dirac delta eq. (A.8).
The last integral over \hat{x}, known as *Gaunt integral* can be expressed in terms of Wigner-3j symbols as

$$G_{m_1 m_2 m_3}^{\ell_1 \ell_2 \ell_3} = \int d^2 \hat{x} Y_{\ell_1 m_1} (\hat{x}) Y_{\ell_2 m_2} (\hat{x}) Y_{\ell_3 m_3} (\hat{x}) = h_{\ell_1 \ell_2 \ell_3} \binom{\ell_1 \ell_2 \ell_3}{m_1 m_2 m_3},$$ \hspace{1cm} (2.52)

where in the second equality we used eq. (A.20), defining

$$h_{\ell_1 \ell_2 \ell_3} \equiv \sqrt{(2\ell_1 + 1)(2\ell_2 + 1)(2\ell_3 + 1)} \frac{4\pi}{\ell_1 \ell_2 \ell_3} \binom{\ell_1 \ell_2 \ell_3}{0 0 0}. \hspace{1cm} (2.53)$$

The fact that in eq. (2.51) the Gaunt integral carries all the information about the azimuthal-m dependence is a direct consequence of the statistical isotropy of the random field. Therefore, it is convenient to factor out the Gaunt integral from the bispectrum and work with the *reduced bispectrum* $b_{\ell_1 \ell_2 \ell_3}$ defined through

$$B_{m_1 m_2 m_3}^{\ell_1 \ell_2 \ell_3} = G_{m_1 m_2 m_3}^{\ell_1 \ell_2 \ell_3} b_{\ell_1 \ell_2 \ell_3}. \hspace{1cm} (2.54)$$

Another quantity that is commonly used is the *angle averaged bispectrum* defined as

$$B_{\ell_1 \ell_2 \ell_3} = \sum_{m_1,2,3} \binom{\ell_1 \ell_2 \ell_3}{m_1 m_2 m_3} B_{m_1 m_2 m_3}^{\ell_1 \ell_2 \ell_3}, \hspace{1cm} (2.55)$$

and that is related to the reduced bispectrum via

$$B_{\ell_1 \ell_2 \ell_3} = h_{\ell_1 \ell_2 \ell_3} b_{\ell_1 \ell_2 \ell_3}. \hspace{1cm} (2.56)$$

So, similarly to the case for the power-spectrum, it can be shown that the optimal estimator of the bispectrum [138] [140], assuming again statistically isotropic, Gaussian, uncorrelated noise and full sky coverage, is

$$\hat{b}_{\ell_1 \ell_2 \ell_3} = \frac{1}{N_{\ell_1 \ell_2 \ell_3}} \sum_{m_1 m_2 m_3} G_{\ell_1 \ell_2 \ell_3}^{m_1 m_2 m_3} a_{\ell_1 m_1} a_{\ell_2 m_2} a_{\ell_3 m_3}, \hspace{1cm} (2.57)$$
where \(N_{\ell_1 \ell_2 \ell_3} \) is the number of valid triangles that can be built for the triplet \((\ell_1, \ell_2, \ell_3)\). It is defined as
\[
N_{\ell_1 \ell_2 \ell_3} \equiv (h_{\ell_1 \ell_2 \ell_3})^2 = \sum_{m_1 m_2 m_3} (\mathcal{G}_{\ell_1 \ell_2 \ell_3}^{m_1 m_2 m_3})^2,
\]
where in the second equality we exploited eq. (A.18).

From the definition of the bispectrum estimator eq. (2.57) we get
\[
\langle \hat{b}_{\ell_1 \ell_2 \ell_3} \hat{b}_{\ell_4 \ell_5 \ell_6} \rangle \equiv \frac{1}{N_{\ell_1 \ell_2 \ell_3} N_{\ell_4 \ell_5 \ell_6}} \sum_{m_1 \ldots m_6} \mathcal{G}_{\ell_1 \ell_2 \ell_3}^{m_1 m_2 m_3} \mathcal{G}_{\ell_4 \ell_5 \ell_6}^{m_4 m_5 m_6} \langle a_{\ell_1 m_1} a_{\ell_2 m_2} \cdots a_{\ell_6 m_6} \rangle.
\]
(2.59)

As before, the expression simplifies noticeably in the weakly non-Gaussian approximation, and the covariance is just
\[
\text{Cov}(\hat{b}_{\ell_1 \ell_2 \ell_3}, \hat{b}_{\ell_4 \ell_5 \ell_6}) \approx \frac{\Delta_{\ell_1 \ell_2 \ell_3}}{N_{\ell_1 \ell_2 \ell_3}} C_{\ell_1} C_{\ell_2} C_{\ell_3} \delta_{\ell_1} \delta_{\ell_2} \delta_{\ell_3},
\]
(2.60)
where \(\Delta_{\ell_1 \ell_2 \ell_3} \) is a coefficients that accounts for the multiplicity of the various configurations:
\[
\Delta_{\ell_1 \ell_2 \ell_3} = \begin{cases}
6 & \text{for equilateral configurations } (\ell_1 = \ell_2 = \ell_3) \\
2 & \text{for the isosceles configurations } (\ell_1 = \ell_2 \neq \ell_3, \text{ or cycl.)} \\
1 & \text{for the scalene configurations } (\ell_1 \neq \ell_2 \neq \ell_3 \neq \ell_1).
\end{cases}
\]
(2.61)

As stated before, for the scope of this thesis we are less interested in extracting the bispectrum from data, than to forecast detectability of various models. For explanatory purpose, the one dimensional Fisher matrix for the amplitude of the bispectrum, in the weakly non-Gaussian limit reads
\[
F_{ij} = \sum_{\ell_1 \leq \ell_2 \leq \ell_3} \frac{N_{\ell_1 \ell_2 \ell_3} \delta_{\ell_1 \ell_2 \ell_3}}{\Delta_{\ell_1 \ell_2 \ell_3}} \frac{b_{\ell_1 \ell_2 \ell_3}^2}{C_{\ell_1} C_{\ell_2} C_{\ell_3}}
\]
(2.62)

Generalize this result to a joint analysis of multiple probes is a more complicated task. In principle, the optimal estimator is found minimizing the log-likelihood, as it is done in [138]. The estimator that is found simply applying this approach cannot be computed easily either analytically or numerically. However it has been proven in [141] that it is equivalent to the more manageable KSW estimator [142]. Therefore, we can
easily calculate F as the expectation value of the KSW estimator

$$F_{ij} = \sum_{\xi_1 \xi_2 \xi_3} \sum_{\ell_1 \leq \ell_2 \leq \ell_3} \ell_{\max} N_{\ell_1 \ell_2 \ell_3} \frac{\partial b_{\xi_1 \xi_2 \xi_3}}{\partial \theta_i} \frac{(C^{-1})_{\ell_1}}{\Delta_{\ell_1 \ell_2 \ell_3}} \frac{(C^{-1})_{\ell_2}}{\ell_2} \frac{(C^{-1})_{\ell_3}}{\ell_3} \frac{\partial b'_{\xi_1' \xi_2' \xi_3'}}{\partial \theta_i}$$

(2.63)

where in the relative sums $\Xi_i = T, E$ for $i = 1, 2, 3$.
Chapter 3.

Testing the power spectrum

3.1. Features of the primordial power spectrum and neutrino masses

Here we perform a minimally parametric reconstruction of the PPS using smoothing spline interpolation in combination with cross validation. This approach follows [143–145].

The idea is simple: we choose a functional form that allows a great deal of freedom in the shape of the deviations from a power-law. Because most models predict the PPS to be smooth, among the possible choices we use a smoothing spline. The ensuing challenge is to avoid over-fitting the data; a complex function that fits the data set extremely well is of no interest if we are simply fitting statistical noise. To prevent over-fitting we use cross-validation and a roughness penalty. The roughness penalty is an additional parameter that penalises a high degree of structure in the functional form. By performing cross-validation as a function of this penalty, we can judge the amount of freedom in the smoothing spline that the data require, without fitting the noise.

The Planck collaboration has performed an analysis with the same goals in mind, but with different methods [146], built upon [147,149]. They carried out both a parametric search for deviations from a power law, using a set of theoretically motivated shapes for the PPS, and a minimally parametric analysis to reconstruct the PPS. In all cases there is no strong evidence for deviations from a power law.

Our analysis differs from that of the Planck collaboration and from others existing in the literature (e.g. [150,151]) in that we analyse jointly a comprehensive set of
state-of-the-art experiments probing the matter power spectrum and the latest *Planck* measurements.

Because we assume standard late-time evolution of density perturbations and consider both early-time observables (CMB) and late-time ones (i.e., large-scale structure), our reconstruction is also sensitive to late-time effects on structure formation. In particular a non-negligible neutrino mass would suppress the growth of structures below the neutrino free-streaming scale, inducing an “effective” loss of small scale power in our reconstructed PPS. Reconstructing in a model-independent way a possible neutrino signature on the shape of the matter power spectrum is of particular importance as [152–157] claims that relatively large neutrino masses ($\Sigma_\nu \gtrsim 0.4$ eV) could solve the tension between CMB and local measurements, whilst other studies [158–165] rule out this possibility.

The rest of the section is organised as follows: in Section 3.1.1 we briefly summarise the methodology adopted, the data chosen and how they are analysed. In Section 3.1.2 we show how our analysis will be able to give us information not only about the primordial power spectrum, but also about late time effects. Then in Section 3.1.3 we present our findings and we discuss them in Section 3.1.4.

3.1.1. Methodology and data overview

Spline reconstruction

We perform a minimally-parametric reconstruction of the primordial power spectrum based on the cubic smoothing spline technique [166]. This method has been firstly applied to this same problem in [143] and has been further refined in [144,145].

As we already anticipated, the goal is to recover a smooth function — in this case the PPS — using as few assumptions about its functional form as possible. This approach is complimentary to the usual fit to a theoretically motivated family of functions, that is widely employed in the literature [73]. In the latter case, we make some *a priori* assumptions about the function we are studying, and this allows us to test specific models, eventually enhancing our understanding of the underlying physical mechanisms. Moreover, if the chosen functional form is appropriate, the range of viable free parameters will be tightly constraint, with respect to what we can achieve with a minimally parametric reconstruction. However this does not mean that a minimally parametric approach is un-interesting or un-informative. Firstly, it provides a useful, and blind, double check of
the goodness of our theoretical prior about the commonly used functional form. Second, it allows us to automatically understand if an unexpected deviation from the most minimal model is significantly supported by the data, or if it is a byproduct of the imposed prior. We anticipate here (it will be the topic of the next section) that using this kind of blind approach over-fitting is a possibility, i.e., we might end up using an unnecessarily over-complicated function to fit the data, that improves the likelihood, but at the expense of fitting the noise. This would result in a less predictive model, that would perfectly interpolate existing — noisy — data, but would miserably fail to reproduce the underlying physical behaviour.

Summarizing, we want to let the data tell their story about what was the primordial power spectrum, imposing the least possible amount of prior information, apart from the fact that we require the PPS to be a smooth function, whereas avoiding to incur in over-fitting the data. Our choice is to to use a cubic spline interpolation. We can define a spline $S(x)$ of degree k on a domain $[a, b]$ as a function such that

1. $S(x)$ is well defined on $x \in [a, b]$.
2. $S(x)$ and its derivatives $S'(x), S''(x), \ldots, S^{(k-1)}(x)$ are continuous for $x \in [a, b]$.
3. For some $n \geq 2$, $\exists x_1, \ldots, x_n \in [a, b]$ such that $a = x_1 < \cdots < x_i < \cdots < x_n = b$ and $S(x)$ is a polynomial of degree at most k on $[x_{i-1}, x_i]$ $i = 1, \ldots, n$. The points $(x_i, S(x_i))$ are called knots.

It could be shown that, among the C^2 functions defined on a given domain that interpolate a given set of knots, the cubic spline is the one minimizing the quantity

$$I[f] \equiv \int (f''(x))^2 dx$$

in said domain $[a, b]$. This is the reason why, since we are interested in removing any jaggedness not actually required by the data, we choose to use a cubic spline for our reconstruction.

Given $n + 1$ knots, the cubic spline is defined by n polynomials of third degree, hence in total $4n$ parameter have to be determined. $2n$ conditions are fixed by asking that each cubic pass for the knots at the beginning and the end of the interval in which it is defined. Other $2(n − 1)$ conditions come from the request of continuity of first and second derivative. This leaves 2 extra degrees of freedom that have to be fixed with

Footnote: The integral is a measure of the total curvature of the function, and therefore can be intuitively associate with the notion of how straight, rather than wiggly a curve is. In the following, to lighten the notation we will generically describe a curve f as straight if $I[f]$ is small, and as wiggly if that quantity is large. When needed we will leave aside qualitative adjectives and report proper numerical values.
some arbitrary choice. Multiple different possibilities are reasonable, depending on the specific application one is considering \[167\]. Therefore, by specifying a set of knots, and 2 boundaries condition, the interpolating cubic spline is completely determined.

In our application we parametrize the PPS with a cubic spline, and we treat the value of the spline on the knots \(S(x_i) \) as the free parameters we wish to determine from the data. Regarding the boundary conditions, we proceed as follows. As we will show later (see Figure 3.3), the data we are considering span a finite set of scales, and that is where the majority of the knots are located. However, to avoid computational inefficiencies we will use splines with two extra knots at each of the spline ends. Since those two extra knots are not directly involved in our simulation, and are indeed function of the other knots, we will address to them as false knots in the following. Then the natural choice to deal with the last two degrees of freedom a spline has is the not-a-knot condition, which requires the jump in the third derivative across the first and last real knots to be forced to zero. In this way the cubic polynomial pieces at the left and right of said knots are made to coincide. The spline is constructed using C. de Boor’s algorithm defined in [167].

Cross-Validation

As we anticipated, when using blind techniques to fit data, one should take extra care to avoid the possibility of overfitting. To prevent this behaviour we add a roughness penalty to the log-likelihood. The penalty function is built in such a way that it increases its value as the spline gets more and more wiggly. Our choice is to use the integral of the second derivative squared of the spline over its domain

\[
\log(L) = \log(L_{\text{exp}}) - \alpha_p \int_{\ln k_1}^{\ln k_f} \left(S''(\ln k) \right)^2 d\ln k
\]

(3.1)

where \(S'' \) denotes the second derivative of the spline with respect to \(\ln k \), \(k_i \) and \(k_f \) are respectively the position of the first and of the last knots, \(\alpha_p \) is a weight that controls the penalty, and \(L_{\text{exp}} \) is the likelihood given by the experiments.

The roughness penalty effectively reduces the degrees of freedom, disfavouring more and more jagged functions as it increases. As \(\alpha_p \) goes to infinity, one effectively implements linear regression; as \(\alpha_p \) goes to zero one is interpolating.

Cross-validation comes into play in selecting the appropriate value of \(\alpha_p [166] \). In generic applications of smoothing splines, cross-validation is a rigorous statistical tech-
nique for choosing the optimal roughness penalty [166]. Cross-validation (CV) quantifies the notion that if the PPS has been correctly recovered, we should be able to accurately predict new independent data.

The idea is to divide available data in two groups, fit the first group with a chosen value for α_p and try to see how well the fit results approximates the other data group. If the fit is correct it will predict in an accurate way the second group. Ideally the most rigorous way to use cross-validation would be to remove one point at a time and evaluate the discrepancy between the point and its prediction for each point. Each of those errors are summed in a value called cross-validation score. The correct α_p is the one that minimizes the CV score.

In practice removing one point at a time implies repeating the analysis as many times as the number of points, so it is too computationally expensive. To make the problem computationally manageable, we follow [143]. We split the data set in two halves A and B. A Markov chain Monte Carlo (MCMC) parameter estimation analysis (for a given roughness penalty) is carried out on A, finding the best-fit model. We define the best-fit as the point of the parameter space subset sampled by the MCMC that maximise the likelihood in that subset. Then the $-\log$ likelihood of B given the best-fit model for A, $CV_{B|A}$, is computed and stored. This is repeated by switching the roles of the two halves, obtaining $CV_{A|B}$. The sum $CV_{A|B} + CV_{B|A}$, gives the CV score for that penalty weight. With this construction, the smoothing parameter that best describes the entire data set is the one that minimises the CV score.

In this way, using different combinations of experiments in A and B, we can not only check if our reconstruction is right, but also if some experiments lead to a PPS which is inconsistent with the others. Let’s say we got two compatible experiments 1, 2 and a third experiment 3 affected by some previously unknown systematics or physical effects. We could arrange the experiments in the two cross-validation sets in various configurations. What we would see is that every set of parameter fitted on 3 would fail in predict the data in 1 and 2. Cross-validation score would be much bigger, giving a warning that there is some newly introduced tension between the data. From there we can draw our conclusion on the fact that the experiment 3 analysis is missing something. Of course, simplistic examples aside, it won’t be possible to spot the "right" and the "wrong" data, as it is entirely possible that 1 and 2 are biased instead.

The cross validation data sets are described below (see Table 3.1).
In general, MCMC is not the best tool to find the multi-dimensional maximum likelihood location and using MCMC to estimate the maximum likelihood introduces an error in the procedure. A better technique would be a likelihood maximisation routine which we have found to be very fragile in this application. However, in similar contexts the MCMC approximation to the maximum likelihood has been used before, and in those cases the error introduced was not large enough to invalidate the results. Here we quantify this error (by comparing results from independent MCMCs) to be $\Delta \ln L \lesssim 1$, which propagates into a CV score error $\lesssim 2$. This is not large enough to invalidate our findings.

We choose to use 5 knots equally spaced in $\log k$ between $k = 1 \times 10^5 \text{Mpc}^{-1}$ and $k = 1 \text{Mpc}^{-1}$, i.e., $(k_1, k_2, k_3, k_4, k_5) = (1 \times 10^{-5} \text{Mpc}^{-1}, 1.78 \times 10^{-4} \text{Mpc}^{-1}, 3.16 \times 10^{-3} \text{Mpc}^{-1}, 5.62 \times 10^{-2} \text{Mpc}^{-1}, 1 \text{Mpc}^{-1})$ (see Figure 3.3 bottom panel for knots placement visualisation). The number and position of the knots is fixed throughout the analysis. As discussed in reference [144], beyond a minimum number of knots, there is a trade-off between the number of knots and the penalty, and the form of the reconstructed function does not depend significantly on the number of knots beyond this minimum number. As the main goal of this work is to explore, in a minimally parametric way, smooth deviations from a power law, a few (> 3) knots are sufficient.

The basic cosmological parameters, $\omega_b = \Omega_b h^2$, $\omega_c = \Omega_c h^2$, h, and τ_{reio} — physical baryonic matter density parameter, physical cold dark matter parameter, dimensionless Hubble parameter and optical depth to last scattering surface — are varied in the MCMC alongside the values f_i of the reconstruction at the knots. A flat geometry is assumed so that $\Omega_m + \Omega_A = 1$.

The prediction for cosmological observables, the calculation of the likelihood and the MCMC parameter inference are implemented using the standard Boltzmann code CLASS [168] and its MCMC sampler code, Monte Python (MP) [169], suitably modified to use a given spline as primordial power spectrum and to factor the penalty in the likelihood evaluation.

As we will discuss in greater detail in Section 3.1.2 even though we reconstruct the primordial power spectrum, we are sensitive to late-time cosmological effects. Indeed, one of our main focus is on massive neutrinos: the presence of neutrinos with non-negligible

1. http://class-code.net
mass would distort our reconstruction in a way that is predictable due to the linearity of the growth functions \([23]\).

Of course neutrino masses do not actually affect the physical PPS. But assuming standard gravity, standard growth of structure, and massless neutrinos in the analysis, would yield a reconstructed PPS with an artificial distortion, if neutrino masses were not negligible. In fact a detectable signature of massive neutrinos in the real data would appear as a power suppression in the reconstructed PPS. Of course a detection of such a feature cannot be univocally interpreted as signature of neutrino masses; other particles beyond the standard model could easily share the same properties of neutrinos when it comes to damping perturbations or it could be a real feature in the PPS.

Working in logarithmic space

As we already discussed, the signal we try to recover is expected to be a small deviation form a power-law. A power-law as in eq. (1.83) can be linearised by taking the logarithm of both sides

$$\log \Delta^2(k) = \log A_s + (n_s - 1)\left[\log(k) - \log(k_0)\right].$$ \hspace{1cm} (3.2)

Small deviations on the power-law translate into small deviation on this linearised expression.

The advantage is that splines approximate way better the linearised expression than the original one. It is really evident checking both Figure 3.1 where a spline is used to approximate a power-law and Figure 3.2 where a little bump is added to a power-law. Moreover, the same procedure has already been applied in literature, e.g. [143].

Datasets

We use a comprehensive set of CMB power spectra measurement by *Planck* and WMAP, and large scale structure power spectra measurement, derived either from weak lensing measurement performed by *Planck* and the Canada-France-Hawaii Lensing Survey, or from galaxy maps, as it is the case for WiggleZ and Sloan Digital Sky Survey. Basically, we consider in our work all current-generation experiments that probe a range of scales big enough to give information on the actual shape of the PPS rather than its normalization.
Figure 3.1.: Splines interpolating mock knots placed alongside a power-law signal. On the left the spline is a function of k taken in linear space, on the right in logarithmic space. Notice the difference in the scale.

Figure 3.2.: Splines interpolating mock knots placed alongside a power-law signal with a bump in it. On the left the spline is working in linear space, on the right in Logarithm space. Notice the difference in the scale.
on a small range of frequencies. In greater detail the datasets we use and the surveys
providing them are:

- *Planck* power spectra of temperature and polarisation of the CMB. The *Planck*
collaboration released in 2013 the temperature data from the first half of the
mission [170]. We complement the *Planck* 2013 data with the WMAP polarisation.
We refer to this as CMB13. In 2015 the results of the full analysis has been
released [171]. Temperature and E-mode polarisation power spectra (and their
cross-correlation) data and likelihoods come in two sets: a low ℓ from $\ell = 2$
to $\ell = 29$, and the high ℓ angular power spectrum, that provides data up to $\ell = 2508$
for TT and up to $\ell = 1996$ for TE and EE. We use all these temperature and
polarisation data and we refer to them as CMB15.

- Beside the CMB power spectrum, *Planck* reconstructed the CMB lensing potential
[172], which contains information on the amplitude of large scale structure integrated
from recombination to present time. Such data are inferred from the study of the
four point function of temperature anisotropies (in the 2015 data release, both
temperature and polarization are included). We will refer to it as *Planck*Lens.

- The Canada-France-Hawaii Lensing Survey (CFHTLenS) [173] combined weak
lensing data processing with THELI [174], shear measurement with lensfit [175], and
photometric redshift measurement with PSF-matched photometry [176] to provide
the two point correlation function of the tomographic weak lensing signal, which we
use in our analysis. A full systematic error analysis of the shear measurements in
combination with the photometric redshifts is presented in [177], with additional
error analyses of the photometric redshift measurements presented in [178].

- The WiggleZ Dark Energy Survey (WiggleZ) has been a large scale galaxy survey
carried out at the Anglo-Australian Telescope in Siding Spring Observatory, New
South Wales. Measuring the position and redshift of 238,000 galaxies, it mapped a
volume of one cubic Gigaparsec over seven regions of the sky up to a redshift $z \lesssim 1$.
The data has been used to calculate the galaxy power spectrum in 4 redshift bins
equally spaced between $0.1 < z < 0.9$ [18], that we employ in our analysis.

- The Sloan Digital Sky Survey used its 2.5 m telescope based in Apache Point
Observatory, New Mexico, to collect 929,555 galaxy spectra. In data release 7, the
collaboration used a sample of luminous red galaxies to reconstruct the halo density
field and its power spectrum roughly between $k = 0.02 h$/Mpc and $k = 0.2 h$/Mpc [17].
Figure 3.3.: Comoving scales covered by the experiments used in our analysis. The vertical dashed line shows the limit of the quasi-linear scales. The triangles show the position of the knots. The leftmost one is not visible in the plot.

In Figure 3.3 we show the scales probed by each experiment along with the location of the knots.

Runs set-up

We now describe the cross validation set up. In order to constrain both the shape of the PPS and the cosmological parameters, we have to consider CMB primary data in all CV runs. Because of time constraints CMB13 is used in the set up CV runs but CMB15 is used in the final run. This choice is conservative, favouring slightly more freedom (lower penalty) to the reconstructed PPS, and its validity will be discussed at the end of this paragraph. Besides these two datasets, we consider 4 other surveys, 2 measuring weak lensing and 2 using galaxy catalogues. We perform 3 CV runs in a pyramidal scheme as summarised in Table 3.1. We start performing in parallel two different cross-validation analysis on two pairs of experiments where each pair is formed by a weak lensing experiment and by a galaxy catalogue. The dependence of the CV score on α_p was mapped by sampling several α_p values. The results of these preliminary runs show no unexpected behaviour or tension, i.e., the reconstructed PPS shows no
significant deviation from a power-law, and the shape of the CV score is the same for both run 1.1 and run 1.2. Knowing this, we then combine the large scale structure data to have one weak lensing and one galaxy survey in each CV set. The best roughness penalty found from this CV is used in the final run which includes all experiments (this is called “Rec.” run in the Table 3.1). The penalty parameter value to use in the reconstruction is determined by the CV score of run 2 alone: its dependence on α_p is illustrated in Figure 3.4. The fact that the shapes of the three CV scores — from run 1.1, 1.2, and 2 — shown in Figure 3.4 are very similar, indicate robustness and that there are no significant tensions between the datasets. To check the consistency of using CMB15 in the final run despite having tuned the cross validation with CMB13, we coarsely re-sampled only the run 2 CV curve using CMB15. The difference induced on the CV scores by this change is consistent with the intrinsic noise of the MCMC sampling discussed in Section 3.1.1.

The CV score has a fairly well defined “wall” for high penalties, but is quite constant under a certain threshold at $\alpha_p \sim 10$. For high α_p, the penalty starts being the dominant contribution to the likelihood, so the sharp increase in the limit of high α_p is expected. On the other hand, if small values of the penalty were to lead to overfitting, the CV score should increase as α_p decreases. This is not what we see and can be understood as follows. CMB angular power spectra are always included in the analysis and in this limit, it is the statistical power of these data (not the penalty) that drives the smoothness of the reconstruction and therefore the CV score. In other words, for low values of the penalty below $\alpha_p \sim 10$, all datasets are well consistent with the Planck-inferred PPS reconstruction: the CMB data alone disfavour unnecessarily wiggly shapes, even when there is a low penalty.

Since there is not a well defined minimum for the CV score, we opt for presenting two different cases. One is more conservative, in the sense that it has a stronger penalty

<table>
<thead>
<tr>
<th>Run</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>CMB13, PlanckLens</td>
<td>CMB13, SDSS DR7</td>
</tr>
<tr>
<td>1.2</td>
<td>CMB13, CFHTLenS</td>
<td>CMB13, WiggleZ</td>
</tr>
<tr>
<td>2</td>
<td>CMB13, PlanckLens, SDSS DR7</td>
<td>CMB13, CFHTLenS, WiggleZ</td>
</tr>
<tr>
<td>Rec.</td>
<td>CMB15, PlanckLens, SDSS DR7, CFHTLenS, WiggleZ</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.1. Cross-validation datasets A and B for the various runs. The reconstruction (Rec.) involve all the experiments together.
Figure 3.4.: CV score as a function of α_p for the different cross-validation runs. A different arbitrary offset has been subtracted from each CV score. The noise in the CV score curves, approximately ΔCV score ~ 2 for run 2 and ~ 1 for run 1, is due to the fact that MCMC are used to find the best-fit point. The sharp increase in CV score for $\alpha_p > 10$ is much larger than this error and is therefore considered physical.

that allows only small deviations from the concordance power-law model. For this one we choose $\alpha_p = 1$.

The other leaves more freedom to the data, as we choose a more relaxed penalty $\alpha_p = 0.01$. A reconstruction with $\alpha_p \ll 0.01$ is pretty much uninformative. In fact recall that the free parameters in our MCMC runs are the physical baryon density ω_b, the physical cold dark matter density ω_{cdm}, the rescaled Hubble parameter h, the optical depth to reionization τ_{reio}, and the value of the five knots of the spline that we used to parametrize the shape of the PPS. At such low penalty values the reconstruction transfers in part the features of the radiation transfer function and the effect of the optical depth to reionization into the PPS opening up degeneracies in parameter space.

3.1.2. Reconstruction sensitivity to non-primordial effects

Figure 3.5A.1–3.5R.2 visualises the concept — exploited here — that in the reconstructed primordial power spectrum the effect of a non-zero neutrino mass is degenerate with a power suppression. This is a good approximation especially on scales where the evolution is linear or mildly non-linear, i.e., $k < 0.2 \, h\, \text{Mpc}^{-1}$. To study quantitatively this degeneracy we shall consider two toy models. First let us assume a ΛCDM universe
with massive neutrinos, where all the cosmological parameters are known and with a
power law PPS at the end of inflation (Figure 3.5A.1). From these initial conditions
we evolve the perturbations assuming massive neutrino (different values for the total
mass are shown). On small physical scales neutrino free streaming [111] suppresses power
(Figure 3.5A.2) yielding a resulting power spectrum shown in Figure 3.5R.1. Now we
can think of an alternative scenario that implement the neutrino power suppression
(Figure 3.5B.1) directly on the initial PPS as a deviation from a power law as shown in
Figure 3.5B.2. This initial power spectrum is then evolved assuming massless neutrinos.
The linearity of the perturbation evolution equations guarantees that the generated
matter and CMB power spectra would be the same as in the first case (Figure 3.5R.1).
In Figure 3.5R.2 we can appreciate the fact that discrepancies in the prediction made in
the two cases come from non-linearities.

To be sure that our reconstruction is accurate enough to be sensitive to the damp
we have tried to recover a known signal. We multiplied the damping ratio generated
with CLASS to a power-law signal as in Figure 3.5B.2 Then we tried to use a spline
to reconstruct it and we checked the difference. As it came out we have errors much
smaller than the effect of the damping. Figure Figure 3.6 shows the ratio of the spline
reconstruction to the signal for various neutrino masses. By comparing it with figure
Figure 3.5A.2 we can obtain the data shown in Table 3.2. As shown the error of the
reconstruction is always less than one fifth of the signal. After this preliminary test, we
are thus confident that we are able to retrieve a neutrino damping signal, if present in
the data and if the value of the mass is high enough. In fact here we have quantified
only the error due to the use of the spline, and not the errors due to the fit procedure.
Those will be know once the likelihood distribution is known. A discussion about errors
is carried when the results are shown in the Figure 3.1.3.

Another source of error that might contribute is given by the use of spline with a
limited number of knots. If the number of knots, or their position, is not suitably chosen,
Testing the power spectrum

Figure 3.5.: How a non-zero neutrino mass would induce a power suppression in the reconstructed power spectrum. Both method A.1–A.2 and B.1–B.2 give the same result R.1–R.2 at linear level.
one could be unable to reconstruct a given signal. This is not our case, with our choice of knots we have verified that we can reconstruct any neutrino power suppression with a 10^{-3} accuracy.

Interest in massive neutrinos The vanilla ΛCDM model assumes zero mass neutrinos. As we already pointed out it is fairly in good agreement with current data, but since considering massive neutrinos is one of the more straightforward possible extension of the ΛCDM model, cosmologists have always been interested in it. With oscillation experiments results confirming that at least two neutrino states are massive, extending the ΛCDM model was no more a speculation and became necessary. Even though flavour oscillation experiments are really helpful in providing a lower bound on the mass sum, they are clueless about determining the absolute mass scale, and the stringent upper limit come from beta decay experiments. Quantitatively, relying on particle physics experiments alone, one gets the constraints \[\sum m_\nu \leq 6 \text{ eV} \] (95\% C.L.) (3.3)

Luckily, cosmological observations allows to put a stricter upper bound, improving the beta decay one by at least one order of magnitude. Such a constraint do not come without caveats: there is an ongoing debate in the cosmological community on how to interpret some tensions between measurements coming from different datasets. The topic is of particular importance because it has been linked to a more general tension between CMB and local measurements of H_0 and σ_8. The Hubble parameter has been measured extrapolating up to today the best fit of the Planck CMB power spectra \[H_0 \text{ and } \sigma_8. \] The Hubble parameter has been measured extrapolating up to today the best fit of the Planck CMB power spectra \[2, 158 \text{ and with} \]
Hubble telescope redshift measurements \[16\]. The two estimates differs by 2.5σ. On the other hand, if inferring it from CMB data give the value $\sigma_8 = 0.8233 \pm 0.0097$ \[158\], local measurement fluctuate around the value $\sigma_8 = 0.77 \pm 0.02$ \[179\].

Many recent studies claimed that some expansions in the neutrino sector of the ΛCDM model could help solve the problem. Changes in the number of families, addiction of sterile neutrinos, different sums of the masses and numbers of relativistic species have been all considered as possible solutions of the tension on H_0 \[152\] and σ_8 \[153–157\]. Other works rejects those conclusions, favouring model with no sterile neutrinos and lower masses \[158–165\].

What we are going to do then is to set CLASS so that in the Monte Carlo Markov Chains neutrino masses are set to 0. If there were detectable massive neutrinos in the real data, we would recover the damp feature in the primordial power spectrum, just as we explained before.

3.1.3. Minimally parametric reconstruction

Here we present the results with the Planck 2015 likelihood and all the large scale structure power spectrum data (Planck Lensing 2015, WiggleZ, CFHTLenS, and SDSS DR7), with the two different roughness penalties ($\alpha_p = 1$ and $\alpha_p = 0.01$) justified above.

As discussed in refs. \[158,180–183\] there is a tension between the inferred matter power spectrum amplitude from CMB and from CFHTLenS, which may arise from possible systematic errors in the photometric redshifts of CFHTLenS. For this reason we present results first without and then with CFHTLenS.

Reconstruction omitting CFHTLenS

In Figure 3.7a and Figure 3.7b we show the reconstructed PPS for $\alpha_p = 1$ and $\alpha_p = 0.01$ respectively. The colour-bars on the upper side show the scales probed by each experiment as in Figure 3.3, green for PlanckLens, red for WiggleZ, gold for SDSS DR7. CMB15 covers the whole plot. The best-fit reconstruction is shown in white and errors are shown by plotting in dark blue (light blue) a random sample of 400 reconstructions chosen among the 68.27% most likely points (points in the range 68.27% - 95.45%) in the MCMC. The 95.5% confidence regions appear to almost coincide with the 68.3%: this is because
Figure 3.7.: Reconstructed PPS. The best-fit reconstruction is shown in white. Errors are shown by plotting in dark blue (light blue) 400 spline picked at random among the 68.27% most likely points (points in the range 68.27% - 95.45%) in the MCMC. The red (pale red) region shows the 68% (95%) confidence intervals for Planck 2015 TT, TE, EE + Low P. The colour-bars on the upper side show the scales probed by each experiment as in Figure 3.3, green for PlanckLens, red for WiggleZ, gold for SDSS DR7. CMB15 covers the whole plot.

the reconstructed spectra are simply more wiggly, while a larger deviation of the overall amplitude is disfavoured.

In the figure the red and pale red regions show the 68 and 95% confidence intervals for the standard power law ΛCDM Planck 2015 TT, TE, EE + Low P analysis [2].

Note that for the more conservative choice of the penalty, errors of the reconstructed PPS are comparable with errors from Planck parametric fit at all scales. For the less conservative penalty this is also true on scales corresponding to $\ell > 30$. This did not happen with the previous generation of cosmological data (see [145]) where the PPS reconstructed with the same approach was significantly less constrained than with a power law fit.

The main difference between the “stiff” reconstruction, with $\alpha_p = 1$, and the more flexible reconstruction, with $\alpha_p = 0.01$, is at low k (low ℓ) where the cosmic variance error is large. Even if there was a feature at low ℓ, it is not significative enough to clearly ask for a low α_p. Even with a low penalty the reconstructed power spectrum does not show features or deviations from a power law at high k, which is where we would expect to see something if this analysis were to confirm some of the claims in the literature [152–157]. Instead the additional freedom in the PPS allowed by the lower penalty $\alpha_p = 0.01$ is used on scales corresponding to low CMB multipoles $\ell < 30$. As discussed, these scales
Testing the power spectrum

Figure 3.8.: Reconstructed PPSs spectral index. The white line corresponds to the best-fit reconstruction. Errors are shown by plotting in dark blue (light blue) 400 reconstructions randomly selected from the 68.27% most likely points (points in the range 68.27% - 95.45%) in the MCMC. The red (pale red) region shows 68% (95%) confidence intervals for the power law *Planck* 2015 TT, TE, EE + Low P fit. The colour-bars on the upper side show the scales probed by each experiment as in Figure 3.3, green for *Planck* Lens red for WiggleZ, gold for SDSS DR7. CMB15 covers the whole plot. In the right figure, the grey line is $n(k) \equiv 1$, i.e., scale invariance.

are dominated by cosmic variance and are known to be lower than the standard ΛCDM prediction e.g., [170,182–185] and refs therein.

In Figure 3.8a and Figure 3.8b we also show the reconstructed $n(k) \equiv d \ln P(k)/d \ln k$ ($\alpha_p = 1$ and $\alpha_p = 0.01$) for ease of comparison with the standard power law results. We find no evidence that any scale dependence of the power spectrum spectral slope is necessary, which is in agreement with previous analyses. However with this new data set we find that $n = 1$ is highly disfavoured by the data, in particular for $\alpha_p = 1$ the significance of the departure from scale invariance is comparable with that obtained when adopting the “inflation–motivated” power-law prior. Even for the more flexible reconstruction, not even one point of the more than 4×10^5 MCMC points falls near scale invariance.

The results shown in Figure 3.7 and Figure 3.8 offer a powerful confirmation of the inflationary paradigm, justify the adoption of the inflationary prior in cosmological analyses.

Finally in Figure 3.9a and Figure 3.9b we show the ratio of the reconstructed PPS to the best-fit *Planck* 2015 (temperature, polarisation, and lensing) power law model.

Recall that the quantity that was actually reconstructed using cross-validation to find the optimal penalty is in reality the power spectrum.
Figure 3.9: Reconstructed PPS divided by the Planck 2015 TT, TE, EE + LowP + Lensing power-law PPS best-fit using the same conventions as Figure 3.7 for the legend and the reconstructed $P(k)$. The red lines show the small-scales power suppression effect due to massive neutrinos. The upper line is the $\Sigma m_\nu = 0$ eV theoretical prediction based on the conditional best-fit to Planck 2015 TT, TE, EE + LowP + Lensing + BAO + JLA + H_0 data, the lower line is the same with $\Sigma m_\nu = 0.2$ eV.

The reconstruction is fully compatible with the parametric fit. The figure also shows the expected effect of small scale power suppression due to massive neutrino free-streaming for two representative values of neutrino masses $\Sigma m_\nu = 0$ eV and 0.2 eV. The two models are the conditional (i.e., keeping Σm_ν fixed at the required value) best-fit to the data (Planck 2015 TT, TE, EE + Low P + Lensing + BAO + JLA + H_0 data). Clearly models with $\Sigma m_\nu > 0.2$ eV are highly disfavoured by the data even with this minimally parametric reconstruction: not a single step of a 4×10^5 size MCMC goes near the $\Sigma m_\nu = 0.2$ eV line. This of course does not exclude the — admittedly contrived — case with a arbitrarily large neutrino mass inducing a small scale power suppression which is cancelled by a compensating boost of the PPS on the same scales. Occam’s razor disfavours this scenario.

Reconstruction with CFHTLenS

The reconstructed $P(k)$, $n(k)$ and $P(k)$ relative to the power law best-fit are shown in Figure 3.10, 3.11 and 3.12 using the same conventions as in Figure 3.7, 3.8 and 3.9.

Comparison with the results of Section 3.1.3 (in Figure 3.7, 3.8, 3.9) shows that qualitatively the reconstructions are very similar, there is no strong evidence for deviations from the power law behaviour and scale invariance is still excluded. However quantitatively
Testing the power spectrum

Figure 3.10: Reconstructed PPS. Refer to Figure 3.7 for explanation and colour code. In addition, the purple line shows the scales covered by CFHTLenS.

Figure 3.11: Reconstructed PPSs spectral index. Refer to Figure 3.8 for explanation and colour code. In addition, the purple line shows the scales covered by CFHTLenS.

Figure 3.12: Reconstructed PPS relative to Planck 2015 TT, TE, EE + LowP + Lensing power-law PPS best-fit. Refer to Figure 3.9 for explanation and colour code. In addition, the purple line shows the scales covered by CFHTLenS.
Testing the power spectrum

<table>
<thead>
<tr>
<th>Param</th>
<th>best-fit</th>
<th>mean ± σ</th>
<th>95% lower</th>
<th>95% upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 ω_b</td>
<td>2.226</td>
<td>2.229$^{+0.015}_{-0.015}$</td>
<td>2.199</td>
<td>2.258</td>
</tr>
<tr>
<td>ω_{cdm}</td>
<td>0.1184</td>
<td>0.1191$^{+0.0011}_{-0.0011}$</td>
<td>0.1168</td>
<td>0.1214</td>
</tr>
<tr>
<td>h</td>
<td>0.6795</td>
<td>0.6815$^{+0.0052}_{-0.0053}$</td>
<td>0.6712</td>
<td>0.6919</td>
</tr>
<tr>
<td>τ</td>
<td>0.0542</td>
<td>0.05982$^{+0.0092}_{-0.013}$</td>
<td>0.04001</td>
<td>0.07955</td>
</tr>
<tr>
<td>$10^9 K_1$</td>
<td>2.788</td>
<td>2.736$^{+0.11}_{-0.12}$</td>
<td>2.507</td>
<td>2.965</td>
</tr>
<tr>
<td>$10^9 K_2$</td>
<td>2.546</td>
<td>2.534$^{+0.07}_{-0.07}$</td>
<td>2.395</td>
<td>2.673</td>
</tr>
<tr>
<td>$10^9 K_3$</td>
<td>2.307</td>
<td>2.32$^{+0.043}_{-0.049}$</td>
<td>2.231</td>
<td>2.412</td>
</tr>
<tr>
<td>$10^9 K_4$</td>
<td>2.072</td>
<td>2.108$^{+0.036}_{-0.053}$</td>
<td>2.028</td>
<td>2.194</td>
</tr>
<tr>
<td>$10^9 K_5$</td>
<td>1.872</td>
<td>1.9$^{+0.047}_{-0.059}$</td>
<td>1.802</td>
<td>2.006</td>
</tr>
</tbody>
</table>

Table 3.3: Best-fit, mean and confidence intervals for the MCMC parameters in the reconstruction with $\alpha_p = 1$

<table>
<thead>
<tr>
<th>Param</th>
<th>best-fit</th>
<th>mean ± σ</th>
<th>95% lower</th>
<th>95% upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 ω_b</td>
<td>2.244</td>
<td>2.236$^{+0.015}_{0.014}$</td>
<td>2.207</td>
<td>2.264</td>
</tr>
<tr>
<td>ω_{cdm}</td>
<td>0.1182</td>
<td>0.1182$^{+0.0111}_{-0.0011}$</td>
<td>0.1161</td>
<td>0.1204</td>
</tr>
<tr>
<td>h</td>
<td>0.6867</td>
<td>0.6854$^{+0.0048}_{-0.0051}$</td>
<td>0.6757</td>
<td>0.6953</td>
</tr>
<tr>
<td>τ</td>
<td>0.05239</td>
<td>0.05852$^{+0.0087}_{-0.013}$</td>
<td>0.04001</td>
<td>0.07795</td>
</tr>
<tr>
<td>$10^9 K_1$</td>
<td>2.721</td>
<td>2.697$^{+0.12}_{-0.12}$</td>
<td>2.463</td>
<td>2.931</td>
</tr>
<tr>
<td>$10^9 K_2$</td>
<td>2.512</td>
<td>2.504$^{+0.069}_{-0.071}$</td>
<td>2.363</td>
<td>2.645</td>
</tr>
<tr>
<td>$10^9 K_3$</td>
<td>2.281</td>
<td>2.3$^{+0.041}_{-0.048}$</td>
<td>2.213</td>
<td>2.389</td>
</tr>
<tr>
<td>$10^9 K_4$</td>
<td>2.065</td>
<td>2.098$^{+0.035}_{-0.051}$</td>
<td>2.021</td>
<td>2.182</td>
</tr>
<tr>
<td>$10^9 K_5$</td>
<td>1.869</td>
<td>1.9$^{+0.045}_{-0.058}$</td>
<td>1.802</td>
<td>2.003</td>
</tr>
</tbody>
</table>

some differences may be appreciated. Adding the CFHTLenS datasets has the effect of lowering the overall PPS normalisation (clearly visible by comparison with Figure 3.7).

The ratio with Planck power law best-fit in Figure 3.12 highlights how, independently from our choice of datasets, high neutrino masses are disfavoured. Quantitatively the $\Sigma m_\nu > 0.2$ eV bound is excluded at more than 95% confidence if we assume a power law PPS, as discussed in Section 3.1.3.

For completeness we also report the recovered values and errors for all the model parameters in Table 3.3 and Table 3.4 for the two penalties $\alpha_p = 1$ and $\alpha_p = 0.01$ respectively.
Testing the power spectrum

<table>
<thead>
<tr>
<th>Param</th>
<th>best-fit</th>
<th>mean ± σ</th>
<th>95% lower</th>
<th>95% upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 (\omega_b)</td>
<td>2.239</td>
<td>2.226±0.016</td>
<td>2.194</td>
<td>2.259</td>
</tr>
<tr>
<td>(\omega_{cdm})</td>
<td>0.1173</td>
<td>0.1193±0.0013</td>
<td>0.1168</td>
<td>0.1218</td>
</tr>
<tr>
<td>(h)</td>
<td>0.6898</td>
<td>0.6806±0.0055</td>
<td>0.6694</td>
<td>0.6922</td>
</tr>
<tr>
<td>(\tau)</td>
<td>0.07136</td>
<td>0.05974±0.0088</td>
<td>0.04</td>
<td>0.08061</td>
</tr>
<tr>
<td>(10^{+9}K_1)</td>
<td>1.968</td>
<td>2.351±0.67</td>
<td>1.014</td>
<td>3.711</td>
</tr>
<tr>
<td>(10^{+9}K_2)</td>
<td>2.159</td>
<td>2.351±0.29</td>
<td>1.769</td>
<td>2.934</td>
</tr>
<tr>
<td>(10^{+9}K_3)</td>
<td>2.272</td>
<td>2.31±0.059</td>
<td>2.191</td>
<td>2.431</td>
</tr>
<tr>
<td>(10^{+9}K_4)</td>
<td>2.148</td>
<td>2.106±0.036</td>
<td>2.024</td>
<td>2.198</td>
</tr>
<tr>
<td>(10^{+9}K_5)</td>
<td>1.933</td>
<td>1.923±0.073</td>
<td>1.773</td>
<td>2.074</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Param</th>
<th>best-fit</th>
<th>mean ± σ</th>
<th>95% lower</th>
<th>95% upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 (\omega_b)</td>
<td>2.235</td>
<td>2.234±0.015</td>
<td>2.203</td>
<td>2.266</td>
</tr>
<tr>
<td>(\omega_{cdm})</td>
<td>0.1179</td>
<td>0.1182±0.012</td>
<td>0.116</td>
<td>0.1205</td>
</tr>
<tr>
<td>(h)</td>
<td>0.686</td>
<td>0.6853±0.0052</td>
<td>0.6749</td>
<td>0.6958</td>
</tr>
<tr>
<td>(\tau)</td>
<td>0.06203</td>
<td>0.05911±0.0085</td>
<td>0.04</td>
<td>0.07976</td>
</tr>
<tr>
<td>(10^{+9}K_1)</td>
<td>2.241</td>
<td>2.42±0.67</td>
<td>1.09</td>
<td>3.784</td>
</tr>
<tr>
<td>(10^{+9}K_2)</td>
<td>2.294</td>
<td>2.373±0.31</td>
<td>1.787</td>
<td>2.962</td>
</tr>
<tr>
<td>(10^{+9}K_3)</td>
<td>2.28</td>
<td>2.292±0.056</td>
<td>2.176</td>
<td>2.414</td>
</tr>
<tr>
<td>(10^{+9}K_4)</td>
<td>2.106</td>
<td>2.1±0.035</td>
<td>2.019</td>
<td>2.189</td>
</tr>
<tr>
<td>(10^{+9}K_5)</td>
<td>1.899</td>
<td>1.919±0.071</td>
<td>1.772</td>
<td>2.071</td>
</tr>
</tbody>
</table>

Table 3.4: Best-fit, mean and confidence intervals for the MCMC parameters in the reconstruction with \(\alpha_p = 0.01\)

The degeneracies among the parameters for the PPS value at the knots can be appreciated in the triangle plots of Figure [3.13a] for \(\alpha_p = 1\) and Figure [3.13b] for \(\alpha_p = 0.01\). Correlations with and among the cosmological parameters not shown are negligible. As expected, higher penalty induce correlations among the knots which are stronger between neighbouring ones.

Interestingly the only cosmological parameter that correlates with the knots is \(\tau_{reio}\), which show degeneracy with the knots at higher \(k\) (Figure [3.13c] and [3.13d]). This behaviour is however not unexpected. The \(\tau_{reio}\) parameter only affects the CMB and in particular its main effect is to suppress the temperature power spectrum at multipoles \(\ell \gtrsim 80\). With our choice for the location of the knots, the most affected knots are...
Figure 3.13: Triangular plots for the run with all the datasets combined. We refer to the value of the spline function evaluated at the \(i \)-th knot as \(K_i \).

(a) \(\alpha_p = 1 \).

(b) \(\alpha_p = 0.01 \).

(c) \(\alpha_p = 1 \).

(d) \(\alpha_p = 0.01 \).
therefore K_4 and K_5. Improved polarisation data at low ℓ should reduce this degeneracy. The figure excluding the CFHTLenS dataset is qualitatively very similar and thus is not shown here.

3.1.4. Implication for cosmological models

The analysis of the latest cosmological data [2] indicates a highly significant deviation from scale invariance of the primordial power spectrum (PPS) when parameterized by a power law or by a spectral index and a “running”. This offers a powerful tool to discriminate among theories for the origin of perturbations and among inflationary models. In fact, the deviation from scale invariance of the PPS is a critical prediction of inflation and is the only signature that is generic to all inflationary models. It is therefore a vital test of the inflationary paradigm.

One may wonder if a strong theoretical prior on the form of the power spectrum, such as the power law prescription, can lead to artificially tight constraints or even a spurious detection of a deviation from scale invariance, if the adopted model were not a good fit to the data.

Here we have built on the work of [143,144] to reconstruct the PPS with a minimally parametric approach, using the cross-validation technique as the smoothness criterion. We consider a comprehensive set of state-of-the-art cosmological data including probes of the Cosmic Microwave Background, and of large scale structure via gravitational lensing and galaxy redshift surveys. While the spline reconstruction used here is best suited for smooth features in the PPS, it is also sensitive to sharp features if they have high enough signal-to-noise.

We find that there is no evidence for deviations from a power law PPS, and that errors of the reconstructed PPS are comparable with errors obtained with a power law fit. These results should be compared with those presented in [145], to appreciate the increase in statistical power brought about by the latest generation of experiments. In fact with current data a scale-invariant power spectrum is highly disfavoured even with this minimally parametric reconstruction. In particular for our conservative choice of smoothness penalty parameter values the significance of the departure from scale invariance is comparable with that obtained when adopting the “inflation-motivated” power-law prior. Constraints no longer relax significantly when generic forms of the PPS are allowed.
Because of its flexibility, our reconstruction would be able to detect the tell-tale signature of small scale power suppression induced by free streaming of neutrino if they are sufficiently massive. Of course in reality the suppression happens in the late-time power spectrum, not in the primordial one. But as we do not include the effect of neutrino masses in the matter transfer function, the reconstruction would recover an “effective” small scale damping. Our reconstruction detects no such signature, ruling out a model with a power law PPS and sum of neutrino masses of $0.2\:\text{eV}$ or larger.

Our results, which recover in a model independent way a power law power spectrum with a small but highly significant red tilt, offer a powerful confirmation of the inflationary paradigm, justifying adoption of the inflationary prior in cosmological analyses.
3.2. Compensated isocurvature perturbations

The observation of the cosmic microwave background (CMB) strongly suggests that the primordial density perturbations were adiabatic [2]. Departure from adiabatic perturbations, such as additional isocurvature perturbations on top of the adiabatic ones, change the CMB temperature angular power spectrum drastically, therefore they are tightly constrained. However, the isocurvature perturbations of the single species can be combined in such a way that they leave no imprint on the linear CMB power spectrum. In this case they are called compensated isocurvature perturbations (CIPs) [8]. This kind of configuration could possibly be related to the curvaton model [186] or to spontaneous baryogenesis [187]. At the level of linear CMB anisotropies there is an exact degeneracy between baryon isocurvature perturbations and CDM ones [8]. The linearised continuity equations for the baryons and the photons differ only because the baryon sector has additional terms proportional to the sound velocity squared c_s^2. During the recombination period, we approximately have

$$c_s^2 \approx \frac{\bar{\rho}_b}{\bar{\rho}_b} \approx \frac{T_{\gamma}}{m_p} \approx 10^{-9}$$

with T_{γ} and m_p being the temperature of photon at recombination and the proton mass, respectively [188]. Therefore, the fluctuations of each sector follow the exact same equations before the sound horizon entry, and hence we cannot make a clear distinction between these two isocurvature modes. For the temperature angular power spectrum, the relative Jeans scale corresponds to the multipole $\ell \sim 10^6$, where the anisotropies are exponentially suppressed due to Silk damping, preventing a clear detection. Thus studying linear anisotropies, we can only constrain the neutrino and the total matter isocurvature perturbations, but not baryonic and CDM perturbations separately.

The current upper bounds on CIPs are given by looking at the secondary modulation of the baryon (electron) distribution in the presence of CIPs at recombination [186,188,191]. The amplitude of the dimensionless CIP power spectrum Δ_{rms}^2 has been constrained with the Planck data using different methodologies, such as looking for modifications of the CMB angular power spectrum due to second order contributions, or through the analysis of the CMB trispectrum. The most recent upper limit have been given, for example, in [189], $\Delta_{\text{rms}}^2 < 5.0 \times 10^{-3}$ (68% C.L.); in [191] $\Delta_{\text{rms}}^2 < 1.2 \times 10^{-2}$ (95% C.L.); and [192] $\Delta_{\text{rms}}^2 < 1.1 \times 10^{-2}$ (95% C.L.). As pointed out in Refs. [186,190], further understanding is expected from the data analysis of a cosmic variance limited (CVL) CMB-polarization survey, such as CMB-S4 [193]. There are also studies about the effects of CIPs on the baryon acoustic oscillation [194,195]. Another possibility is to see directly the spatial electron distribution by observing the redshift of 21 cm line of the neutral hydrogen
Testing the power spectrum

Testing the power spectrum

hyperfine structure [196]. While most studies so far only provided upper limit to the existence of CIPs, the author in Ref. [191] has instead recently reported a 2σ detection of the CIPs as the result of a full parameter estimation of Planck data, providing a hint that a sizable amount of CIPs might exist. Therefore, it is interesting to pursue this trail using future cosmological data, and to find novel probes of CIPs signatures.

In this section, we explore the possibility of observing the CIPs using CMB spectral distortion anisotropies. The spectrum of the CMB has been measured with great precision by COBE/FIRAS, and within experimental accuracy it perfectly follows a (direction dependent) Planck distribution. However, it is actually non trivial that the deviation from the isotropic blackbody spectrum can be described solely by the local temperature parameter since the early universe is out of thermal equilibrium at redshifts $z \sim \mathcal{O}(10^3)$ as discussed in Section 1.3. Since there was some energy transfer between photons and electrons during this period, the CMB spectrum was no more at equilibrium. Such an energy transfer can be characterized by T_e/m_e with T_e and m_e being the electron temperature and electron mass. This correction is so tiny that it is usually ignored in the standard cosmological perturbation theory, but it would be non negligible if a considerable amount of CIP is present. Distribution functions for non equilibrium systems are highly non trivial, but it is known that in the regime of inefficient Compton scattering the photon distribution has a characteristic shape described by the y-distortion we defined in eq. (1.44).

We consider the linear modulation of the y-distortions due to the electron density fluctuations in the presence of CIPs. The vital point is that linear anisotropies of the y-distortions can resolve the degeneracy between CDM and baryon isocurvature perturbation, even though the signal is tiny because the energy transfer is suppressed as we mentioned above. Here, we investigate the spectral distortion anisotropies by employing a systematic formulation proposed in Refs. [197–199]. The idea of using spectral distortions has been originally proposed in Ref. [200], but it was shown that the quadratic spectral distortions from Silk damping are insensitive to the CIPs. Instead in this article we consider the linear modulation of the Background spectral distortions.

The discussion is organized as follows. In Section 3.2.1 we derive the linear y-distortion collision terms for the Compton scattering by using a set of frequency basis, obtain the Boltzmann equation, and estimate the linear y anisotropies by using the Boltzmann code CLASS [201]. Then, in Section 3.2.2 we show the y-distortions anisotropies cross correlations with T and E, and we discuss the dependence with the CIPs parametrization we employ. A Fisher matrix analysis about the possibility of constraining the CIPs...
with future surveys is given in Section 3.2.3 and finally we draw our conclusions in Section 3.2.4.

3.2.1. Linear order spectral distortions anisotropies

In Section 1.5.1 we showed how at leading order it is possible to factor out the frequency dependence from the photon Boltzmann equation, and transform it into eq. (1.101). The same cannot trivially be done if we consider energy exchange between electrons and photons. Therefore we develop a momenta expansion for the CMB energy spectrum.

Beyond the Thompson scattering limit

Let us go beyond the Thomson scattering limit, that is, we consider the collision processes of the Compton scattering, which, contrary to the Thompson scattering limit, allow energy transfer between photons and electrons. Though the Thomson collision effect does not have the homogeneous part at the zeroth order, this is not the case if we include the Compton scattering correction as explicitly shown below [202]:

\[
(n_e \sigma_T a)^{-1} C_{CS}^{(0)}[f] = \frac{T_e}{m_e} \left(p^2 \frac{\partial^2 f^{(0)}}{\partial p^2} + 4p \frac{\partial f^{(0)}}{\partial p} \right) + \frac{p(1 + z)}{m_e} \left(2f^{(0)}p \frac{\partial f^{(0)}}{\partial p} + p \frac{\partial f^{(0)}}{\partial p} + 4f^{(0)} f^{(0)} + 4f^{(0)} \right). \tag{3.4}
\]

As it evident, the frequency dependence cannot be factorized as we did in the Thompson limit.

The linear order collision term for the Compton scattering is more complicated since we need to expand the collision terms up to the cubic order in the electron velocity. The statistical average of the electron momentum cube can be divided into a thermal part that goes like \(T_e/m_e \times v\) and a bulk velocity part such as \(v^3\), which we drop for simplicity. We can drop the second order terms such as \(v^2\) due to the Gaussian initial condition we assume. This point will be discussed later. The expression was first derived in Ref. [31] and rederived in Ref. [199], and has the form

\[
(n_e \sigma_T a)^{-1} C_{CS}^{(1)}[f] = \frac{p(1 + z)}{m_e} \left[2p \frac{\partial f^{(0)}}{\partial p} f^{(1)}(p) + 4f^{(0)} f^{(1)}(p) + 2f^{(1)}(p) \right]
\]
\[+ 4 f^{(0)} f^{(1)} + p \frac{\partial f^{(1)}}{\partial p} + 2 f^{(0)} + 2 f^{(0)} \frac{p \partial f^{(0)}}{\partial p} \]

\[
+ (\hat{v} \cdot n) \left(\frac{24}{5} i f^{(0)} f^{(1)} + \frac{12}{5} i f^{(1)} + \frac{12}{5} f^{(0)} p \frac{\partial f^{(1)}}{\partial p} + \frac{6}{5} p \frac{\partial f^{(0)}}{\partial p} \right)
\]

\[
+ (v \cdot n) \left(-8 f^{(0)2} - 8 f^{(0)} - \frac{7}{5} p^2 \frac{\partial^2 f^{(0)}}{\partial p^2} - \frac{14}{5} f^{(0)} p^2 \frac{\partial^2 f^{(0)}}{\partial p^2} - \frac{31}{5} p \frac{\partial f^{(0)}}{\partial p} - \frac{62}{5} f^{(0)} p \frac{\partial f^{(0)}}{\partial p} \right)
\]

\[
+ P_2 \left(-2 f^{(0)} f^{(1)} - f^{(0)} \frac{p \partial f^{(1)}}{\partial p} - \frac{1}{2} p \frac{\partial f^{(1)}}{\partial p} \right)
\]

\[
+ P_3 \left(-\frac{3i}{5} f^{(1)} - \frac{6i}{5} f^{(0)} f^{(1)} - \frac{3i}{5} f^{(0)} p \frac{\partial f^{(1)}}{\partial p} - \frac{3i}{10} p \frac{\partial f^{(1)}}{\partial p} \right)
\]

\[
+ \frac{T_e}{m_e} \left[(v \cdot n) \left(-\frac{7}{5} p^3 \frac{\partial^3 f^{(0)}}{\partial p^3} - \frac{47}{5} p^2 \frac{\partial^2 f^{(0)}}{\partial p^2} - \frac{15}{2} p \frac{\partial f^{(0)}}{\partial p} \right) +
\right.
\]

\[
(\hat{v} \cdot n) \left(\frac{6i}{5} p^2 \frac{\partial^2 f^{(1)}}{\partial p^2} + \frac{24i}{5} p \frac{\partial f^{(1)}}{\partial p} + \frac{6i}{5} f^{(1)} \right) + P_2 \left(-\frac{1}{2} p^2 \frac{\partial^2 f^{(1)}}{\partial p^2} - 2p \frac{\partial f^{(1)}}{\partial p} + 3f^{(1)} \right)
\]

\[
+ P_3 \left(-\frac{3i}{10} p^3 \frac{\partial^2 f^{(1)}}{\partial p^2} - \frac{6i}{5} \frac{p \partial f^{(1)}}{\partial p} + \frac{6i}{5} f^{(1)} \right) + p^2 \frac{\partial^2 f^{(1)}}{\partial p^2} + 4p \frac{\partial f^{(1)}}{\partial p} \right].
\]

(3.5)

where \(f^{(1)} \) implies the linear fluctuations of the photon distribution function, which cannot be expressed solely in terms of temperature perturbation as we will see below. Obviously, frequency dependence for the linear Compton collision term cannot be treated in a simple manner. This clearly shows that our local equilibrium ansatz eq. (1.93) is no more applicable, and we only have the effective temperature perturbation

\[
\Theta(\eta, x, n) \to \Theta(\eta, x, pn). \tag{3.6}
\]

In principle we have to solve an infinite number of equations for each \((\eta, x, n)\). This would be time consuming and requires tough numerical simulations. In the next section, we solve this problem by employing a moment expansion, which was introduced in Refs. [197–199].

CMB energy spectrum momenta expansion

Ref. [199] found out that the following three basis functions would be minimum to handle the frequency dependence of the \(T_e/m_e \to 0 \) limit Boltzmann equation up to cubic order

Ref. [199] found out that the following three basis functions would be minimum to handle the frequency dependence of the \(T_e/m_e \to 0 \) limit Boltzmann equation up to cubic order.
Testing the power spectrum

in the primordial fluctuations:

\[G \equiv \left(-p \frac{\partial}{\partial p}\right) f^{(0)}, \]
\[Y \equiv \left(-p \frac{\partial}{\partial p}\right)^2 f^{(0)} - 3G, \]
\[K \equiv \left(-p \frac{\partial}{\partial p}\right)^3 f^{(0)} - 3Y - 9G. \]

The following relations for the basis functions will be useful throughout this section:

\[p^2 \frac{\partial^2}{\partial p^2} f^{(0)} = Y + 4G, \]
\[p^3 \frac{\partial^3}{\partial p^3} f^{(0)} = -K - 6Y - 20G. \]

On the other hand, \(T_e/m_e \) corrections make the problem more complicated in principle, but we newly found that adding the following frequency function is a minimal revision for the present linear case:

\[U \equiv \frac{p^2}{T_{\text{ref}}^2} \left(-p \frac{\partial}{\partial p}\right) f^{(0)}. \]

Using the above frequency basis, let us consider the following ansatz:

\[f = f^{(0)} + \Theta G + yY + \kappa K + uU. \]

We will justify this ansatz in the later calculations. As we already stated, the temperature perturbation is comparable to the order of the primordial fluctuation that is denoted by \(\delta \): \(\Theta = O(\delta) \). On the other hand, the other coefficients would be the first order in both the energy transfer \(\varepsilon = O(T_e/m_e) \) and \(\delta \): \(\{ y, \kappa, u \} = O(\delta \varepsilon) \).

The homogeneous component

Before going to the main discussion, we comment on the homogeneous part of the Compton scattering. It is well known that eq. (3.4) can be recast into a simple form:

\[(n_0 \sigma_T a)^{-1} C_{CS}^{(0)}[f] = \frac{T_e - T_{\gamma}}{m_e} Y, \]
where we have defined the physical temperature of photons as $T_\gamma \equiv T_{\text{ref}}(1 + z)$. Note that we used eq. (3.10) with the following relations:

$$f^{(0)}(1 + f^{(0)}) = \frac{T_{\text{ref}}}{p} \mathcal{G},$$

$$\left(-p \frac{\partial}{\partial p}\right) f^{(0)}(1 + f^{(0)}) = \frac{T_{\text{ref}}}{p} (\mathcal{Y} + 4\mathcal{G}),$$

$$\left(-p \frac{\partial}{\partial p}\right)^2 f^{(0)}(1 + f^{(0)}) = \frac{T_{\text{ref}}}{p} (\mathcal{K} + 5\mathcal{Y} + 16\mathcal{G}).$$

Eq. (3.13) implies that y has $O(\varepsilon)$ contribution

$$y = \int d\eta \sigma T_a T_e^{e} - T_\gamma^{\gamma} + \cdots.$$ \hfill (3.15)

However, this term is not what we want. We consider the CIPs, which produce the linear anisotropies of the spectral distortions, and hence we ignore this contribution.

The linear component

In addition to eq. (3.5), we include the electron number density fluctuation on the top of homogeneous y-distortion in the previous subsection. This is done by replacing the electron temperature and the number density as

$$T_e \rightarrow T_e(1 + \Theta_e), \quad n_e \rightarrow n_e(1 + \delta_{n_e}),$$

where δ_{n_e} is the ionized electron number density perturbation and Θ_e is the electron temperature perturbation. We also solve the perturbed recombination for the evolution of δ_{n_e} and Θ_e following the equations in Ref. [203]. Note that the equations for δ_{n_e} and Θ_e in Ref. [203] are valid only up to reionization and the precise calculation of δ_{n_e} and Θ_e during reionization is beyond the scope of this calculation.\[5\]

Here, we comment on the initial conditions for the perturbed recombination. We set $\delta_{n_e} = \delta_b$ (δ_b: baryon density perturbation) and $\Theta_e = \Theta_0$ since we consider the photon baryon plasma to be in equilibrium state in the very early universe. Note that $\Theta_e = \delta_b/3$ is not necessarily established in the very early universe if we do not start with adiabatic perturbations. For example, in the case of baryon isocurvature perturbations, δ_b depends

\[5\] The perturbed recombination is discussed also in Refs. [204,207].

\[6\] We have confirmed that the reionization effect on y-distortions is subdominant at least in our setup.
on not only Θ_e but also the chemical potential, and the spatial fluctuation of the chemical potential corresponds to the baryon isocurvature perturbations. Therefore $\Theta_e = \delta_e/3$ is not established in the case of the baryon isocurvature perturbations.

From eq. (3.5) and the modification eq. (3.16), we obtain the following collision terms for the Compton scattering:

\[
(n_e\sigma_{\text{Ta}})^{-1}C_{cS}^{(1)}[f] = T_e(\Theta_e + \delta_{n_e}) \left(\frac{p^2 \partial^2 f^{(0)}}{\partial p^2} + 4p \frac{\partial f^{(0)}}{\partial p} \right) + \frac{p(1+z)\delta_{n_e}}{m_e} \left(2f^{(0)}p \frac{\partial f^{(0)}}{\partial p} + p \frac{\partial f^{(0)}}{\partial p} + 4f^{(0)} + 4f^{(0)} \right) + \frac{p(1+z)}{m_e} \left[2p \frac{\partial f^{(0)}}{\partial p} f^{(1)}(p) + 4f^{(0)} f^{(1)}(p) + 2f^{(1)}(p) \right] + f^{(0)} f^{(1)}_0 + p \frac{\partial f^{(1)}_0}{\partial p} + 2f^{(1)}_0 + 2f^{(0)}_p \frac{\partial f^{(1)}_0}{\partial p} + (\hat{v} \cdot n) \left(\frac{24}{5} f^{(0)} f^{(1)}_0 + \frac{12}{5} i f^{(1)}_0 + \frac{12i}{5} f^{(0)} p \frac{\partial f^{(1)}_0}{\partial p} + \frac{6i}{5} f^{(0)} \frac{\partial f^{(1)}_0}{\partial p} \right) + (v \cdot n) \left(-8f^{(0)} + 8f^{(0)} - 7 \frac{p^2 \partial^2 f^{(0)}}{\partial p^2} - \frac{14}{5} f^{(0)} p^2 \frac{\partial^2 f^{(0)}}{\partial p^2} - \frac{31}{5} p \frac{\partial f^{(0)}}{\partial p} - \frac{62}{5} f^{(0)} p \frac{\partial f^{(0)}}{\partial p} \right) + P_2 \left(-2f^{(0)} f^{(1)}_2 - f^{(1)}_2 - f^{(0)} p \frac{\partial f^{(1)}_2}{\partial p} - \frac{1}{2} p \frac{\partial f^{(1)}_2}{\partial p} \right) + P_3 \left(-\frac{3i}{5} f^{(1)}_3 - \frac{6i}{5} f^{(0)} f^{(1)}_3 - \frac{3i}{5} f^{(0)} p \frac{\partial f^{(1)}_3}{\partial p} - \frac{3i}{10} p \frac{\partial f^{(1)}_3}{\partial p} \right) \right]
\]

The above expression is tedious but can be expanded in the four frequency basis functions eq. (3.7) to (3.11). Since eq. (3.17) is already ordered in terms of the Legendre polynomials, we easily obtain the multipole components of the Compton scattering for the Boltzmann hierarchy equation:
\[(n_e\sigma_T a)^{-1} C_{\text{CS1}}^{(1)}[f] = \left[\frac{T_e}{m_e} (\delta_{ne} + \Theta_e) - \frac{T_\gamma}{m_e} (\delta_{ne} + \Theta_0) \right] \gamma + \frac{T_e - T_\gamma}{m_e} \Theta_0 \mathcal{K}, \quad (3.18) \]

\[(n_e\sigma_T a)^{-1} C_{\text{CS2}}^{(1)}[f] = \left[\frac{T_e}{m_e} \left(-\frac{1}{10} \Theta_1 - \frac{14}{45} iv \right) + \frac{T_\gamma}{m_e} \left(-\frac{2}{5} \Theta_1 + \frac{7}{15} iv \right) \right] \mathcal{K} + \left[\frac{T_\gamma}{m_e} \left(\frac{2}{5} \Theta_1 + \frac{1}{5} iv \right) + \frac{T_e}{m_e} \left(-\frac{1}{3} iv \right) \right] \mathcal{Y} + \left[\frac{T_\gamma}{m_e} \left(\frac{28}{15} \Theta_1 - \frac{28}{45} iv \right) + \frac{T_e}{m_e} \left(-\frac{2}{5} \Theta_1 - \frac{7}{10} iv \right) \right] \mathcal{G} + \left[\frac{T_\gamma}{m_e} \left(\frac{7}{15} \Theta_1 - \frac{7}{45} iv \right) \right] \mathcal{U}, \quad (3.19) \]

\[(n_e\sigma_T a)^{-1} C_{\text{CS3}}^{(1)}[f] = \left[-\frac{2 T_\gamma}{5 m_e} + \frac{T_e}{10 m_e} \right] \Theta_2 \mathcal{K} + \left(-\frac{1}{10} T_\gamma \right) \Theta_2 \mathcal{Y} + \left(6 \frac{T_\gamma}{5 m_e} - 3 \frac{T_e}{5 m_e} \right) \Theta_2 \mathcal{G} + \left(\frac{3}{10} m_e \right) \Theta_2 \mathcal{U}, \quad (3.20) \]

where \(C_{\text{CS}}^{(1)}[f] \) is zero for \(\ell > 3 \) and we used eq. \((3.10)\) and eq. \((3.14)\) with the following relations:

\[\left(-p \frac{\partial f^{(0)}}{\partial p} \right)^2 = \frac{T_{\text{ref}}}{6p} (\mathcal{K} + 6 \mathcal{Y} + 20 \mathcal{G} - \mathcal{U}), \quad (3.22)\]

\[p^2 \frac{\partial^2}{\partial p^2} \left(-p \frac{\partial}{\partial p} \right) f^{(0)} = \mathcal{K} + 4 \mathcal{Y} + 12 \mathcal{G}, \quad (3.23)\]

\[p^2 \frac{\partial^2}{\partial p^2} f^{(0)} (1 + f^{(0)}) = \frac{T_{\text{ref}}}{p} (\mathcal{K} + 6 \mathcal{Y} + 20 \mathcal{G}). \quad (3.24)\]

On the other hand, the LHS of the Boltzmann equation is simpler. If one starts with the new ansatz eq. \((3.12)\), eq. \((1.96)\) is modified to

\[\frac{df}{d\eta} = \left(\frac{d\Theta}{d\eta} - \frac{d \ln p}{d\eta} \right) \mathcal{G} + \frac{dy}{d\eta} \mathcal{Y} + \frac{d\kappa}{d\eta} \mathcal{K} + \frac{du}{d\eta} \mathcal{U} + \cdots, \quad (3.25)\]

where dots imply the next-to-leading order corrections. Note that \(d \ln p/d\eta = \mathcal{O}(\delta) \) so that the time derivatives of the frequency basis become at least linear order in the
primordial perturbations. As long as we consider Gaussian initial conditions, \(\mathcal{O}(\delta^2) \) can be dropped since these terms do not contribute to the cross correlations with the linear perturbations in the following discussions. Though \(\mathcal{O}(\delta^3) \) has potential to be comparable to \(\mathcal{O}(\delta\epsilon) \), we neglect these contributions for simplicity. Combining eq. (3.25) with eq. (3.18) to (3.21), we find the 4 coefficient equations for each \((\eta, x)\).

Boltzmann equation for the \(y\)-distortions

We write the Boltzmann hierarchy equations in Fourier space to solve the linear \(y\) evolution. The Fourier integral of the real space linear \(y\)-distortions can be defined as

\[
y(\eta, k, n) \equiv \int d^3x e^{-ik\cdot x} y(\eta, x, n).
\]

The Fourier space perturbations are linearly coming from the primordial perturbations. The transfer functions \(y^{(I)}_\ell(\eta, k)\) can be then given as

\[
y(\eta, k, n) = \sum_\ell (-i)^\ell (2\ell + 1) P_\ell(\hat{k} \cdot n) \sum_I y^{(I)}_\ell(\eta, k) \xi^{(I)}_k,
\]

where \(\xi^{(I)}_k\) is the scalar random variables, i.e., \(\xi^{(I)} = (\zeta, S_{c\gamma}, S_{b\gamma}, \cdots)\): \(\zeta\) is the adiabatic perturbation, and the isocurvature perturbations are defined as

\[
S_{\alpha\gamma} = \frac{1}{1 + \omega_{\alpha}} \frac{\delta \rho_{\alpha}}{\rho_{\alpha}} - \frac{3}{4} \frac{\delta \rho_{\gamma}}{\rho_{\gamma}}.
\]

Note that \(\omega_{\gamma} = \omega_{c} = 1/3\) and \(\omega_{b} = 0\). We ignore the vector and the tensor perturbations for simplicity, and the following relation is satisfied for CIPs:

\[
S_{c\gamma} = -\frac{\Omega_b}{\Omega_c} S_{b\gamma}.
\]

The Liouville terms for the linear \(y\)-distortion can be given in the same form with the temperature perturbations without metric perturbations. Then eq. (3.18) to eq. (3.21)
yield
\[\dot{y}_0 + k y_1 = n_e \sigma_T a \left[\frac{T_e}{m_e} (\delta_{n_e} + \Theta_e) - \frac{T_\gamma}{m_e} (\delta_{n_e} + \Theta_0) \right], \quad (3.30) \]
\[\dot{y}_1 + \frac{2k}{3} y_2 - \frac{k}{3} y_0 = -n_e \sigma_T a y_1 + n_e \sigma_T a \left[\frac{T_e}{m_e} \left(\frac{2}{5} \Theta_1 + \frac{1}{5} i v \right) + \frac{T_e}{m_e} \left(-\frac{1}{3} i v \right) \right], \quad (3.31) \]
\[\dot{y}_2 + \frac{3k}{5} y_3 - \frac{2k}{5} y_1 = -\frac{9}{10} n_e \sigma_T a y_2 + n_e \sigma_T a \left(-\frac{1}{10} \frac{T_\gamma}{m_e} \right) \Theta_2, \quad (3.32) \]
\[\dot{y}_3 + \frac{4k}{7} y_4 - \frac{3k}{7} y_2 = -n_e \sigma_T a y_3 + n_e \sigma_T a \left(\frac{3}{70} \frac{T_\gamma}{m_e} \right) \Theta_3. \quad (3.33) \]

\(\ell > 3 \) equations do not have collision effect and we simply obtain
\[\dot{y}_\ell + \frac{\ell + 1}{2\ell + 1} k y_{\ell+1} - \frac{\ell}{2\ell + 1} k y_{\ell-1} = -n_e \sigma_T a y_\ell \quad (\ell > 3). \quad (3.34) \]

In the following we use the synchronous gauge when we perform numerical calculations. Figure 3.14 shows the evolutions of \(|y_0|\) and \(|y_1|\), which are calculated numerically using \textsc{class}. The rapid increases of values before \(z = 10^3\) is due to the specification of an initial time for integration. We have checked that the final results are not sensitive to the choice of initial time as long as we start well before recombination. From the figures, we can see that \(|y_0|\) and \(|y_1|\) grow only in the late epoch before recombination when the discrepancy between \(T_e\) and \(T_\gamma\) becomes manifest. This implies that the chemical potential \(\mu\) distortions are not generated in this way. After recombination, the sub-horizon modes oscillate because the RHS of eq. (3.30) and eq. (3.31) is zero and so we have
\[\ddot{y}_0 - \frac{k^2}{3} y_0 \approx 0. \quad (3.35) \]
Note that super-horizon evolution of the linear \(y\)-distortions does not violate causality. The super-horizon \(y\)-distortions only appear along the super-horizon primordial fluctuations that already exist.

Line-of-sight formalism for the spectral distortion anisotropies

The remaining procedures to get the angular power spectra are exactly the same as for the usual linear anisotropies. The angular power spectrum up to \(\ell = 1000\) requires us to solve 1000 Boltzmann hierarchy equations, which is time consuming. Instead, we usually use the integral solution and solve a very limited number of hierarchy equations to obtain
Figure 3.14: The redshift dependences of $|y_0|$ (left) and $|y_1|$ (right). Blue, green, yellow lines show the case of adiabatic perturbations, CDM isocurvature perturbations, and baryon isocurvature perturbations, respectively. In the solid (dotted) lines, we take the wave number as $k = 10^{-4}$ Mpc$^{-1}$ ($k = 10^{-2}$ Mpc$^{-1}$). For example, blue solid line shows the case of the adiabatic perturbation with $k = 10^{-4}$ Mpc$^{-1}$.

Note that the baryon isocurvature perturbation dependences of δ_{ne} and Θ_e are different from the CDM ones. This is essential to distinguish the baryon isocurvature perturbations from the CDM ones, and therefore to observe the CIPs. This is specific to y-distortions; Θ, κ and u do not have such a source and therefore we only focus on the y-distortion linear anisotropies in this section. Note that the following form is more practical to use.

The source function for the integral solution \[108\]. The line-of-sight solution for the linear y-distortion is

$$
y(\eta_0, k, \lambda) = \int_0^{\eta_0} d\eta \, g \left(y_0 - \frac{1}{2} P_2 y_2 + S_y \right) e^{ik(\eta - \eta_0)}, \quad (3.36)
$$

where the multipole coefficients for the source function are

$$
S_{y0} = \frac{T_e}{m_e} (\delta_{ne} + \Theta_e) - \frac{T_e}{m_e} (\delta_{ne} + \Theta_0), \quad (3.37)
$$

$$
S_{y1} = \frac{T_e}{m_e} \left(\frac{2}{5} \Theta_1 + \frac{1}{5} iv \right) + \frac{T_e}{m_e} \left(-\frac{1}{3} iv \right), \quad (3.38)
$$

$$
S_{y2} = -\frac{1}{10} \frac{T_e}{m_e} \Theta_2, \quad (3.39)
$$

$$
S_{y3} = \frac{3}{70} \frac{T_e}{m_e} \Theta_3. \quad (3.40)
$$

Note that the baryon isocurvature perturbation dependences of δ_{ne} and Θ_e are different from the CDM ones. This is essential to distinguish the baryon isocurvature perturbations from the CDM ones, and therefore to observe the CIPs. This is specific to y-distortions; Θ, κ and u do not have such a source and therefore we only focus on the y-distortion linear anisotropies in this section. Note that the following form is more practical to use.
in CLASS:

\[
y_\ell(\eta_0, k, \lambda) = \int_0^{\eta_0} d\eta \left[y_0 + S_{y_0} + 3S_{y_1} \left(\frac{\partial}{\partial(k\eta_0)} \right) \right. \\
+ \left(5S_{y_2} + \frac{1}{2} y_2 \right) \frac{1}{2} \left(3 \left(\frac{\partial}{\partial(k\eta_0)} \right)^2 + 1 \right) \\
+ 7S_{y_3} \frac{1}{2} \left(5 \left(\frac{\partial}{\partial(k\eta_0)} \right)^3 + 3 \left(\frac{\partial}{\partial(k\eta_0)} \right) \right) \left] j_\ell[k(\eta_0 - \eta)] . \right.
\]

(3.41)

The anisotropies of \(X\) on the celestial sphere can be expanded in spherical harmonics as follows:

\[
X(\eta_0, x = 0, n) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} a_{X,\ell m} Y_{\ell m}(n),
\]

(3.42)

where \(Y_{\ell m}\) are the spherical harmonics and \(X = \Theta, y\) and polarization \(E\) mode. The harmonic coefficients are related to the primordial random fields as

\[
a_{X,\ell m} = 4\pi (-i)^\ell \int \frac{d^3k}{(2\pi)^3} Y^*_{\ell m}(\hat{k}) \sum_{I} X^{(I)}(\eta_0, k) \zeta_k^{(I)} .
\]

(3.43)

The angular power spectrum is also defined as in the usual linear anisotropies case:

\[
\langle a_{X,\ell m} a_{Z,\ell' m'}^* \rangle = C^{XZ}_{\ell} \delta_{\ell \ell'} \delta_{mm'} .
\]

(3.44)

Then, we find

\[
C^{XZ}_{\ell} = \sum_{II'} 4\pi \int \frac{dk}{k} P_{II'}(k) X^{(I)}(\eta_0, k) Z^{(I')}(\eta_0, k),
\]

(3.45)

where we defined the power spectra of the random variables as:

\[
\langle \zeta_k \zeta_{k'} \rangle = (2\pi)^3 \delta^{(3)}(k + k') \frac{2\pi^2}{k^3} P_\zeta(k),
\]

(3.46)

\[
\langle \zeta_k S_{\alpha\gamma,k} \rangle = (2\pi)^3 \delta^{(3)}(k + k') \frac{2\pi^2}{k^3} P_\zeta \alpha(k),
\]

(3.47)

\[
\langle S_{\alpha\gamma,k} S_{\beta\gamma,k'} \rangle = (2\pi)^3 \delta^{(3)}(k + k') \frac{2\pi^2}{k^3} P_\alpha \beta(k).
\]

(3.48)
Note that the baryon isocurvature power spectrum and the CDM isocurvature one are not independent in the CIPs model: the relations

\[P_{cc} = \left(\frac{\Omega_b}{\Omega_c} \right)^2 P_{bb},\quad P_{c\zeta} = -\frac{\Omega_b}{\Omega_c} P_{b\zeta} \]

(3.49)

are always satisfied.

In this section, for simplicity, we assume that CIPs scales as the adiabatic perturbations. Then CIPs can be parameterized by only two parameters, \(f_{bi} \) and \(\cos \theta \), which are defined as

\[f_{bi} \equiv \frac{P_{bb}(k_0)}{P_{\zeta\zeta}(k_0)}, \]

(3.50)

\[\cos \theta \equiv \frac{P_{b\zeta}(k_0)}{\sqrt{P_{bb}(k_0)P_{\zeta\zeta}(k_0)}}, \]

(3.51)

where \(k_0 (= 0.05 \text{ Mpc}^{-1}) \) is the pivot scale. While \(f_{bi} \) measure the amplitude of CIPs relative to the adiabatic perturbations, \(\cos \theta \) parametrize the degree of correlation between the two kinds. As we will discuss at length, our analysis is sensitive not only to \(f_{bi} \), like other methods developed in the literature, but also to \(\cos \theta \). This would allow, in principle, the possibility of discerning correlated and uncorrelated CIPs. Figure 3.15 shows \(C_{\ell}^{yy} \), \(C_{\ell}^{yy} \), and \(C_{\ell}^{yy} \) in both cases of adiabatic perturbations and CIPs. From this figure, we can see that CIPs affect \(C_{\ell}^{yy} \), \(C_{\ell}^{yy} \), and \(C_{\ell}^{yy} \) and there is a possibility to detect CIPs with the \(y \)-distortion anisotropies.

3.2.2. Detecting CIP using \(y \)-distortions anisotropies

In this section we will investigate how well future CMB survey will constrain CIP models, exploiting the \(y \)-distortions anisotropies. To assess this we will produce Fisher forecasts for a PIXIE-like experiment [208], a PRISM-like experiment [209], for LiteBIRD [210] and for a Cosmic Variance Limited (CVL), very futuristic, experiment.

Before discussing the Fisher matrix analysis, we explain the \(f_{bi} \) dependence of the angular power spectra. For the CIPs, \(\Theta^{(c)}_{\ell} S_{c\gamma} + \Theta^{(b)}_{\ell} S_{b\gamma} \approx 0 \) is satisfied so that angular
Using the angular power spectra for the adiabatic perturbations \(C_{\ell,\text{ad}} \) and those for the CIPs \(C_{\ell,\text{CIP}} \) at \(f_{\text{bi}} \cos \theta = 1 \), the above expressions are simply written as

\[
C_{\ell}^{yT} \approx C_{\ell,\text{ad}}^{yT} + f_{\text{bi}} \cos \theta C_{\ell,\text{CIP}}^{yT},
\]

\[
C_{\ell}^{yE} \approx C_{\ell,\text{ad}}^{yE} + f_{\text{bi}} \cos \theta C_{\ell,\text{CIP}}^{yE}.
\]

Thus, the angular power spectra linearly depend on the correlated CIPs. Figure 3.16 shows the \(f_{\text{bi}} \cos \theta \) dependence of \(C_{\ell} - C_{\ell,\text{ad}} \) in \(\ell = 2, \ell = 300, \) and \(\ell = 700. \) From this figure, we can see that \(C_{\ell} - C_{\ell,\text{ad}} \) is indeed proportional to \(f_{\text{bi}} \cos \theta. \) Since the amplitudes of the \(C_{\ell,\text{CIP}}^{yT} \) and \(C_{\ell,\text{CIP}}^{yE} \) are proportional to the product of \(f_{\text{bi}} \) and \(\cos \theta, \) our analysis will not be independently sensitive to each of these parameters, but we can
test \(f' \equiv f_{bi} \cos \theta \). On the other hand, \(C^{yy}_{\ell,\text{CIP}} \) is quadratic in \(f_{bi} \) but is dominated by astrophysical contamination discussed below.

Fisher forecast

In the scope of our work, the Sunyaev-Zeldovich effect constitutes a foreground. Its power spectrum adds an important contribution to the variance of the CIPs-generated \(y-T \) and \(y-E \) cross correlation. We will show how masking resolved clusters \([211, 212]\) can greatly improve the constraining capabilities of all future surveys. Moreover, the coupling of SZ effect with low redshifts sources of temperature (ISW) and polarization anisotropies could in principle bias the measurements of \(y-T_{\text{CIP}} \) and \(y-E_{\text{CIP}} \), and therefore needs to be properly accounted for \([212]\). Luckily, the spectral shapes of the signals and of the spurious secondary sources are not much correlated. Therefore marginalizing over them will not degrade the constraining power by much. As long as we consider the Gaussian universe, other sources of \(y \)-distortions — such as reionization, Silk damping — contribute negligibly to the total \(y-T \) and \(y-E \) cross correlations \([212]\), therefore we will not consider them here. In the case of primordial non-Gaussianity, it has been shown that foregrounds can degrade the constraints obtained with naive Fisher forecast by a
factor $5 \sim 10^{213}$. Given the similarity of our analysis with the search for primordial non-Gaussianity, we might expect a similar effect. However, account properly for the galactic foregrounds would be beyond the (path-finding) scope of this thesis. Therefore we will neglect them completely in our analysis. For this reason our results will be one order of magnitude too optimistic.

In this case, to calculate the Fisher information matrix defined in eq. (2.14), we can use the eq. (2.25) that we report here for convenience

$$F_{ij} = f_{\text{sky}} \sum_\ell (\text{Cov}^{-1}_\ell)_{\alpha\beta} \frac{\partial (\text{Cov}_\ell)_{\beta\gamma}}{\partial p_i} (\text{Cov}^{-1}_\ell)_{\gamma\delta} \frac{\partial (\text{Cov}_\ell)_{\delta\alpha}}{\partial p_j}, \quad (3.56)$$

where f_{sky} is the fraction of the sky covered by the survey, Cov_ℓ is the covariance matrix of the observables and repeated matrix indices (α, \ldots, δ) are summed. We will first discuss the results achieved considering only the cross correlation of y-distortions with temperature anisotropies (the same applies also to polarization). The same approach will be then extended to the joint analysis of the cross correlation with both temperature and polarization anisotropies. The covariance matrix of $(a_{T,\ell m}^T, a_{Y,\ell m}^y)$ reads

$$\text{Cov}_\ell = \frac{1}{2\ell + 1} \begin{pmatrix} C_{TT}^{TT} & C_{TT}^{yT} + C_{TT}^{STZ} \\ C_{TT}^{yT} + C_{TT}^{STZ} & C_{TT}^{yy} + C_{TT}^{SZSZ} + C_{TT}^{yy,N} \end{pmatrix}, \quad (3.57)$$

where we have explicitly separated the primordial component of the y-distortions from the signal coming from the SZ effect. We have also considered its instrumental noise contribution $C_{TT}^{yy,N}$.

In principle all the six standard cosmological parameters and f' need to be considered free parameters in the Fisher forecast. However the uncertainties on the cosmological parameters are so small compared with the one of f' that we consider them fixed to their true value when we calculate the temperature (and polarization) anisotropies. This is a safe choice since f' is completely orthogonal to the changes in TT, TE and EE $\cite{8}$. Uncertainties on H_0, σ_8, and Ω_m have a much bigger impact on the SZ power spectrum. Moreover, the halo mass bias b, which is the parameter that links the spectroscopic mass of the halo with its true mass (lensing mass), introduces another source of uncertainty in the SZ auto and cross-correlations. As discussed in $\cite{121,214,216}$, the effects of varying these parameters are degenerate, and, on low ℓ ($\lesssim 1000$), can be parametrized as a shift in the overall amplitude of the SZ power spectrum. Following $\cite{211}$, we will take into account the combined effect of these parameters by simply introducing an unknown
amplitude parameter α, in front of the SZ-spectra, and marginalizing over it. We will calculate the SZ auto- and cross-correlation used here in the following section. Using the covariance matrix eq. (3.57) in eq. (3.56) with eq. (3.54), we can obtain the Fisher matrix for the parameters (f', α)

$$F_{ij} = \int_{\text{sky}} \sum_{\ell=2}^{\ell_{\text{max}}} (2\ell + 1) \left(\frac{C_{TT}^{C_{\ell}^{\text{CMB}}}}{C_{TT}^{C_{\ell}^{\text{SZ}}}} \right)^2 \left(\frac{C_{TT}^{C_{\ell}^{\text{SZ}}}}{C_{TT}^{C_{\ell}^{\text{SZ}}}} \right) \left(\frac{C_{TT}^{C_{\ell}^{\text{SZ}}}}{C_{TT}^{C_{\ell}^{\text{SZ}}}} \right).$$

To get this result we assumed that $(C_{TT}^{\text{SZ}})^2 \ll C_{TT}^{\text{SZ}Z}C_{TT}^{\text{CMB}}$, and $C_{yy}^{\ell} \ll C_{TT}^{\text{SZ}Z}$. This treatment can be trivially generalized to produce joint analysis of C_{yy}^{ℓ} and C_{EE}^{ℓ}, using the appropriate covariance matrix for $(a_{\ell m}^{T}, a_{\ell m}^{E}, a_{\ell m}^{y})$:

$$\text{Cov}_{\ell} = \frac{1}{(2\ell + 1)} \begin{pmatrix} C_{TT}^{\ell} & C_{TE}^{\ell} & C_{TT}^{\ell} + C_{TT}^{\text{SZ}} \\ C_{ET}^{\ell} & C_{EE}^{\ell} & C_{YY}^{\ell} + C_{EE}^{\text{CMB}} \\ C_{YY}^{\ell} + C_{SZ}^{\ell} & C_{YY}^{\ell} + C_{SZ}^{\ell} & C_{YY}^{\ell} + C_{SZ}^{\text{SZ}} + C_{yy}^{\text{CMB}} \end{pmatrix}.$$

The temperature and polarization auto- and cross-correlation can be easily computed with CLASS [109], whereas the SZ powerspectrum and cross correlation with temperature and polarization anisotropies can be calculated using the halo model we reviewed in Section 1.5.2, as we are going to do in the next section.

Sunyaev-Zeldovich

While CMB photons propagates towards us, their wavelength gets continuously blueshifted and redshifted by the fact that they fall and climb up the gravitational potential wells. In the Dark-Energy-dominated era gravitational potential inhomogeneities tends to decay, so a photon exiting a potential well doesn’t get redshifted as much as it got blue shifted when it entered it. Similarly, a photon that has to firstly climb and then fall from a hill loses a net amount of energy in the process. It is then clear that this effect, called integrated Sachs-Wolfe (ISW) strongly correlates with any tracer of the gravitational potential inhomogeneity distribution, and in particular with tracers of the galaxy clusters, that tend to form inside gravitational wells. The tracer we are interested in is the (thermal) SZ effect. Photons can be up-scattered by hot electrons, that populate mostly the intergalactic medium of galaxy clusters as we anticipated in Section 1.3.
correlation of those two observables has been studied in detail \cite{125,211,217}, and it is a cumbersome foreground for the signal generated by linear y-distortions.

To calculate the SZ we use a halo model approach as discussed in greater detail in Section \ref{sec:halo-model}. We use the halo bias given in table 2 of \cite{218}, the halo mass function of \cite{119} with the updated parameters given in \cite{218}, and the halo Compton y-parameter measured in \cite{124}. We also follow the prescription given in \cite{214}, using a single definition of mass ($M_{500,c}$) and interpolate the bias and halo mass function to the correct value.

We remind the reader that the one- and two-halo terms, introduced in eq. (1.149) and eq. (1.150) respectively read

\begin{align}
C_{1h}^\ell & = \int \frac{d^3V}{d\Omega} \int dM \frac{dn}{dM}(z,M) |\tilde{y}_\ell(z,M)|^2, \\
C_{2h}^\ell & = \int \frac{d^3V}{d\Omega} \int dM \frac{dn}{dM}(z,M) b(z,M) |\tilde{y}_\ell(z,M)|^2 |_{k=\left(\frac{\ell+1/2}{\chi(z)}\right)}.
\end{align}

The SZ effect cross correlate with T through the late ISW effect, given by

\begin{equation}
\frac{\Delta T_{\text{ISW}}}{T}(\hat{n}) = -\frac{2}{c^2} \int d\phi \frac{d\phi}{dz}(\chi(z)\hat{n},z).
\end{equation}

In our numerical evaluation, we will use the full transfer functions, extracted from \textsc{CLASS} \cite{109}, which of course encode the ISW contribution. It is useful to define real space transfer functions \cite{219,220}

\begin{equation}
T^T_\ell(\chi) = \frac{2}{\pi} \int dk k^2 T^T_\ell(k) j_\ell(\chi k),
\end{equation}

where $T^T_\ell(k)$ is the full temperature transfer function. The multipolar coefficients can then be expressed as

\begin{equation}
a^{T}_{\ell m} = \int d\chi \chi^2 T^T_\ell(\chi) \zeta_{\ell m}(\chi),
\end{equation}

where $\zeta_{\ell m}(\chi) = \frac{(-i)^\ell}{2\pi} \int d^3k \zeta(\mathbf{k}) j_\ell(\chi k) Y^m_\ell(\hat{k})$.

Using the Poisson equation, $\delta(\mathbf{k}, z) = \frac{3}{\Omega} (\Omega_M H_0^2)^{-1} \frac{D(z)}{a(z)} T_\ell(m)(k) k^2 \phi(\mathbf{k}, z = 0)$, to express the overdensity contrast as a function of the gravitational potential we can write the
temperature-SZ cross correlation:

\[C^{SZ-T}_\ell = \int \frac{e \, dz}{H(z)} \frac{3 \, c^2 \, k^2 \, \chi^2(z) \, \mathcal{T}_m(k)}{\Omega_m H_0^2} D_+(z) \int \frac{dM}{dM} (z, M) \, \tilde{y}_T (z, M) \, b_H (z, M) \times \]

\[\times \mathcal{T}_\ell^T (\chi(z)) \, P_\zeta (k) \bigg|_{k = \left(\frac{\ell + 1/2}{\chi(z)} \right)}. \]

(3.65)

Notice that one can write the same quantity for polarization just replacing \(T \rightarrow E \) in the last two equations, \textit{i.e.}, using the appropriate transfer functions. In much smaller terms, the SZ effect also correlates with \(E \). The reason is that after reionization the universe remains ionized and therefore free electrons generate polarization anisotropies even at very low redshift. SZ is generated in the same epoch on similar scales, so this gives rise to a non-vanishing \(y-E \). This is expected to be a very small effect at low redshifts, but we consider it as it might still constitute a sizeable bias if the primordial signal is small too.

Even though, practically, all the SZ signal comes from \(z < 4 \) \[126\], since \(E \) is sourced at reionization we extend all the redshift integrations to \(z \) well above the time of reionization. As expected, the contributions from \(z > 4 \) are negligible.

3.2.3. Bias, variance, and Fisher results

We now have all the ingredients to calculate numerically the Fisher matrix for \(T \) and \(E \) (separately), eq. (3.58), and for the joint analysis of \(T \) and \(E \), eq. (3.59).

All the results that we will present are obtained marginalizing over \(\alpha \), that is the amplitude of the SZ-\(T \) and SZ-\(E \) cross correlations. However it is worth noticing that marginalizing over \(\alpha \) do not degrade the constraints on \(f' \) by much. To quantify this statement we calculate the correlation between the two parameters. Those are

\[\frac{\sum_\ell \partial C^{yT}_\ell / \partial f'}{\sqrt{\sum_\ell \left(\partial C^{yT}_\ell / \partial f' \right)^2 \sum_\ell \left(\partial C^{SZT}_\ell / \partial \alpha \right)^2}} = 0.28, \]

\[\frac{\sum_\ell \partial C^{yE}_\ell / \partial f'}{\sqrt{\sum_\ell \left(\partial C^{yE}_\ell / \partial f' \right)^2 \sum_\ell \left(\partial C^{SZE}_\ell / \partial \alpha \right)^2}} = 0.53. \]

(3.66)
In the limit of 0 correlation, omitting f_{sky} and considering only the temperature anisotropies, the signal-to-noise ratio (SNR) for the parameter f' would have been

$$\text{SNR}(f') \approx \sqrt{\sum_{\ell} \frac{(C_{\ell}^{TT})^2}{C_{\ell}^{TT} (C_{\ell}^{SZS} + C_{\ell}^{yyN})}}. \quad (3.67)$$

We are not using this approximate formula in the analysis, but it is useful to clarify the methodology. Since we do not have any control over the signal, the only way to increase the SNR is to try to minimize the noise. The temperature anisotropies measurements are already dominated by cosmic variance up to very high multipoles. The variance of the y-distortions is instead composed by two contributions: the cosmic variance term and the instrumental noise. We consider different experimental setup to understand what is the sensitivity needed by future experiments to reach the lower limit imposed by cosmic variance. The noise term is $C_{\ell}^{yy,N} = 4\pi \times N \times e^{\ell^2/\ell_{\text{beam}}^2}$; where (N, ℓ_{beam}) is $(0, -)$ for the CVL survey, $(4 \times 10^{-18}, 84)$ for PIXIE, $(4 \times 10^{-20}, 100)$ for the PRISM spectrometer (PRISM spec) and $(4 \times 10^{-20}, 4000)$ for the PRISM imager, which could be easily calibrated using the on-board spectrometer but is not bounded by low angular resolution [10,212,221]. Since we are interested in differential measurements of y distortions, the LiteBIRD satellite can also be employed [210]. Differential measurements of small signals still rely on very precise inter-channel calibration of the instrument that will probably be challenging if not unfeasible without a calibrator on board [221]. This point is even more crucial if we consider that component separation will be required to discern the foregrounds. As shown in [213], the calibration relative errors must be of order 0.01% in order to recover the correct μ-T cross correlation. However, assessing correctly the effect of inter-channel calibration error is beyond the scope of this thesis. Instead, we use two different noise levels for LiteBIRD: an optimistic estimate (Opt) assuming perfect inter-channel calibration $(2 \times 10^{-20}, 200)$ and a more conservative (Cons) estimate discussed below. From [213], we can assess that the ratio of the PIXIE and LiteBIRD noise contribution (neglecting all foregrounds) to $C_{\ell}^{\mu\mu}$ is $C_{\ell}^{\mu\mu, \text{Noise, LiteBIRD}} / C_{\ell}^{\mu\mu, \text{Noise, PIXIE}} = 0.06$. Here we assume that the noise contribution to C_{ℓ}^{yy} follows the same scaling for the two experiments. Therefore, the parameters we use for LiteBIRD - Cons are $(0.24 \times 10^{-18}, 200)$, though we acknowledge that this is a very coarse, order-of-magnitude, estimate. However, any finer estimate would be beyond the intrinsic uncertainties of a Fisher matrix analysis. Moreover, our result will not be very sensitive to this parameter because it does not affect the other major contribution to the noise: the SZ effect.
Survey	Clusters masked
Unmasked | None
eROSITA | $M > 2 \times 10^{14} M_{\odot}/h$ for $z < 0.15$
PRISM | $M > 10^{13} M_{\odot} h^{-1}$

Table 3.5.: We assume to use each survey to mask all clusters with the given characteristics.

Since the dominant contribution to the SZ power spectrum is given by big galaxy clusters at low redshift \cite{121}, masking resolved clusters is a viable way to reduce the overall noise \cite{126,211,212}. Following the procedure we outlined in Ref. \cite{212}, we consider the use of two different sky masks based on two different full sky surveys that will produce maps of galaxy clusters. We will present the forecasts based on the PIXIE-like and LiteBIRD satellite both for the unmasked case and with a mask based on eROSITA \cite{222} expected performance. We will assume to mask all the clusters with mass greater than $2 \times 10^{14} M_{\odot}/h$ at $z < 0.15$. The forecast for PRISM and the CVL instrument will similarly involve the unmasked case, and a mask based on the expected PRISM cluster catalogue. We will assume to mask all the clusters with mass greater than $10^{13} M_{\odot} h^{-1}$. We chose those regions of the mass-redshift plane because the eROSITA and PRISM catalogues are expected to be complete in those respective areas. We summarize the mask boundaries in Table 3.5.

In our analysis we account for the effect of masking the galactic plane and resolved cluster according with eq. (3.56). For PIXIE, LiteBIRD, and PRISM, we assume to use an f_{sky} similar to the one used by Planck to calculate the SZ power spectrum \cite{121}, namely $f_{\text{sky}} = 50\%$ to remove the galactic plane. To account for the reduced sky area after applying the eROSITA and PRISM mask, we reduce f_{sky} to 35%. According with \cite{212}, this is a conservative estimate for both cluster masks. In the case of the CVL survey we show the results assuming $f_{\text{sky}} = 100\%$, since they have to be intended as upper limits that might in principle be reached with other techniques that we are not investigating here.

In Figure 3.17 we show the 1σ forecasted error bars on f' as a function of the max ℓ considered. The same results are summarized in Table 3.6. There we assume the use of all the multipoles available in each experimental configuration, i.e., to relate these results with Figure 3.17 one has to take $\ell_{\text{max}} \gg \ell_{\text{beam}}$. We notice that for the linearity of $C_{\ell}^{yT(E)}$ with respect to f', the forecasted error bars are independent from the chosen f' fiducial value. As it is clear from Figure 3.17, none of the experimental setups is
bounded by raw detector sensitivity. The two main limiting factors are the SZ power spectrum — more and more aggressive masks give better results — and the survey beam. Since the primordial signal increases as ℓ increases, it is convenient to exploit the higher multipoles to extract some degree of information. Trying to exploit relatively high multipoles ($\ell \approx$ few hundreds) is beneficial also for an instrument with higher detector sensitivity than PIXIE. The PRISM imager has much higher angular resolution than the on-board spectrometer. It is therefore possible to envision its use to make differential measurements of the spectral distortion anisotropies up to small angular scales. In this case uncertainties in the inter-channel calibration would not be a problem, since the spectrometer can provide a reference spectrum. If we consider the use of the imager to achieve higher angular resolution, PRISM will basically reach the limit set by cosmic variance.
Testing the power spectrum

<table>
<thead>
<tr>
<th></th>
<th>Unmasked</th>
<th>eROSITA mask</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T</td>
<td>$T \oplus E$</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>$T \oplus E$</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>$T \oplus E$</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>$T \oplus E$</td>
</tr>
<tr>
<td>PIXIE</td>
<td>11×10^5</td>
<td>9.1×10^5</td>
</tr>
<tr>
<td>LiteBIRD - Opt</td>
<td>4.3×10^5</td>
<td>2.5×10^5</td>
</tr>
<tr>
<td>LiteBIRD - Cons</td>
<td>4.8×10^5</td>
<td>3.1×10^5</td>
</tr>
<tr>
<td>PRISM - spec</td>
<td>5.1×10^5</td>
<td>9.5×10^4</td>
</tr>
<tr>
<td>PRISM - imager</td>
<td>4.1×10^5</td>
<td>7.0×10^4</td>
</tr>
<tr>
<td>CVL</td>
<td>2.8×10^5</td>
<td>3.0×10^4</td>
</tr>
</tbody>
</table>

Table 3.6. 1σ forecasted error bars on f_y^\prime. T, E, and $T \oplus E$ indicate respectively the forecast using temperature, polarization, and both. In all the forecasts we marginalize over the amplitude of C_{ℓ}^{SZT} and C_{ℓ}^{SZE}.

3.2.4. Discussion

In this section, we provided a new framework to calculate the linear fluctuation of the spectral y-distortions. It was shown that a solution to the Boltzmann equation for the Compton scattering can be constructed from 4 parameters including the temperature perturbation and the spectral y-distortion. Then we derived the evolution equation for the y-distortion, which is sensitive to the baryon isocurvature perturbations. This implies that it can resolve the degeneracy between baryon isocurvature perturbations and the CDM ones in contrast to the standard linear perturbations such as the temperature perturbations and the polarizations. We numerically estimated the transfer function of the y-distortions based on CLASS and computed the auto and the cross correlations with the temperature perturbations and the polarization E modes. The resulting C_{ℓ}’s completely resolve the degeneracy between baryon isocurvature perturbations and the CDM isocurvature perturbations as we expected, and we found that only the correlated CIPs contribute to them. The auto correlation of the spectral y-distortions is strongly contaminated by SZ power spectrum and therefore we could not get any information on the f_{ba} parameter alone from it. Note that linear y anisotropies are not contaminated by lensing effect in contrast to the previous methods based on the nonlinear modulation of the CMB anisotropy. Then we produced a forecast for the upper bounds on correlated CIPs for different future observational projects. While we carefully consider the contamination induced by SZ effect in our analysis, we are neglecting other foregrounds, because properly accounting for would go beyond the path-finding scope of this thesis; and because their impact would highly depend on the various methods of component separation chose to
analyze data. Even in the absence of foregrounds, none of the surveys we consider will be able to set stringent constraints on CIPs. For instance, $f' < 2 \times 10^5$ at 68% C.L. is obtained for LiteBIRD, while $f' < 5 \times 10^4$ for PRISM, and $f' < 2 \times 10^4$ for a cosmic variance limited survey. As we have shown, the fundamental limit is set by the noise contribution due to the SZ power spectrum. However it is important to remember that our method can resolve the degeneracy between the correlated and uncorrelated CIPs. This implies that we can in principle distinguish the correlated and uncorrelated CIPs by combining our analysis with the other methods discussed before. Our method would be more useful if more powerful techniques were developed to remove the SZ-induced noise term in the future.

We do not focus on the specific models that produce the CIPs in this section. As discussed in Ref. [186], models based on the curvaton only produce CIPs as big as $f_{bi} < 16$, while the spontaneous baryogenesis in Ref. [187] does not generate the correlated CIPs. Therefore, the known scenarios do not expect huge f', which we may observe in our method; nevertheless, it would be interesting as the author in Ref. [191] reported the possibility of sizeable CIPs. In other words, highly non trivial early universe physics would be suggested if significant CIP were detected.

In our calculations we dropped $O(\delta^3)$ terms for simplicity, but these may have comparable contributions to the spectral distortions for the Gaussian adiabatic perturbations. Therefore, cumbersome cubic order analysis would be required if the sizeable linear y-distortions are really detected in the future. We did not discuss the κ distortion and the u distortion, which is introduced for the first time in this section, because they do not explicitly depend on the baryon isocurvature perturbations. Still it would be interesting to consider the anisotropy of these new spectral distortions in different contexts. This would be investigated in our future works.
Chapter 4.

Testing the bispectrum

4.1. Primordial non-Gaussianity and spectral distortions anisotropies

At present, the tightest constraints on all parametrizations and models of primordial non-Gaussianity (NG) come from measurements of the bispectrum (Fourier transform of the 3-point function in configuration space) of Cosmic Microwave Background temperature and polarization anisotropies (respectively T and E), made by the Planck satellite \[3\].

As we have already stated in Section 1.4.4, among many aspects and applications of these constraints, a very important one is the possibility to set stringent bounds on inflationary scenarios characterized by more than one field. Multi-field Inflation in fact predicts a potentially detectable bispectrum of the local type, peaking in the squeezed-limit. We recall that such bispectrum explicitly reads (cfr. eq. (1.86))

$$B(k_1, k_2, k_3) = -\frac{6}{5} f_{\text{loc}}^{\text{NL}} [P(k_1)P(k_2) + 2 \text{ perm.}],$$ \hspace{1cm} (4.1)

where $f_{\text{NL}}^{\text{loc}}$ is the dimensionless local NG amplitude parameter, which is measured by fitting the local shape to the data (since we will consider only local NG in the following, we will omit the superscript “loc” from now on). Currently, Planck constrains $f_{\text{NL}} = 0.8 \pm 5.0$ (68% C.L.) \[3\]. A crucial threshold to fully distinguish single from multi-field scenarios would be however $f_{\text{NL}} \sim 1$. This value is in fact a lower bound for a large class of multi-field models (e.g. curvaton \[83\]). Unfortunately there are not enough modes in the CMB temperature and polarization angular bispectra to achieve enough sensitivity for a clear detection of $f_{\text{NL}} \sim 1$, even assuming a perfectly noiseless, ideal survey (see, e.g. \[223\]).
Several new observational strategies will therefore have to be implemented in the future. One of the most promising approaches in the near future involves measuring NG signatures in the galaxy bias, using forthcoming Large Scale Structure surveys [224,225].

In a more futuristic scenario, the authors of [9] have considered the cross-correlation between CMB temperature and μ-spectral distortion anisotropies as a potentially very powerful probe of squeezed-type bispectra. An experiment producing cosmic-variance limited T and $μ$ maps could in principle be able to detect $f_{NL} \sim 10^{-2}, 10^{-3}$ (this argument has been extended in different ways [10,211,221,226–233], to take into account different primordial bispectrum models and higher-order correlation functions). While fascinating, this scenario is out of reach not only with current experimental noise levels, but also taking into account proposed, ambitious next generation surveys, such as PRISM [10].

Nonetheless, measurements of f_{NL} via correlations between CMB temperature (polarization) and CMB distortion anisotropies are interesting even before achieving such exquisite levels of sensitivity, as they allow to test possible deviations of f_{NL} from scale independence. In this respect, not only $μ$, but also $γ$-distortions can provide useful and interesting information, as pointed out in [10]. Indeed, while Planck measured f_{NL} on the scales typical of CMB T, E anisotropies ($k \lesssim 0.15$ Mpc^{-1}), and $μ$-distortion anisotropies can in principle probe it on much smaller scales (46 $\text{Mpc}^{-1} \lesssim k \lesssim 10^{4}$ Mpc^{-1}), $γ$-distortions allow probing the transition between those two regimes (0.15 $\text{Mpc}^{-1} \lesssim k \lesssim 46$ Mpc^{-1}). The issue with using $γ$-distortions is, however, that the total signal is affected by contributions from secondary sources, which completely dominate over the primordial component. The most important source of contamination is the $γ-T$ signal generated by the correlation between the Integrated Sachs Wolfe (ISW) and Sunyaev-Zeld’ovich (SZ) effects. This problem has been initially addressed for the $γ-T$ cross-correlation in [211], where a cosmic-variance limited experiment was considered, and the SZ contamination was reduced by masking detected clusters at low redshift.

In this section, we will extend previous analyses by considering not only $γ-T$, but also including the cross-correlation with polarization, $γ-E$, and by exploiting cross-correlations between SZ and external tracers (CMB and galaxy lensing). Aside from adding a new signal, using polarization presents the clear advantage of giving a much less biased signal, since the E-mode correlate less than T with the SZ effect. Nevertheless, in this case we will have to worry about potential spurious contamination from reionization. An explicit numerical evaluation, using second-order transfer functions from the Boltzmann
integrator SONG \cite{234,236} will show that this is negligible1. The correlation between SZ and lensing can instead be used to estimate a template of the y-parameter map generated by SZ, which can then be subtracted from the data, in order to partially remove spurious SZ contributions from unresolved clusters and reduce the noise. We will consider a PIXIE-like \cite{208}, PRISM-like \cite{209} and an ideal, cosmic-variance limited experiment, and show how including these new ingredients can lead to interesting improvements in the final forecasts, by an overall factor between 2.5 and 4.4 depending on the experiment and on the mask applied.

While we will focus mostly on y-distortions, we will also extend previous μ-distortions/\E-polarization cross-correlation analyses. Specifically, we will re-analyse in detail the μ-\E cross-spectrum initially discussed in \cite{233}, where only large scales and reionization contributions to the CMB polarization transfer functions were included. In that case, it was found that μ-\E does not provide any further constraining power with respect to μ-\T. By considering all scales and using full transfer functions we will show that μ-\E performs slightly better than μ-\T and combining the two leads to $\sim 30\%$ improvement in the final constraints.

Even though we are interested in a $f_{NL} = f_{NL}(k_1, k_2, k_3)$, which depends on scale, we will follow \cite{10,211} to assume that the scale-dependence is such that f_{NL} stays approximately constant (separately) on both the y-scales ($0.15 \text{ Mpc}^{-1} \lesssim k \lesssim 46 \text{ Mpc}^{-1}$) and the μ-scales ($46 \text{ Mpc}^{-1} \lesssim k \lesssim 10^4 \text{ Mpc}^{-1}$). As discussed in \cite{10} the constraints on f_{NL} from y-distortions (μ-distortions) can then be interpreted as a constraint on $f_{NL}(k)$ evaluated at the logarithmic mid-point value over the y (μ) scales: $f_{NL}^y \equiv f_{NL}(7 \text{ Mpc}^{-1})$ and $f_{NL}^\mu \equiv f_{NL}(740 \text{ Mpc}^{-1})$ respectively for y- and μ-distortions.

The section is organized as it follows: In subsection 4.1.1 we will calculate the primordial contributions to the cross correlation of T and E with μ- and y-spectral distortions. in subsection 4.1.2 we will calculate the secondary sources for the T and E cross correlations with y — we recall that μ does not have cosmological secondary sources. In subsection 4.1.3 and 4.1.4 we will forecast f_{NL}^μ and f_{NL}^y constraints, achievable by a PIXIE-like, a PRISM-like, and by a cosmic-variance limited survey, considering all sources of noise and contamination, different masks for resolved clusters (based on future X-ray and CMB surveys) and different external tracers for unresolved contributions. In subsection 4.1.5 we will summarize our conclusions.

1https://github.com/coccoinomane/song.
4.1.1. Primordial contributions

In this subsection we review the calculation to obtain the cross-correlation of CMB temperature and polarization anisotropies with μ- or y_p-CMB-spectral-distortions anisotropies, when primordial NG is present. Since secondary sources generate y-distortion in the late universe we indicate with y_p the primordial contribution to the total y.

As shown in eq. (1.116), that we repeat here for convenience, the primordial primordial curvature perturbation $\zeta(k)$ and CMB fluctuations are linked via

$$a_{lm}^X = 4\pi i f \int \frac{d^3k}{(2\pi)^3} T_{\ell}^X(k) Y_{\ell m}^{\mu*}(\hat{k})\zeta(k), \quad (4.2)$$

where $X = T, E$ indicate the temperature T or the E-mode polarization, and T_{ℓ}^X is the radiation transfer function. We will use the full transfer function generated by CLASS \[109\]. For $\Xi = \mu$, y_p-type spectral distortions the analogous relation reads instead \[221, 232\]

$$a_{lm}^\Xi = 4\pi (-i)^f \int \frac{d^3k_1}{(2\pi)^3} \frac{d^3k_2}{(2\pi)^3} \frac{d^3k_3}{(2\pi)^3} \delta^{(3)}(k_1 + k_2 + k_3) \times Y_{\ell m}^{\mu*}(\hat{k}_3)j_{\ell}(k_3 r_{ls})f^{-1}(k_1, k_2, k_3)\zeta(k_1)\zeta(k_2), \quad (4.3)$$

$$f^\mu(k_1, k_2, k_3) = 2.3 W\left(\frac{k_3}{k_D(z_{\mu y})}\right) \left[e^{-(k_1^2 + k_2^2 + k_3^2)/(8k_D^2(z))}\right]_{z_{\mu y}}^{z_{\mu y}}$$

$$f^g(k_1, k_2, k_3) = 0.4 W\left(\frac{k_3}{k_D(z_y)}\right) \left[e^{-(k_1^2 + k_2^2 + k_3^2)/(8k_D^2(z))}\right]_{z_{y}}^{z_{y}}.$$

Here r_{ls} is the comoving distance to last scattering surface, $W(x) = 3j_1(x)/x$, and k_D is the diffusion damping scale evaluated at the beginning of the μ-era $k_D(z_\mu) \approx 12000 \text{ Mpc}^{-1}$, at the μ-y transition $k_D(z_{\mu y}) \approx 46 \text{ Mpc}^{-1}$, and at the end of the y-era $k_D(z_y) \approx 0.15 \text{ Mpc}^{-1}$ \[10\]. As said, we consider f_{\NL} constant on μ- and y-scales: $f_{\NL}(k) \equiv f_{\NL}^\mu$ for $0.15 \text{ Mpc}^{-1} \lesssim k \lesssim 46 \text{ Mpc}^{-1}$ and $f_{\NL}(k) \equiv f_{\NL}^g$ for $46 \text{ Mpc}^{-1} \lesssim k \lesssim 12000 \text{ Mpc}^{-1}$.

More accurate expressions for the transfer function have been discussed in \[237\]. We will use the simpler approximations in eq. (4.3), but with two adjustments. We will re-normalize the amplitude of the expected monopoles of μ- and y-distortion to the values computed in \[238\], $\langle \mu \rangle = 2.3 \times 10^{-8}$ and $\langle y \rangle = 4.2 \times 10^{-9}$. Moreover we will add to the cross correlation the factor $\exp[-15k^2/(8k_D^2(z_{\text{rec}}))]$, where $k_D^2(z_{\text{rec}})$ is the damping scale at recombination, which account the damping of power by photon diffusion, and which was introduced in \[237\]. This “zero-order” approximation is accurate enough for a Fisher forecast and allow a simple, direct comparison with other results in the literature.
The cross-correlation can be found as:

\[
\langle a^X_{\ell m} a^\Xi_{\ell' m'} \rangle = 8 \delta_{\ell \ell'} \delta_{m m'} \int \frac{k^2 \, dk}{2\pi^2} T^X_\ell(k) j_{\ell'}(k r_{\text{ls}}) e^{-\frac{15k^2}{8k_{\text{D}}^2(z_{\text{rec}})}} \int \frac{q_1^2 q_2^2 \, dq_1 \, dq_2}{2\pi^2} f^\Xi(q_1, q_2, k) B(k, q_1, q_2) \int x^2 \, dx j_0(q_1 x) j_0(q_2 x) j_0(k x).
\]

In [231] it has been discussed how the generation mechanism for \(\mu \) via acoustic dissipation, encoded in the \(f^\mu(q_1, q_2, k) \) function, strongly selects squeezed configuration \(k_1 \approx k_2 \gg k \) in the \(T-\mu \) correlation. The same argument holds for the \(E-\mu \) cross-correlation. Since the diffusion damping scale of \(y_p \) is much smaller than the \(\mu \) one, the same approximation is less accurate in the \(X-y_p \) cross-correlations. However it should be noted that the more accurate transfer function provided in [237] explicitly suppress configuration with too different \(q_1 \) and \(q_2 \). This means that also when using \(y \)-distortions we are allowed to take the squeezed limit \(k_1 \approx k_2 \gg k \).

In the squeezed limit, eq. (4.4) reduces to

\[
C^{X \Xi}_\ell \approx -4\pi \frac{12}{5} \int \frac{k^2 \, dk}{2\pi^2} T^X_\ell(k) j_{\ell'}(k r_{\text{ls}}) P(k) e^{-\frac{15k^2}{8k_{\text{D}}^2(z_{\text{rec}})}} \int \frac{q_1^2 q_2^2 \, dq_1 \, dq_2}{2\pi^2} f^\Xi(q_1, q_2, k) P(q_1).
\]

Notice that the last integral in this equation is exactly the definition of the monopole of the \(\Xi \)-type spectral distortion. Thus, renormalizing the \(\langle \mu \rangle \) and \(\langle y \rangle \) to the right vale as discussed above translate linearly into a renormalization of the \(C_\ell \).

In figure 4.1 we show the cross-correlations between \(\mu \)- or \(y_p \)-distortion, and \(T \) or \(E \) anisotropies. The prediction for \(\mu-T \) is in good agreement with [231]. Only the primordial contribution to the cross-correlations is shown in the plot, even though other effects contribute to the same signals. We are going to consider them in the next subsection, since those secondary sources will constitute foregrounds to these primordial signal.

\[\text{The tiny differences come from the fact that in the present section we are using a different and independent numerical implementation of the calculation. As a sanity check we verified that the } C^{TT}_\ell \text{ and } C^{EE}_\ell \text{ calculated with the our code match the same CLASS results up to its accuracy.}\]
Testing the bispectrum

4.1.2. Secondary sources

In this subsection we will consider the main non-primordial contributions to the y-T and y-E spectra, namely the cross-correlation between Sunyaev-Zeldovich and the integrated-Sachs-Wolfe effect, for y-T, and the cross correlation between CMB polarization and the quadratic Doppler effect, for y-E.

Sunyaev-Zeldovich

The cross-correlation of temperature and y-distortions is far from negligible even in the Gaussian case. As discussed in Section 3.2.2 the SZ-ISW cross correlation constitute an important foreground for this type of analysis that is always present. We use the formalism described there to calculate the SZ power spectrum and cross correlation with T and E. In this application we consider the bias given in table 2 of [218], the halo mass function of [119] with the updated parameters given in [218], and the halo Compton y-parameter computed in [122]. As a lower integration limit we choose $z > 0.02$; this ensure that the redshift integrals do not get contributions from unphysical $z = 0$ objects.

We also integrate over the masses $10^{10}M_\odot h^{-1} < M < 10^{16}M_\odot h^{-1}$. We checked our spectra against those shown in [126], changing our integration boundaries to match their choices, and we are in very good agreement.
As previously mentioned, one of the main goals of this section is to study the f_{NL} dependence in the y-E cross-correlation spectrum, which was not accounted for in previous works [125, 211, 217] on the subject. One of the main advantages of using y-E in place of, or in combination with, y-T, is that contamination from SZ is expected to be strongly suppressed for y-E, therefore the main source of bias that afflicts y-T-based measurements of f_{NL} [211] would be eliminated. While much smaller than the y-T contribution, a non-primordial y-E correlation is still present: after reionization the quadrupole of free electrons still acts as a source of E. SZ is generated in the same epoch on similar scales, so this gives rise to a non-vanishing y-E. This is expected to be a very small effect at low redshifts. However, also the primordial y_p-E signal we are after is very small, therefore, it is important to explicitly compare the two effects.

y-distortion from reionization

Another source of contamination comes from the cross-correlation of E with the quadratic Doppler effect (see [239, 240] and references therein). Being proportional to the velocity of the baryons squared, this observable tracks the primordial density squared $y_{\text{reio}} \sim \zeta(k)^2$. It is then clear that its cross-correlation with first order CMB polarization anisotropies is proportional to the primordial bispectrum $C_{\ell}^{y_{\text{reio}}-E} \propto \langle \zeta(k_1)\zeta(k_2)\zeta(k_3) \rangle$. However, we neglect this potential contribution to the signal here, leaving its study for future work, and focus instead on spurious, non-primordial contamination, which need to be removed from the primordial y-E contribution at recombination.

To simplify the notation we will omit “C_{ℓ}” in defining cross-correlations (i.e., y_{reio}-$E \equiv C_{\ell}^{y_{\text{reio}}-E}$) and we will indicate the n-th order term of a quantity with an apex “"(n)"”, i.e., $E^{(n)}$.

Assuming perfectly Gaussian primordial perturbations, the leading term of the quadratic Doppler effect-Polarization cross-correlation is of fourth order in the primordial density perturbation: y_{reio}-$E = y_{\text{reio}}^{(2)}$-$E^{(2)} + y_{\text{reio}}^{(3)}$-$E^{(1)} + O(\zeta^6)$. We expect the second addendum to be of the same order of the first. Calculating it would require developing new formalism to describe higher-order-contributions to spectral distortions. Since, as we anticipate, we found after a complete calculation that the first term is negligible, we neglect the calculation of the second.
The authors of [239] provide an analytic expression for $y^{(2)}_{\text{reio}}$. The second order transfer function for CMB polarization anisotropies can instead be obtained numerically, using the publicly available code SONG [234, 236].

Let’s consider a perturbation field X that can be written as an expansion over the primordial density perturbation field ζ. Up to second order, in terms of its linear $T^{(1)}_{X \ell m}$ and second order $T^{(2)}_{X \ell m}$ transfer functions the field projection on the sphere can be written as [236]

$$a_{\ell m}(k) = T^{(1)}_{X \ell m}(k)\zeta(k) + \int \frac{d^3 q_1 d^3 q_2 \delta^{(3)}(k - q_1 - q_2)}{(2\pi)^3} T^{(2)}_{X \ell m}(q_1, q_2, k)\zeta(q_1)\zeta(q_2) + \ldots$$ \hspace{1cm} (4.6)

In full generality, the cross-correlation of the second order contributions of two field X and Y will be

$$\langle a_{\ell m}^{X(2)} a_{\ell' m'}^{Y(2)} \rangle = \int \frac{d^3 k_1}{(2\pi)^3} \int \frac{d^3 q_1 d^3 q_2 T^{(2)}_{X \ell m}(q_1, q_2, k_1)\delta^{(3)}(k_1 - q_1 - q_2)}{(2\pi)^3} \int \frac{d^3 k_2}{(2\pi)^3} \int \frac{d^3 p_1 d^3 p_2 T^{(2)}_{Y \ell' m'}(p_1, p_2, k_2)\delta^{(3)}(k_2 - p_1 - p_2)}{(2\pi)^3} \langle \zeta(q_1)\zeta(q_2)\zeta(p_1)\zeta(p_2) \rangle.$$ \hspace{1cm} (4.7)

Using Wick theorem, under the assumption that the primordial perturbation field is Gaussian, and using the fact that this expression in symmetric in $q_1 \leftrightarrow q_2$ one gets

$$\langle \zeta(q_1)\zeta(q_2)\zeta(p_1)\zeta(p_2) \rangle = 2(2\pi)^6 \delta^{(3)}(q_1 + p_1)\delta^{(3)}(q_2 + p_2)P(q_1)P(q_2).$$ \hspace{1cm} (4.8)

If we assume rotational invariance we can rotate our reference system to match \hat{z} with the direction of k. For the rest of the section we will write $\int x \equiv \int dx \ x^2$ to shorten
the notation.

\[
\langle a_{\ell m}^X a_{\ell' m'}^Y \rangle = 2 \int \frac{d^3 q_1}{(2\pi)^3} \frac{d^3 q_2}{(2\pi)^3} \int_{k_1} \frac{1}{(2\pi)^3} \sqrt{\frac{4\pi}{(2\ell + 1)}} \sqrt{\frac{4\pi}{(2\ell' + 1)}} \sum_{m_1 m_2} T_X^{(2)}(q_1, q_2, k_1) T_Y^{(2)}(-q_1, -q_2, k_1)
\]

\[
\delta^{(3)}(-q_1 - q_2 + k_1 \hat{z}) P(q_1) P(q_2) \int d^2 \Omega(\hat{k}_1)(-1)^{\ell'} m_1 Y_{\ell m}^m(\hat{k}_1) m_2 Y_{\ell' m'}^{m'}(\hat{k}_1) = \frac{8\pi}{2\ell + 1} \int \frac{d^3 q_1}{(2\pi)^6} \int \frac{d^3 q_2}{(2\pi)^6} \delta^{(3)}(-q_1 - q_2 + k_1 \hat{z}) P(q_1) P(q_2)
\]

\[
\sum_{m_1} T_X^{(2)}(q_1, q_2, k_1) T_Y^{(2)}(-q_1, -q_2, k_1) (-1)^{\ell' + m_1 - m} \delta_\ell^\ell \delta_{m_1}^m \delta_{m}^{m'}.
\]

In the first line we used the fact that the transfer functions transform under rotations as spherical harmonics; and in the second \(\int d^2 \Omega(\hat{k}_1) - m_1 Y_{\ell m}^m(\hat{k}_1) - m_2 Y_{\ell' m'}^{m'}(\hat{k}_1) = (-1)^{m_1 + m} \delta_\ell^\ell \delta_{m_1}^m \delta_{m}^{m'} \).

Now we specialize in the case we are interested in: \(X \) being the CMB polarization and \(Y \) being the quadratic Doppler effect effect. To uniform our notation with \[236\] and factor out the quantities that SONG actually calculates \(T \), we perform the substitution

\[
T_X^{(2)}(q_1, q_2, k_1) = (-1)^{m_1} \sqrt{\frac{4\pi}{2|m_1| + 1}} T_X^{(2)}(q_1, q_2, k_1) Y_{|m_1|}^{m_1}(\hat{q}_1)
\]

(4.11)

\[
\langle a_{\ell m}^X a_{\ell' m'}^Y \rangle = \delta_\ell^\ell \delta_{m}^{m'} \frac{8\pi}{2\ell + 1} \int \frac{d^3 q_1}{(2\pi)^6} \frac{d^3 q_2}{(2\pi)^6} P(q_1) P(q_2) \sum_{m_1} \sqrt{\frac{4\pi}{2|m_1| + 1}} (-1)^{\ell' + 2m_1 - m}
\]

\[
\int \delta^{(3)}(k_1 - q_1 - q_2) T_X^{(2)}(q_1, q_2, k_1) Y_{|m_1|}^{m_1}(\hat{q}_1) T_Y^{(2)}(-q_1, -q_2, k_1)
\]

(4.12)

For spectral distortion from reionization \[239\]

\[
T_Y^{(2)}(q_1, q_2, k_1) = (2\ell' + 1) \left[\frac{-\delta_{m_1}^0}{3} I_{\ell'}^{(1)}(q_1, q_2, k_1) \hat{q}_1 \cdot \hat{q}_2 + \right.
\]

\[
\left. + \frac{11\pi}{45} I_{\ell' m_1}^{(2)}(q_1, q_2, k_1) \sum_{n=-1}^{1} \alpha_{n, m_1} \left(Y_{1}^{-m_1-n}(\hat{q}_1) Y_{1}^{n}(\hat{q}_2) \right)^* \right]
\]

(4.13)
Testing the bispectrum

\[I^{(1)}_{\ell'}(q_1, q_2, k_1) = \int_{\eta_{\text{reio}}}^{\eta_0} d\eta \ g(\eta) j_{\ell'}(k_1 r(\eta)) F(q_1, \eta) F(q_2, \eta) \]
\[I^{(2)}_{\ell', m_1}(q_1, q_2, k_1) = \int_{\eta_{\text{reio}}}^{\eta_0} d\eta \ g(\eta) j_{\ell m_1}^{(2)}(k_1 r(\eta)) F(q_1, \eta) F(q_2, \eta). \]

and

\[\alpha_{0,m} \equiv \sqrt{4 - m^2} \quad \alpha_{\pm 1,m} \equiv \sqrt{(2 \pm m)(2 \pm m - 1)/2}. \]

Here \(F(k, \eta) \) is the baryon velocity transfer function, defined as

\[\nu_b(k, \eta) = -\frac{i k}{k} F(k, \eta) \zeta(k), \]

and \(g(\eta) \) is the visibility function.

Plugging everything back in, we can use the identity eq. (A.6) and the Rayleigh expansion of the Dirac delta (A.8) to get

\[
\langle a_{\ell m} a_{\ell' m'}^* \rangle = \delta_{\ell \ell'} \delta_m^{-m'} \frac{64 \pi}{2 \ell + 1} \int \frac{d^3 q_1 \ d^3 q_2}{(2\pi)^6} \int \sum_{L M_1 M_2} j_L(xk_1) j_{L_1}(xq_1) j_{L_2}(xq_2)
\]

\[
\sqrt{\frac{2L+1}{4\pi}} (-1)^{L_1+L_2} Y_{L_1}^{M_1*}(\hat{q}_1) Y_{L_2}^{M_2*}(\hat{q}_2) \sum_{m_1} \left(\frac{4\pi}{2|m_1| + 1} \right) (-1)^{\ell' + 2m_1 - m} T_{X\ell m_1}^{(2)}(q_1, q_2, k_1) Y_{m_1}^{m_1*}(\hat{q}_1)
\]

\[
(2\ell' + 1) \left[-\frac{\delta_{m_1}}{3} I^{(1)}_{\ell'}(q_1, q_2, k_1) \frac{4\pi}{3} \sum_{m_2=-1}^1 Y_1^{m_2*}(\hat{q}_1) Y_1^{m_2}(\hat{q}_2) + \right.
\]

\[
+ \frac{11\pi}{45} I^{(2)}_{\ell', m_1}(q_1, q_2, k_1) \sum_{n=-1}^1 \alpha_{n m_1} \left(Y_1^{m_1-n}(\hat{q}_1) Y_1^n(\hat{q}_2) \right)^* P(q_1) P(q_2)
\]
\[\langle a_{\ell m} a_{\ell' m'} \rangle = \delta_{\ell} \delta_{m}^{m'} \frac{64 \pi}{2 \ell' + 1} \]

\[
\sum_{L} \sum_{L_1 M_1} \sum_{L_2 M_2} \sqrt{\frac{2L+1}{4\pi}} (-1)^{L_1+1} \ell' L_2 + 1 h_{L_1 1 L} L \left(\begin{array}{cc} L_1 & 1 \\ M_1 & M_2 \end{array} \right)
\]

\[
\sum_{m_1} \sqrt{\frac{4\pi}{2|m_1| + 1}} (-1)^{\ell' + 2m_1 - m}
\int_{q_1} \int_{q_2} \int_{k_1} \frac{1}{(2\pi)^6} P(q_1) P(q_2) T^{(2)}_{X \ell m_1}(q_1, q_2, k_1)
\]

\[
\left[-\frac{\delta^{m_1}}{3} I^{(1)}_{\ell'} (q_1, q_2, k_1) \right] \frac{4\pi}{3} \sum_{m_2=-1}^{1} (-1)^{m_2} \delta_{M_2}^{m_2} \frac{3}{\sqrt{4\pi}} \delta^{1}_{L} \delta^{m_2}_{M_2} +
\]

\[
\frac{11\pi}{45} I^{(2)}_{\ell', m_1} (q_1, q_2, k_1) \sum_{n=-1}^{1} \alpha_{n, m_1} h_{L_1 |m_1| 1} \left(\begin{array}{ccc} L_1 & |m_1| & 1 \\ -M_1 & m_1 & -m_1 + n \end{array} \right)
\]

\[
(-1)^{M_1 + m_1 - n} \delta_{M_2}^{m_2} \int_{x} j_{L}(x k_1) j_{L}(x q_1) j_{L}(x q_2)
\]

where we defined

\[
h_{L_1 L_2 L_3} \equiv \sqrt{\frac{(2L+1)(2L_1+1)(2L_2+1)}{4\pi}} \left(\begin{array}{ccc} L & L_1 & L_2 \\ 0 & 0 & 0 \end{array} \right).
\]

The first term is further reduced to

\[
1st = (-1)^{\ell' - m} \delta_{\ell} \delta_{m}^{m'} \frac{64 \pi}{2 \ell' + 1} \int \frac{q_1^2}{(2\pi)^6} \frac{q_2^2}{(2\pi)^6} \int k_1^2 dk_1 \int x^2 dx j_{0}(x k_1) j_{L}(x q_1) j_{L}(x q_2)
\]

\[
T^{(2)}_{X \ell, 0}(q_1, q_2, k_1) \frac{1}{3} I^{(1)}_{\ell'} (q_1, q_2, k_1) P(q_1) P(q_2)
\]
where we used the identity \(\text{(A.21)} \); whereas the second is

\[
2 \eta = (1)^{\ell}-m_\ell \delta_\ell^j \delta_m^{m'} 64 \pi \int \frac{q_1^2 dq_1 q_2^2 dq_2}{(2\pi)^3} \int k_1^2 dk_1 \sum_L L_1 \sum_{n=-1}^1 \int x^2 dx j_L(xk_1)j_{L_1}(xq_1)j_1(xq_2)
\]

\[
\sum_{m_1} T_X^{(2)}_{\ell m_1}(q_1, q_2, k_1) \frac{11\pi}{45} l_1^{(2)}(q_1, q_2, k_1) P(q_1)P(q_2)
\]

\[
(-1)^{L_1+1}(-1)^{3m_1} \frac{3(2L+1)(2L_1+1)}{4\pi} \alpha_{n,m_1} (L_1 1 L) (L_1 1 L) \begin{pmatrix} L_1 & 1 & 1 \\ 0 & 0 & 0 \\ -n & m_1 & -m_1 + n \end{pmatrix}.
\]

(4.20)

The structure of the 4 three-\(j \) symbol that appear in the second term guarantees that the sum over \(L, L_1 \) is not infinite. In fact we found that their product is non zero only for \(L < 4, L_1 < 3 \).

As the integral over \(x \), for both terms, has to be computed for small values of the multipolar indices, therefore it is convenient to evaluate it analytically using the identity \(\text{(A.23) 241} \).

Wrapping up we get

\[
y_{\text{reio}}^{(2)} E^{(2)} = (1)^{\ell}-m_\ell 64 \pi \int \frac{q_1^2 dq_1 q_2^2 dq_2}{(2\pi)^3} \int k_1^2 dk_1 \sum_L L_1 \sum_{n=-1}^1 \int x^2 dx j_L(xk_1)j_{L_1}(xq_1)j_1(xq_2)
\]

\[
\frac{11\pi}{45} l_1^{(2)}(q_1, q_2, k_1) T_X^{(2)}_{\ell m_1}(q_1, q_2, k_1) I(L, L_1, 1, k_1, q_1, q_2) + \frac{4}{3} l_1^{(1)}(q_1, q_2, k_1) I(0, 1, 1, k_1, q_1, q_2) + \frac{3}{4} \frac{3(2L+1)(2L_1+1)}{4\pi} \alpha_{n,m_1} (L_1 1 L) (L_1 1 L) \begin{pmatrix} L_1 & 1 & 1 \\ 0 & 0 & 0 \\ -n & m_1 & -m_1 + n \end{pmatrix}.
\]

(4.21)

While the angular — moments independent — part can be computed analytically, the integrals over \(q_1, q_2, \) and \(k_1 \) have to be evaluated numerically. Luckily enough the structure of these integrals is the same one finds when calculating the intrinsic bispectrum of the CMB. Therefore \(\text{[235]} \) provides a good insight of what are the properties of the
Figure 4.2.: The main components (primordial and secondary) of the \(y-T \) and \(y-E \) cross-correlations. \(SZ-T \) is the only non-negligible contaminant to \(y_p-T \), but is four orders of magnitude bigger, and correlates more with it. \(y_p-E \) suffers the presence of both \(SZ-E \) and \(y_{reio}-E \), but both secondary signals are proportionally smaller and less correlated than \(SZ-T \).

Integrand. In fact we found that it oscillates both along \(k_1 \), and along \(q_1 \) and \(q_2 \), however the frequency of oscillation along \(k_1 \) is one order of magnitude higher than the other. For this reason we computed the \(k_1 \) integral over a coarse grid of \(q_1 \) and \(q_2 \), and only then we performed the integral of the now smoother function. Moreover the symmetry \(q_1 \leftrightarrow q_2 \) allows us to pick only the configurations with \(q_2 < q_1 \) and double the result of the integral in the end.

To calculate this signal we use the transfer function extracted from SONG with 10% accuracy. Since the convergence of the tensor modes has not been tested by the authors for more than 10% accuracy \cite{236}, using higher precision run would require extensive testing of the code. Moreover, as the final \(y^{(2)}-E^{(2)} \) contribution will turn out to be negligible, our results will not depend on this quantity, making accuracy improvements not important for our purposes.

In figure 4.2 we compare the \(y_p-E \) signal with the secondary sources of \(E-y \). The \(SZ-E \) cross-correlation is approximately 100 times bigger than the signal, while the \(y_{reio}-E^{(2)} \) cross-correlation is 10-100 times smaller than the signal in the first 100 multipoles, and their ratio decreases as \(\ell \) increases. The slightly different slopes allow disentangling of the signal from the secondary sources, as we will show in subsection 4.1.4. For comparison, the
Testing the bispectrum

The SZ-T cross-correlation in 10^4 bigger than the primordial signal. The same marginalization over the foregrounds can be performed also in this case, but with worse results since the shape of the primordial signal is more degenerate with the shape of the secondary sources. This can be quantified calculating the correlation of the primordial signal with the secondary signal:

$$\frac{\sum_\ell (C_\ell^{yT} C_\ell^{SzT})}{\sqrt{\sum_\ell (C_\ell^{yT})^2} \sqrt{\sum_\ell (C_\ell^{SzT})^2}} = 0.92,$$

$$\frac{\sum_\ell (C_\ell^{yE} C_\ell^{SzE})}{\sqrt{\sum_\ell (C_\ell^{yE})^2} \sqrt{\sum_\ell (C_\ell^{SzE})^2}} = 0.64.$$ (4.22)

4.1.3. f_{NL}^μ forecast

As first considered in [233], we can try enhancing the f_{NL} signal-to-noise ratio, extracted using $T-\mu$, by adding polarization to the analysis. In [233], simplified “Sachs-Wolfe”-limit transfer functions were used both for temperature and polarization anisotropies, finding no f_{NL}-sensitivity improvements with the inclusion of polarization. However, we found via explicit computation that the inclusion of full transfer functions does change this picture at $\ell > 10$, outside the limits of validity of the Sachs-Wolfe approximation.

As in Section 3.2.3 the Fisher matrix is

$$F_{ij} = \sum_\ell (\text{Cov}_\ell^{-1})_{\alpha\beta} \frac{\partial (\text{Cov}_\ell^{-1})_{\beta\gamma}}{\partial p_i} (\text{Cov}_\ell^{-1})_{\gamma\delta} \frac{\partial (\text{Cov}_\ell^{-1})_{\delta\alpha}}{\partial p_j},$$ (4.23)

where Cov_ℓ is the covariance matrix and repeated matrix indices (α, \ldots, δ) are summed.

The f_{NL}^μ Fisher matrix, when considering only T or only E, reads [9]

$$\left(\frac{S}{N} \right)^2 = F = \sum_{\ell=2}^{\ell_{\text{max}}} C_{\ell}^{XX} C_{\ell}^{\mu X} \frac{C_{\ell}^{\mu X}}{(\sigma_{\ell}^{\mu X})^2},$$ (4.24)

where we recall that $X = T, E$. For a PIXIE- or PRISM-like experiment it is expected that $C_{\ell}^{XX} C_{\ell}^{\mu \mu} \ll (C_{\ell}^{XX})_{\text{obs}} (C_{\ell}^{\mu \mu})_{\text{obs}}$, and $(C_{\ell}^{\mu \mu})_{\text{obs}} \approx (C_{\ell}^{\mu \mu})_N \gg C_{\ell}^{\mu \mu}$ where “obs” stands for observed and “N” for noise. Again, for PIXIE (PRISM) the expected noise is $C_{\ell}^{\mu \mu, N} = 4\pi \times (1.4 \times 10^{-8})^2 \times e^{\ell/84^2}$ ($C_{\ell}^{\mu \mu, N} = 4\pi \times 10^{-18} \times e^{\ell}/100^2$) [10,221]. Here we do not account for galactic foregrounds. In [242] it has been shown that the error on the measurement of the spectral distortion monopole can degrade as much as one order of magnitude with respect to earlier, more optimistic estimates. The spatially varying part
of these foregrounds will have to be modelled with more accuracy in order to give an actual estimate of how much the estimates will degrade in our case.

Under those assumptions

$$\langle \sigma^X_\ell \rangle^2 \approx \frac{C_{XX}^{\mu \mu,N} C_{\ell}^{\mu E}}{2 \ell + 1}.$$ \hfill (4.25)

Therefore, the signal-to-noise ratio is proportional to the μE contribution — which is underestimated for $\ell > 10$ using the “Sachs-Wolfe”-transfer function — and inversely proportional to the square root of the polarization power spectrum, which peaks on the first 10 multipoles (due to the reionization bump) and decreases afterwards. As a result an explicit numerical evaluation shows that the f_{NL}^μ signal-to-noise ratio from $E-\mu$ is actually higher than the one obtained using $T-\mu$, at $\ell_{\text{max}} > 50$, see figure 4.3.

We are finally interested in the joint estimate of f_{NL}^μ, obtained combining both observations:

$$F = \sum_{\ell} (2 \ell + 1) \frac{C_{\ell}^{TT} (C_{\ell}^{\mu E})^2 + C_{\ell}^{EE} (C_{\ell}^{\mu T})^2 - 2 C_{\ell}^{TE} C_{\ell}^{\mu T} C_{\ell}^{\mu E}}{C_{\ell}^{\mu \mu,N} [C_{\ell}^{TT} C_{\ell}^{EE} - (C_{\ell}^{TE})^2]}.$$ \hfill (4.26)
Testing the bispectrum

<table>
<thead>
<tr>
<th>Survey</th>
<th>T</th>
<th>E</th>
<th>$T \oplus E$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1$\sigma(\mu_{NL})$</td>
<td>4200</td>
<td>3800</td>
<td>3300</td>
</tr>
<tr>
<td>PRISM</td>
<td>300</td>
<td>270</td>
<td>230</td>
</tr>
<tr>
<td>CVL</td>
<td>0.67×10^{-3}</td>
<td>0.67×10^{-3}</td>
<td>0.55×10^{-3}</td>
</tr>
</tbody>
</table>

Table 4.1. 1σ forecasted error bars on μ_{NL}, calculated using the standard ΛCDM value of $\langle \mu \rangle = 2.3 \times 10^{-8}$. $T \oplus E$ indicates the joint forecast using both temperature and polarization. We accounted for correlations between $T-\mu$ and $E-\mu$ using eq. (4.26).

As the covariance matrix is

$$\text{Cov}_\ell = \frac{1}{2\ell + 1} \begin{pmatrix} C^{TT}_\ell & C^{TE}_\ell & f^{\mu}_{NL} C^{\mu T}_\ell \\ C^{TE}_\ell & C^{EE}_\ell & f^{\mu}_{NL} C^{\mu E}_\ell \\ f^{\mu}_{NL} C^{\mu T}_\ell & f^{\mu}_{NL} C^{\mu E}_\ell & C^{\mu\mu,N}_\ell \end{pmatrix}.$$ \hfill(4.27)

As expected for a PIXIE-like survey, the signal-to-noise ratio saturates for $\ell \approx 100$ \cite{221}. We found that adding the polarization cross-correlation to the temperature cross-correlation with the μ-spectral-distortion the constraint on f_{NL} improves by a factor 1.28. In figure \ref{fig:4.3} we show the minimum value of f_{NL} that guarantees a 1σ rejection of $f_{NL} = 0$, as a function of the maximum multipole. Our results are shown in table 4.1. The estimate achieved using temperature alone appears to be slightly different from \cite{237}. The shape of the $C^{\mu T}_\ell$ used in \cite{237}, calculated in \cite{221} deviate slightly from ours, and in particular the first zero crossing is located at smaller ℓ with respect to our calculation. Since the signal-to-noise ratio scales logarithmically with the ℓ \cite{221}, slightly bigger $C^{\mu T}_\ell$ at small ℓ guarantees more signal to noise with respect to bigger $C^{\mu T}_\ell$ at higher ℓ. If we were to use the same signal as the one provided in \cite{221}, we would be completely consistent with \cite{237}.

4.1.4. f_{NL}^y forecast

We will now come to the main point of this work, namely studying the effects of adding y-distortions in the f_{NL} analysis, including contributions from polarization and exploring methods to clean SZ-contamination via SZ-lensing correlations.
Figure 4.4.: Minimum value of f^y_{NL} needed to reject $f^y_{NL} = 0$ at 1σ, as a function of the maximum multipole. This value is calculated with a Fisher forecast after marginalizing over all foregrounds and using the PRISM level of noise. We also show the same value for f^μ_{NL} for comparison. We compare the results obtained using no mask and no template subtraction ($y-T \oplus E$) and using the PRISM mask and the template subtraction ($y-T \oplus E$, clean + PRISM) described respectively in table 4.5 and subsection 4.1.4.

T-y forecast and cluster masking.

In our forecasts we have to keep into account theoretical uncertainties of the halo-model, used to predict the correlations. Following [211], we will do this by simply introducing an unknown amplitude parameter α_T, in front of the spectra, and marginalizing over it. This leads to the covariance matrix

$$\text{Cov}_\ell = \frac{1}{2\ell + 1} \begin{pmatrix}
C^{TT}_\ell & f^y_{NL} C^{yT}_\ell + \alpha_T C^{SZT}_\ell \\
C^{yT}_\ell & \alpha_T C^{SZT}_\ell & f^y_{NL} C^{yT}_\ell + \alpha_T C^{SZT}_\ell & C^{yy,N}_\ell + C^{1h}_\ell + C^{2h}_\ell
\end{pmatrix}. \quad (4.28)$$

A PIXIE-like experiment is expected to have 5 to 10 better sensitivity to y than to μ. Therefore the noise term is $C^{yy,N}_\ell = 4\pi \times 4 \times 10^{-18} \times e^{\ell^2/84^2}$; the same holds for PRISM for which $C^{yy,N}_\ell = 4\pi \times 4 \times 10^{-20} \times e^{\ell^2/84^2}$ [10,221]. We forecast f^y_{NL} using temperature alone, and marginalizing over the secondary source SZ-T.
Testing the bispectrum

\[\sigma(f_{NL}^y) \]

\begin{align*}
\text{Mask} & & T & & E & & T \oplus E & & T \oplus E, \text{ clean.} \\
\text{Unmasked} & & 12700 & & 5500 & & 3300 & & 2900 \\
e\text{ROSITA} & & 8600 & & 4800 & & 2700 & & 2300 \\
\text{PRISM} & & 5500 & & 4000 & & 2200 & & 2200 \\
z > 0.3 & & 5500 & & 4200 & & 2300 & & 2300 \\
\end{align*}

Table 4.2.: 1σ forecasted error bars on \(f_{NL}^y \) for PIXIE, calculated using the standard \(\Lambda \)CDM value of \(\langle y \rangle = 4.2 \times 10^{-9} \). \(T \oplus E \) indicates the joint forecast using both temperature and polarization. We accounted for correlations between \(T \) \& \(y \) and \(E \) \& \(y \) using the covariance in eq. (4.31). In all the forecasts we marginalize over the amplitude of every secondary source. \(z > 0.3 \) performs worse than PRISM mask because the contribution to the total SZ signal coming from small \((M < 10^{13} M_\odot) \) clusters at low \((z < 0.3) \) redshift is smaller than that of bigger clusters at higher redshift.

\begin{align*}
\text{Mask} & & T & & E & & T \oplus E & & T \oplus E, \text{ clean.} \\
\text{Unmasked} & & 4900 & & 3100 & & 1700 & & 1300 \\
e\text{ROSITA} & & 3200 & & 1900 & & 1100 & & 680 \\
\text{PRISM} & & 1000 & & 630 & & 380 & & 300 \\
z > 0.3 & & 1700 & & 1300 & & 700 & & 620 \\
\end{align*}

Table 4.3.: Same as table 4.2 but for PRISM.

In figure 4.4 we show our results as a function of \(\ell_{\text{max}} \). It is clear not only that the variance is completely dominated by the SZ power spectrum, but also that this effect leads to very poor constraints on the primordial signal.

One way to tighten the constraints is to mask resolved clusters (see e.g. [126,211]), eventually assuming the use of external surveys (e.g. X-ray surveys) to improve performance. We will consider here eROSITA [222] as external survey, and also PRISM itself, and investigate different types of masks, based on more or less futuristic scenarios, in order to understand which level of masking guarantees a signal-to-noise ratio for \(f_{NL}^y \) similar to the one achieved for \(f_{NL}^\mu \). Our results are summarized in table 4.2.

We model the effect of masking clusters by changing integration boudaries in the SZ-SZ, SZ-T and SZ-E spectra, in order to exclude regions in the \(z-M \) plane where the catalogue of a given experiment is complete [126]. This is a very conservative choice, as in real catalogues a non-negligible part of resolved cluster actually sits in regions where the catalogue is not complete. We have investigated 5 different masks:
Table 4.4.: Same as table 1.2 but for a cosmic-variance limited spectrometer instead of PIXIE, and using $\ell_{\text{max}} = 1000$.

<table>
<thead>
<tr>
<th>Mask</th>
<th>T</th>
<th>E</th>
<th>$T \oplus E$</th>
<th>$T \oplus E$, clean.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unmasked</td>
<td>2300</td>
<td>1400</td>
<td>1000</td>
<td>750</td>
</tr>
<tr>
<td>eROSITA</td>
<td>1700</td>
<td>1100</td>
<td>730</td>
<td>470</td>
</tr>
<tr>
<td>PRISM</td>
<td>400</td>
<td>220</td>
<td>160</td>
<td>130</td>
</tr>
<tr>
<td>$z > 0.3$</td>
<td>1000</td>
<td>710</td>
<td>470</td>
<td>400</td>
</tr>
</tbody>
</table>

Figure 4.5.: SZ power spectrum, for the different sky-masks defined in table 4.5. For comparison we also plot the PRISM noise level. PIXIe noise level is two orders of magnitude bigger than the PRISM one.

- The vanilla “Unmasked” scenario.
- The one expected from the eROSITA predicted efficiency.
- The one expected from the PRISM predicted efficiency.
- A mask that cuts every cluster under $z < 0.3$ regardless of its size, used to compare our results with [211], “$z > 0.3$”. This is also a futuristic scenario.

The adopted integration boundaries for the various cases are shown in table 4.5. In figure 4.5 we compare the total (1-halo + 2-halo) SZ power spectra, obtained using different masks. As shown, using PIXIe with the eROSITA mask, already guarantees a f_{NL}^g signal-to-noise ratio comparable with f_{NL}^μ.

\[
1 \sigma(f_{\text{NL}}^g)
\]
Table 4.5.: Integration boundaries that define the different masks we use.

<table>
<thead>
<tr>
<th>Masking</th>
<th>Unmasked</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>eROSITA</td>
<td>$M < 2 \times 10^{14} M_\odot / h$ for $z < 0.15$</td>
<td></td>
</tr>
<tr>
<td>PRISM</td>
<td>$M < 10^{13} M_\odot h^{-1}$</td>
<td></td>
</tr>
<tr>
<td>$z > 0.3$</td>
<td>$z > 0.3$</td>
<td></td>
</tr>
</tbody>
</table>

Masking resolved clusters lowers the noise, but at the same time reduces the level of sky coverage. We get a rough and conservative estimate of the available fraction of the sky after cluster masking (f_{sky}) in the following way. We consider the eROSITA and estimate the number of masked clusters (< 1800) based on its expected performance [222]. We then assume that the redshift distribution of clusters is constant in redshift for $z \in [0.02, 0.15]$; this is a conservative choice since the expected redshift distribution increases rapidly with redshift in the considered range. Finally we assume that each cluster has a size of 6 Mpc. This leads to a final estimate

$$f_{\text{sky}} \approx 1 - \frac{1}{0.13} \int_{0.02}^{0.15} \frac{dz}{4\pi D_A(z)} \times 1800 \approx 0.7,$$

which will be included in our forecasts.

Adding polarization

We consider y-E contributions to the signal, by adapting equation (4.28) into:

$$\text{Cov}_\ell = \frac{1}{2\ell + 1} \begin{pmatrix}
C_{\ell}^{EE} & f_{\text{NL}} C_{\ell}^{yE} + \alpha E C_{\ell}^{\text{SZ}} + \beta E C_{\ell}^{\text{reio}} E \\
\frac{f_{\text{NL}} C_{\ell}^{yN} + C_{\ell}^{1h} + C_{\ell}^{2h}}{C_{\ell}^{yE}} & C_{\ell}^{y,N} + C_{\ell}^{1h} + C_{\ell}^{2h}
\end{pmatrix} + \alpha E C_{\ell}^{\text{SZ}} + \beta E C_{\ell}^{\text{reio}} E$$

The results we get after marginalizing over both αE and βE are shown in table 4.2. For a PIXIE-like experiment, just replacing T with E tightens the constraints by more than a factor 2. This comes from two effects. First, the signal-to-noise ratio for y-E is intrinsically higher — just like, and for the same reason as μ-E. Second, marginalizing over secondary signals do not degrades the constraint as much because the primordial and the secondary signal are less correlated as shown in eq. (4.22).
We now want to perform a joint analysis of y-T and y-E signals. In this case the covariance is

$$(2\ell + 1)\text{Cov}_\ell =$$

$$
\begin{pmatrix}
C_{\ell}^{TT} & C_{\ell}^{TE} & f_{NL}^{y}C_{\ell}^{yT} + \alpha_{T}C_{\ell}^{SZT} \\
C_{\ell}^{TE} & C_{\ell}^{EE} & f_{NL}^{y}C_{\ell}^{yE} + \alpha_{E}C_{\ell}^{SZE} + \beta_{E}C_{\ell}^{y_{\text{resio}}E} \\
\frac{f_{NL}^{y}C_{\ell}^{yT} + \alpha_{T}C_{\ell}^{SZT}}{C_{\ell}^{EE}} & \frac{f_{NL}^{y}C_{\ell}^{yE} + \alpha_{E}C_{\ell}^{SZE} + \beta_{E}C_{\ell}^{y_{\text{resio}}E}}{C_{\ell}^{EE}} & C_{\ell}^{y_{\text{resio}}N} + C_{\ell}^{1h} + C_{\ell}^{2h}
\end{pmatrix}.
$$

(4.31)

The $C_{\ell}^{y_{\text{resio}}E}$ contribution is very small and it has a very different slope than the primordial signal, hence marginalizing over β_{E} changes the final signal-to-noise ratio to a percent level. For this reason in the joint forecast we fixed $\beta_{E} = 1$. Moreover theoretical uncertainties in the SZ-T and SZ-E correlations, which have been parametrized above in terms of the amplitudes α_{T} and α_{E}, are entirely driven by errors in the prediction of the y signal. Therefore, we can also assume $\alpha \equiv \alpha_{T} = \alpha_{E}$ and marginalize over α.

Our joint-analysis results are summarized in table 4.2 for PIXIE, in 4.3 for PRISM and in 4.4 for an ideal cosmic-variance limited experiment. There we show how adding polarization tightens the constraints both in the PIXIE and PRISM-like, and in the cosmic-variance limited scenario by a factor between 2.1 and 3.8, depending on the considered survey and mask.

Cross-correlation with external tracers

The dominant term in the variance, in all configurations and for both E and T, is the SZ power spectrum. For this reason the only way to further enhance the signal-to-noise ratio, at this stage, is to remove as much contamination from SZ as possible. Using masks help significantly but, of course, cannot remove the significant contribution from the background of unresolved clusters.

In order to lower the noise contribution coming from this unresolved background, we consider here an approach based on statistical reconstruction of the SZ y-map, via correlations with CMB and galaxy-lensing signals. To do this we adapt the method studied in [243].
In other words, the observed y-distortion is the sum of the primordial component, the SZ component and the noise: $y_{\text{obs}}(\hat{n}) = y_p(\hat{n}) + y_{\text{SZ}}(\hat{n}) + y_N(\hat{n})$. Given the estimate \hat{y}_{SZ} of y_{SZ}, one can use $y_{\text{clean}}(\hat{n}) \equiv y_{\text{obs}}(\hat{n}) - \hat{y}_{\text{SZ}}(\hat{n})$ in place of $y_{\text{obs}}(\hat{n})$.

We will start considering the CMB-lensing-potential, ϕ, as our SZ-tracer. Later we will reapply the same procedure using the galaxy-lensing convergence field. The joint probability density function of $y_{\text{SZ}}, \phi, T,$ and E is

$$p(d_\ell) = N(0, A_\ell),$$

where $N(\mu, \text{Cov})$ is the multivariate Normal distribution with mean μ and covariance Cov, and we defined

$$A_\ell = \begin{pmatrix} C_{\ell}^{SZ} & C_{\ell}^{\phi} & C_{\ell}^{T} & C_{\ell}^{E} \\ C_{\ell}^{\phi} & C_{\ell}^{\phi} & C_{\ell}^{\phi T} & C_{\ell}^{\phi E} \\ C_{\ell}^{T} & C_{\ell}^{T} & C_{\ell}^{T E} \\ C_{\ell}^{E} & C_{\ell}^{E} & C_{\ell}^{E E} \end{pmatrix} \equiv \begin{pmatrix} C_{\ell}^{SZ} & C_{\ell}^{T} \\ C_{\ell}^{T} & B_{\ell} \end{pmatrix}, \quad d_\ell \equiv \begin{pmatrix} \phi \\ T \\ E \end{pmatrix} \equiv \begin{pmatrix} \phi \\ T \\ E \end{pmatrix}.$$

The conditional probability distribution of the $a_{\ell m}^{\text{SZ}}$ given the measurement of $\phi, T,$ and E is

$$p(a_{\ell m}^{\text{SZ}}|t_{\ell m}) = N(C_{\ell}^{T}B_{\ell}^{-1}t_{\ell m}, C_{\ell}^{SZ} - C_{\ell}^{T}B_{\ell}^{-1}C_{\ell}).$$

The expectation value of $a_{\ell m}^{\text{SZ}}$ then is

$$\hat{a}_{\ell m}^{\text{SZ}} = C_{\ell}^{T}B_{\ell}^{-1}t_{\ell m}.\quad (4.35)$$

The probability distribution of $a_{\ell m}^{\text{clean}} = a_{\ell m}^{\text{obs}} - \hat{a}_{\ell m}^{\text{SZ}}$ is

$$p(a_{\ell m}^{\text{clean}}|t_{\ell m}) = N\left(-C_{\ell}^{T}B_{\ell}^{-1}t_{\ell m}, Var(a_{\ell m}^{\text{obs}}) + Var(\hat{a}_{\ell m}^{\text{SZ}}) - 2 Cov(a_{\ell m}^{\text{obs}}, \hat{a}_{\ell m}^{\text{SZ}})\right).\quad (4.36)$$

The covariance of $a_{\ell m}^{\text{obs}}$ and $\hat{a}_{\ell m}^{\text{SZ}}$ can be computed using eq. (4.35) to write $a_{\ell m}^{\text{SZ}}$ in term of the multipolar coefficients of the tracers. For our fiducial model $f_{\text{NL}} = 0$ the only term in $a_{\ell m}^{\text{obs}}$ that does contribute to the cross correlation is indeed $a_{\ell m}^{\text{SZ}}$.

Note that the non-zero mean appearing in eq. (4.36) is due to the fact that we are considering the probability of $a_{\ell m}^{\text{clean}}$, conditional to the specific observed realization of $t_{\ell m}$.
in the sky. Of course, if one consider the expectation value over the ensemble of possible realization, one recovers \(\langle t_{\ell m} \rangle = 0 \) and therefore \(\langle a_{\ell m}^{\text{clean}} \rangle = 0 \) as expected.

Note also that, neglecting temperature and polarization, eq. (4.35) simply becomes
\[
\hat{a}_{\ell m}^{\text{SZ}} = (C_{\ell}^{\phi\phi} / C_{\ell}^{\phi}) a_{\ell m}^{\phi},
\]
as expected.

Using \(y_{\text{clean}}(\hat{n}) \) instead of \(y_{\text{obs}}(\hat{n}) \) leaves the numerator of eq. (4.31) unchanged. The variance instead is modified, with the following replacement, which of course lowers the overall SZ-noise contribution:
\[
(C_{\ell}^{1h} + C_{\ell}^{2h}) \rightarrow \langle (a_{\ell m}^{\text{SZ}} - \hat{a}_{\ell m})^2 \rangle = (C_{\ell}^{1h} + C_{\ell}^{2h}) - \langle \hat{a}_{\ell m}^{\text{SZ}} \hat{a}_{\ell m}' \rangle.
\]
(4.37)

The structure of the 1-halo and 2-halo terms for the CMB lensing potential cross-correlation with the SZ effect is the same as for the SZ power spectrum, reading [244]:

\[
C_{\ell}^{\text{SZ},\phi,1h} = \int \frac{d^2V}{dx \, d\Omega} \int dM \frac{dn}{dM} (z, M) |\tilde{y}_{\ell}(z, M)\tilde{\phi}_{\ell}(z, M)|
\]
\[
C_{\ell}^{\text{SZ},\phi,2h} = \int \frac{d^2V}{dx \, d\Omega} D_2(z) P_m(k) \left[\int dM \frac{dn}{dM} (z, M) b(z, M) a(z) \tilde{y}_{3D}(z, M, k) \right] \times
\]
\[
\times \left[\int dM \frac{dn}{dM} (z, M) b(z, M) a(z) \tilde{\phi}_{3D}(z, M, k) \right] \bigg|_{k = (\ell + 1/2 \chi(z))},
\]
(4.38)

where \(\tilde{\phi}_{3D}(z, M, k) \) is the Fourier transform of the halo contribution to the projected lensing potential,
\[
\tilde{\phi}_{\ell}(z, M) = \frac{2}{\ell (\ell + 1)} \frac{4\pi r_{s,\phi}}{\ell_{s,\phi}^2} \int dx x^2 j_0 \left(\frac{k x}{\ell_s} \right) \frac{4\pi G \chi(z)(\chi_s - \chi(z)) \rho_{\text{NFW}}(z, M, k)}{c^2 \chi_s (1 + z)},
\]
(4.39)

\(r_{s,\phi} \) is the typical scale radius for \(\tilde{\phi}_{3D}(z, M, k) \) and \(\ell_{s,\phi} = a(z) \chi(z)/r_{s,\phi} \) is the associated multipole. One gets the CMB lensing potential power spectrum replacing the remaining \(\tilde{y}_{\ell}(z, M) \) with \(\tilde{\phi}_{\ell}(z, M) \). We checked our spectra against those shown in [244], changing our integration boundaries to match their choices, and we are in very good agreement with them.

As discussed in [244] the correlation of SZ and \(\phi \) is small (\(\approx 0.3 - 0.4 \)) up to \(\ell = \text{few} \times 10^3 \) so we might expect only a small improvement. As a zeroth-order approximation, we can neglect \(T \) and \(E \) in eq. (4.35) and write \(a_{\ell m}^{\text{SZ}} \approx 0.4 \times a_{\ell m}^{\text{SZ}} \). In this limit the relation
Testing the bispectrum

in eq. (4.37) becomes

\[(C_{\ell}^{1h} + C_{\ell}^{2h}) \rightarrow (C_{\ell}^{1h} + C_{\ell}^{2h}) - \langle \hat{a}_{\ell m} \hat{a}_{\ell m}^{\text{SZ}} \rangle \approx 0.84(C_{\ell}^{1h} + C_{\ell}^{2h}). \] (4.40)

Therefore using CMB lensing as a tracer should provide a \(\approx 10\%\) improvement. Indeed the numerical evaluation of the cross-correlations validates this back-of-the-envelope estimate.

The second tracer we investigate is the galaxy-lensing convergence field. Its cross correlation with the SZ effect can again be computed by replacing, in eq. (4.38), \(\tilde{\phi}_{\ell}(z,M)\) with \(\tilde{\kappa}_{\ell}(z,M)\) with \(245, 246\)

\[\tilde{\kappa}_{\ell}(z,M) = \frac{4\pi r_{s,\kappa}}{\ell_{s,\kappa}^2} \int dx x^2 j_0 \left(\frac{k x}{\ell_{s,\kappa}} \right) \frac{4\pi G g(z) \rho_{\text{NFW}}(z, M, k)}{c^2 (1 + z)}, \] (4.41)

where \(r_{s,\kappa}\) is the typical scale radius of the lensing potential of the halo and \(\ell_s = a(z)\chi(z)/r_{s,\kappa}\), and we defined

\[g(z) \equiv \int_{\chi(z)}^{\infty} d\chi' \frac{\chi(z) [\chi' - \chi(z)]}{\chi'} p_S(\chi'), \] (4.42)

where \(p_S\) is the redshift distribution of the sources. Again, one gets the power spectrum replacing the remaining \(\tilde{y}_{\ell}(z,M)\) with \(\tilde{\kappa}_{\ell}(z,M)\).

In this case, due to the higher correlation between the SZ effect and the galaxy lensing, the cleaning procedure performs better than with the CMB lensing. However the signal-to-noise ratio achieved with this procedure alone is still smaller than the S/N achievable via direct cluster masking. The optimal way to proceed is therefore to adopt the two approaches in combination. This can be done by reconstructing the \(\hat{y}_{\text{SZ}}(\hat{n})\) map using tracers as discussed; then the resolved clusters can be masked in both the \(\hat{y}_{\text{obs}}(\hat{n})\) and the \(\hat{y}_{\text{SZ}}(\hat{n})\) maps. The \(\hat{y}_{\text{clean}}(\hat{n})\) masked map is then obtained by difference.

We model this procedure in our forecast by changing the integration boundaries of all the integrals involving at least one power of \(\tilde{y}_{\ell}(z,M)\) as discussed in subsection 4.1.4. The integrals involving only powers of \(\tilde{\kappa}_{\ell}(z,M)\) (e.g. the second square bracket in the 2-halo term, eq. (4.38)) are left unmodified as the mask is applied to the reconstructed \(\hat{y}_{\text{SZ}}(\hat{n})\) map, and not to the input lensing map. The final results are shown in table 4.2 for PIXIE, in table 4.3 for PRISM and in table 4.4 for an ideal survey.
Considering PIXIE, the forecasted signal-to-noise ratio quickly saturate when using more and more futuristic masks in combination with galaxy lensing, because the SZ power spectrum becomes rapidly sub-dominant with respect to the PIXIE noise. In the cosmic-variance limited case, however, SZ remains by far the dominant source of noise, even after cleaning, and makes \(y \)-based constraints much worse than \(\mu \)-based one. Nonetheless it is important to stress again that \(y \) and \(\mu \) probe very different scales, and thus add complementary information.

The measurement of \(f_{NL}^y \) that PRISM will achieve, contrary to PIXIE, will not be significantly limited by instrumental noise. In fact the signal-to-noise ratio for PRISM is effectively the same of a cosmic-variance limited experiment. This constraint (\(1\sigma(f_{NL}^y) = 260 \) for PRISM) might not appear significant compared with the current bound set by Planck (\(f_{NL} = 0.6 \pm 5.0, 68\% \text{ C.L.} \)) at first glance. However if one consider that \(f_{NL} \) might have a running, its importance change considerably. For example, if we consider a primordial bispectrum of the form

\[
B(k_1, k_2, k_3) \propto f_{NL}^* \left[P(k_1)P(k_2)\left(\frac{k_3}{k}\right)^{n_{NG}} + 2 \text{ perm.} \right],
\]

and use \(1\sigma \) upper bounds \(f_{NL}^* = 5, n_{NG} = 1 \), consistent with current observations \(^{248} \), we would expect \(f_{NL}^y \approx 700 \) on the \(y \)-scales, way above the detectability limit. It is worth noticing that in \(^{237} \) it has been shown that \(n_{NG} \neq 0 \) would also enhance the average distortion and thus lead to an additional improvement of the sensitivity, making our point even stronger. Even though the bispectrum in eq. (4.43) is theoretically well-motivated, it has to be considered here just as a toy-model, because we made a choice of values of the parameters that might be outside the range of validity of the model itself. The point here is just to use a phenomenological, toy-model shape, just to show in a simple, quantitative way how \(y \)-constraints are useful, even if they turn out 2 orders of magnitude worse than current \(T, E \) bispectrum bounds.

Of course one may argue that the same holds, even more so, for \(f_{NL}^\mu \) on the \(\mu \)-scales, but to avoid pathologically large non-Gaussianity on the smallest scales, the increasing trend has to stop somewhere. Therefore it is again important to study both the \(y \)- and the \(\mu \)-scales.
4.1.5. Discussion

In this section we investigated in detail the effects of including CMB polarization in NG studies of cross-correlation between CMB primary anisotropies and μ- and y-CMB-distortions. Including the previously unaccounted y-E spectrum, besides adding new signal, has the important advantage of making the primordial NG analysis more robust, since it removes the large bias arising from the ISW-SZ contribution in the y-T spectrum. Potential spurious contamination in the primordial y-E signal can come from reionization, but this turned out to be negligible after a complete numerical analysis at second order in the perturbations. In addition to considering y-E spectra, we also studied in detail how to reduce SZ contamination, thus lowering the overall noise contribution, considering two approaches. The former, already considered in previous works [126,211], consists in masking low-redshift clusters, detected via X-ray surveys. To this, we add the exploitation of cross-correlation with external tracers, namely CMB and galaxy lensing, as a way to partially reconstruct the y contribution from unresolved clusters. The template so-obtained is then used to clean the y-map from the remaining unresolved contribution.

Using this procedure, we obtain f_{NL}^y forecasts for PIXIE, PRISM, and for an ideal cosmic-variance limited experiment. In all cases we find that including y-E leads to improvements in the f_{NL}^y constraint by a factor between 2.1 and 3.8, depending on the considered survey and mask. A further error bar improvement of order 25% is expected from external-tracer cross-correlation and template cleaning. Our final forecasts are then $1\sigma(f_{NL}^y) = 2300$ for PIXIE, $1\sigma(f_{NL}^y) = 300$ for PRISM and $1\sigma(f_{NL}^y) = 130$ for the cosmic-variance limited case, thus improving the previous estimates by an overall factor between 2.5 and 4.4.

It is clear that, even in the ideal scenario, f_{NL} constraints based on y are very poor when compared to current Planck bispectrum measurements. For the cosmic-variance limited case, the errors achievable using μ, $1\sigma(f_{NL}^{\mu}) = 0.55 \times 10^{-3}$, are also orders of magnitude smaller than those achievable using y. This is due to residual SZ contamination, still significant even after masking and template reconstruction and cleaning. Nevertheless, two things are worth noticing: first, the constrains on f_{NL}^y and f_{NL}^{μ} achievable with a realistic (not cosmic variance-limited) survey design (e.g. PIXIE, PRISM) are comparable.

Second, and most important, the main goal we consider here is to test NG scale-dependence. In this respect, f_{NL}^y measurements are very interesting, even with all the limitations imposed by SZ contamination, because they open a new window on an
otherwise inaccessible range of scales: a simple example to illustrate this point is provided by the bispectrum toy model, characterized by an f_{NL}-running parameter, considered at the end of Section 4.1.4.

Conclusions

In this thesis I investigated various methods to determine the physical properties of the primordial perturbation field, that might go beyond the most minimal model of Gaussian adiabatic density perturbations with a power-law primordial power spectrum.

Primordial power spectrum reconstruction. In Section 3.1 we have built on the work of [143,144] to reconstruct the PPS with a minimally parametric approach, using the cross-validation technique as the smoothness criterion. The analysis is based on a comprehensive set of state-of-the art cosmological data including probes of the Cosmic Microwave Background, and of large scale structure via gravitational lensing and galaxy redshift surveys.

We found that there is no evidence for deviations from a power law PPS, and that errors of the reconstructed PPS are comparable with errors obtained with a power law fit. In fact with current data a scale-invariant power spectrum is highly disfavoured even with this minimally parametric reconstruction. Because of its flexibility, our reconstruction would be able to detect the tell-tale signature of small scale power suppression induced by free streaming of neutrino if they are sufficiently massive. However, our reconstruction detects no such signature, ruling out a model with a power law PPS and sum of neutrino masses of 0.2eV or larger.

Overall our results, which recover in a model independent way a power law power spectrum with a small but highly significant red tilt, offer a powerful confirmation of the inflationary paradigm, justifying adoption of the inflationary prior in cosmological analyses.

3Of course the suppression would happen in the late-time power spectrum, not in the primordial one. However, since we do not include the effect of neutrino masses in the matter transfer function, the reconstruction would recover an “effective” small scale damping.
Compensated isocurvature perturbations. In Section 3.2 I discussed the viability of using cross correlations of y-distortion anisotropies with primary anisotropies to constrain compensated isocurvature perturbations. We provided a new framework to calculate the y-distortions that arise at first order in perturbation theory, and derived its evolution equation. As it turns out, it is directly proportional to baryon isocurvature perturbations. This implies that, since it is not affected by cold dark matter isocurvature perturbation, it can be in principle used to detect CIPs. We produced a forecast for the upper bounds on correlated CIPs for different future observational projects, keeping in consideration the contamination due to SZ effect, but neglecting other foregrounds. Even in this idealized scenario, a signal can be detected only in the presence of CIPs with unnaturally high amplitude. For instance, $f' < 2 \times 10^5$ at 68% C.L. is obtained for LiteBIRD, while $f' < 5 \times 10^4$ for PRISM, and $f' < 2 \times 10^4$ for a cosmic variance limited survey. As we have shown, the fundamental limit is set by the noise contribution due to the SZ powerspectrum.

Primordial non-Gaussianity. In Section 4.1 I developed a set of measures that can be employed to use y-distortions to constrain primordial non-Gaussianity. I investigated in detail the effects of including CMB polarization in NG studies of cross-correlation between CMB primary anisotropies and μ- and y-CMB-distortions, that besides adding new signal, has the important advantage of making the primordial NG analysis more robust, since it removes the large bias arising from the ISW-SZ contribution in the y-T spectrum. In addition to considering y-E spectra, we also studied in detail how to reduce SZ contamination, thus lowering the overall noise contribution, masking low-redshift clusters and exploiting cross-correlation with external tracers, to reconstruct the y contribution from unresolved clusters, and remove it from the analysed maps. Using this procedure, we obtain f'_{NL} forecasts for PIXIE, PRISM, and for an ideal cosmic-variance limited experiment. Our final forecasts are then $1\sigma(f'_{\text{NL}}) = 2300$ for PIXIE, $1\sigma(f'_{\text{NL}}) = 300$ for PRISM and $1\sigma(f'_{\text{NL}}) = 130$ for the cosmic-variance limited case, thus improving the previous estimates by an overall factor between 2.5 and 4.4.
Appendix A.

Useful mathematical relation involving spherical functions

A.1. Spherical Harmonics

The spherical harmonics are an orthonormal basis of functions defined on the sphere. They are usually defined as

\[
Y_{\ell m}^{m}(\mathbf{n}) \equiv Y_{\ell m}(\theta, \phi) \equiv \sqrt{\frac{2\ell + 1}{4\pi} \frac{(\ell - m)!}{(\ell + m)!}} P_{m}^{\ell}(\cos \theta) e^{im\phi},
\]

where \(P_{m}^{\ell}(x)\) is the associate Legendre polynomial, defined through derivatives of the Legendre polynomials as

\[
P_{m}^{\ell}(x) \equiv (-1)^{m}(1 - x^2)^{m/2} \frac{d^m}{dx^m} P_{\ell}(x).
\]

As anticipated, the spherical harmonics are orthonormal

\[
\int d^2 \mathbf{n} Y_{\ell m}^{m}(\mathbf{n}) Y_{\ell m'}^{m'}(\mathbf{n}) = \delta_{\ell \ell'} \delta_{m m'},
\]

and have a definite parity for a given \(\ell\)

\[
Y_{\ell m}(-\mathbf{n}) = (-1)^{\ell} Y_{\ell m}(\mathbf{n}),
\]
and under rotations they transform with a spin-weighted spherical harmonics

\[Y_{\ell m}(\hat{n}') = \sum_{m'=-\ell}^{\ell} \left[(-1)^{-m} \sqrt{\frac{4\pi}{2\ell + 1}} \frac{1}{Y_{\ell-m}(\alpha, \beta)e^{-im'\gamma}} \right]^* Y_{\ell m'}(\hat{n}) , \]

(A.5)

where \(\alpha, \beta, \) and \(\gamma \) are the rotation Euler angles.

By explicit calculation of the right hand side we can show that

\[\hat{q}_1 \cdot \hat{q}_2 = \frac{4\pi}{3} \sum_{m_2=-1}^{1} Y_{1 m_2}^{*}(\hat{q}_1)Y_{1 m_2}(\hat{q}_2) . \]

(A.6)

When dealing with the projection of 3D fields on a sphere, it is often useful to expand plane waves as a sum of spherical harmonics using

\[e^{ix \cdot k} = 4\pi \sum_{\ell m} i^{\ell} j_{\ell}(kx)Y_{\ell m}(k)Y_{\ell m}^{*}(x) , \]

(A.7)

and to express the Dirac delta the Rayleigh expansion, that immediately follows from eq. (A.7)

\[\delta^{(3)} \left(\sum_{i=1}^{n} k_i \right) = (4\pi)^n \int dx x^2 \int d^2\hat{x} \prod_{i=1}^{n} \left[\sum_{\ell_{i} m_{i}} j_{\ell_{i}}(k_{i}r) Y_{\ell_{i} m_{i}}(\hat{x})Y_{\ell_{i} m_{i}}^{*}(\hat{k}_{i}) \right] . \]

(A.8)

\[\int d^2\hat{x} Y_{\ell m}^{*}(\hat{x}) P_{\ell}^{*}(\hat{x} \cdot \hat{k}) = \delta_{\ell \ell'} \frac{4\pi}{2\ell + 1} Y_{\ell m}(\hat{k}) . \]

(A.9)

A.2. Wigner 3-j symbols

The Wigner 3-j symbols are defined in terms of Clebsch-Gordan as

\[\left(\begin{array}{ccc} \ell_1 & \ell_2 & \ell_3 \\ m_1 & m_2 & m_3 \end{array} \right) = \frac{(-1)^{\ell_1-\ell_2-m_3}}{\sqrt{2\ell_3 + 1}} \langle \ell_1 m_1 \ell_2 m_2 | \ell_3 - m_3 \rangle . \]

(A.10)

\[^{1}\text{We do not define spherical harmonics here, as their analytic expression is not very illuminating. We notice however that a spin 0 spherical harmonic is a normal spherical harmonic.} \]
This relation can be inverted to find

\[\langle \ell_1 m_1 \ell_2 m_2 | \ell_3 m_3 \rangle = (-1)^{-\ell_1 + \ell_2 - m_3} \sqrt{2\ell_3 + 1} \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ m_1 & m_2 & -m_3 \end{pmatrix}. \] \hfill (A.11)

Selection rules The 3j-symbols are non-vanishing if and only if

\[|m_i| \leq \ell_i \quad i = 1, 2, 3, \] \hfill (A.12)

\[m_1 + m_2 + m_3 = 0, \] \hfill (A.13)

\[|\ell_1 - \ell_2| \leq \ell_3 \leq |\ell_1 + \ell_2|. \] \hfill (A.14)

Symmetries The 3j-symbols are symmetric under even permutations of the columns

\[\begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ m_1 & m_2 & m_3 \end{pmatrix} = \begin{pmatrix} \ell_3 & \ell_1 & \ell_2 \\ m_3 & m_1 & m_2 \end{pmatrix} = \begin{pmatrix} \ell_2 & \ell_3 & \ell_1 \\ m_2 & m_3 & m_1 \end{pmatrix}. \] \hfill (A.15)

whereas they gain a \pm 1 factor under odd permutations of the column, as follows

\[\begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ m_1 & m_2 & m_3 \end{pmatrix} = (-1)^{\ell_1 + \ell_2 + \ell_3} \begin{pmatrix} \ell_2 & \ell_1 & \ell_3 \\ m_2 & m_1 & m_3 \end{pmatrix}, \] \hfill (A.16)

or if the \(m \) coefficients signs are reversed

\[\begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ -m_1 & -m_2 & -m_3 \end{pmatrix} = (-1)^{\ell_1 + \ell_2 + \ell_3} \begin{pmatrix} \ell_2 & \ell_1 & \ell_3 \\ m_2 & m_1 & m_3 \end{pmatrix}, \] \hfill (A.17)

Orthogonality relations

\[\sum_{m_1, m_2} \begin{pmatrix} \ell_1 & \ell_2 & \ell \\ M_1 & M_2 & m \end{pmatrix} \begin{pmatrix} \ell_1 & \ell_2 & \ell' \\ M_1 & M_2 & m' \end{pmatrix} = \frac{\delta_{m m'}}{2\ell + 1} \delta_{\ell \ell'} \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \end{pmatrix}, \] \hfill (A.18)
where the triangular delta \(\{ \ell_1 \ \ell_2 \ \ell_3 \} = 1 \) if and only if the triangle condition \(|\ell_1 - \ell_2| \leq \ell_3 \leq |\ell_1 + \ell_2| \) holds, and is 0 otherwise.

\[
\sum_{LM} (2L + 1) \begin{pmatrix} \ell_1 & \ell_2 & L \\ m_1 & m_2 & M \end{pmatrix} \begin{pmatrix} \ell_1 & \ell_2 & L \\ m_1 & m_2 & M \end{pmatrix} = \delta_{m_1}^{m_1'} \delta_{m_2}^{m_2'} \quad (A.19)
\]

Relation with spin weighted spherical harmonics

\[
\int d^2 \hat{x} s_1 Y_{\ell_1 m_1} (\hat{x}) s_2 Y_{\ell_2 m_2} (\hat{x}) s_3 Y_{\ell_3 m_3} (\hat{x}) = \delta_{m_1}^{m_1'} \delta_{m_2}^{m_2'} \quad (A.20)
\]

Useful relations

\[
\sum_m (-1)^{\ell - m} \begin{pmatrix} \ell & \ell & L \\ m & -m & 0 \end{pmatrix} = \sqrt{2\ell + 1} \delta_0^L \quad (A.21)
\]

A.3. Wigner 6-j symbols

Wigner 6-j symbols are defined in term of sum of products of 3-j symbol

\[
\begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ \ell_4 & \ell_5 & \ell_6 \end{pmatrix} = \sum_{m_1, \cdots, m_6} (-1)^{\sum (i, -m_i)} \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ -m_1 & -m_2 & -m_3 \end{pmatrix} \begin{pmatrix} \ell_1 & \ell_5 & \ell_6 \\ m_1 & -m_5 & m_6 \end{pmatrix} \times \\
\times \begin{pmatrix} \ell_4 & \ell_2 & \ell_6 \\ m_4 & m_2 & -m_6 \end{pmatrix} \begin{pmatrix} \ell_4 & \ell_5 & \ell_3 \\ -m_4 & m_5 & m_3 \end{pmatrix} \quad (A.22)
\]
A.4. Spherical Bessel functions

It has been shown in [241] that

\[I(L_1, L_2, L_3, q_1, q_2, k) = \int x^2 \, dx j_{L_1}(xq_1)j_{L_2}(xq_2)j_L(xk) = \]

\[\frac{\pi \beta(\Delta)}{4q_1q_2k} t^{L_1+L_2-L} \sqrt{2L+1} \left(\frac{q_1}{k} \right)^L \begin{pmatrix} L_1 & L_2 & L \\ 0 & 0 & 0 \end{pmatrix}^{-1} \]

\[\sum_{\ell=0}^{L} \left(\frac{2L}{2\ell} \right)^{1/2} \left(\frac{q_2}{q_1} \right)^{\ell} \sum_l (2l+1) \begin{pmatrix} L_1 & L - \ell & l \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} L_2 & \ell & l \\ L & L - \ell & l \end{pmatrix} \left(\frac{q_1}{k} \right)^\ell \left(\frac{q_2}{k} \right)^l P_l(\Delta). \]

(A.23)

The triangular condition over the three momenta is enforced by \(\beta(x) = \theta_H(1-x)\theta_H(1+x) \), where \(\Delta = \frac{q_1^2 + q_2^2 - k^2}{2q_1q_2} \) and \(\theta_H(x) \) is the modified Heaviside function.

In the case \(L_1 = L_2 = L = 0 \) the expression simplifies noticeably as we have

\[\int dx \, x^2 j_0(k_1 x)j_0(k_2 x)j_0(k_3 x) = \int dx \frac{\sin(k_1 x) \sin(k_2 x) \sin(k_3 x)}{k_1 k_2 k_3 x} = \]

\[= \frac{1}{4k_1 k_2 k_3} \int dx \left\{ \frac{\sin[(k_1 + k_2 - k_3) x]}{x} + \frac{\sin[(k_2 + k_3 - k_1) x]}{x} + \frac{\sin[(k_3 + k_1 - k_2) x]}{x} - \frac{\sin[(k_1 + k_2 + k_3) x]}{x} \right\} = \]

\[= \frac{\pi \left(\sigma(k_1 + k_2 - k_3) + \sigma(k_2 + k_3 - k_1) + \sigma(k_3 + k_1 - k_2) - \sigma(k_1 + k_2 + k_3) \right)}{8k_1 k_2 k_3} \]

(A.24)

where \(\sigma(x) = x/|x| \) is the sign of \(x \).
Colophon

This thesis was made in \(\LaTeX{} \) using the “hepthesis” class \cite{249}.
Bibliography

[26] D. Baumann, *Cosmology*,
 http://www.damtp.cam.ac.uk/user/db275/Cosmology/Lectures.pdf

[28] J. Chluba, *Science with Spectral Distortions of the Cosmic Microwave Background*,
 http://www.jb.man.ac.uk/%7Ejchluba/Science/CUSO_Lecture_Notes_JC.pdf.

[37] A.D. Linde, *Scalar Field Fluctuations in Expanding Universe and the New*

[50] N. Bartolo, S. Matarrese, M. Peloso and A. Ricciardone, Anisotropic power...

[53] A.A. Starobinsky, Spectrum of adiabatic perturbations in the universe when there are singularities in the inflation potential, JETP Lett. 55 (1992) 489.

[236] G.W. Pettinari, *The Intrinsic Bispectrum of the Cosmic Microwave Background*, Springer Theses, Springer International Publishing (2015), 10.1088/1475-7516/2013/04/003,

[249] A. Buckley, *The hepthesis L\LaTeX class*, .
List of figures

1.1. CMB Temperature power spectrum as measured by Planck. Taken from [14]. 37
1.2. Matter power spectrum for different neutrino models. Taken from [111]. 42
2.1. Pictorial representation of the idea underlying the Gelman-Rubin criteria 58
3.1. Splines interpolating mock knots placed alongside a power-law signal. 74
3.2. Splines interpolating mock knots placed alongside a power-law signal with a bump in it. 74
3.3. Comoving scales covered by the experiments used to reconstruct the PPS 76
3.4. CV score as a function of α_p for the different cross-validation runs. 78
3.5. How a non-zero neutrino mass would induce a power suppression in the reconstructed power spectrum 80
3.6. Ratio of the spline reconstruction to the signal for various neutrino masses. 81
3.7. Reconstructed PPS (omitting CFHTLenS). 83
3.8. Reconstructed PPS (omitting CFHTLenS) spectral index 84
3.9. Reconstructed PPS (omitting CFHTLenS) relative to Planck best-fit 85
3.10. Reconstructed PPS (with CFHTLenS) 86
3.11. Reconstructed PPS (with CFHTLenS) spectral index 86
3.12. Reconstructed PPS (with CFHTLenS) relative to Planck best-fit 86
3.13. Triangular plots for the run with all the datasets combined. 89
3.14. The redshift dependences of $|y_0|$ and $|y_1|$. 102
3.15. $|C_{\ell}^{YY}|$, $|C_{\ell}^{YE}|$, and $|C_{\ell}^{YY}|$ for adiabatic perturbations and CIP 105

3.16. f_{fid} dependences of $|C_{\ell}^{YY} - C_{\ell,\text{ad}}^{YY}|$ and $|C_{\ell}^{YE} - C_{\ell,\text{ad}}^{YE}|$ 106

3.17. Forecasted 1 σ error on f^\prime . 113

4.1. The primordial y-T and y-E cross-correlations . 122

4.2. The main components of the y-T and y-E cross-correlations 129

4.3. Forecasted 1σ upper bound on f_{NL}^{y} . 131

4.4. Forecasted 1σ upper bound on f_{NL}^{y} . 133

4.5. SZ power spectrum, for the different sky-masks . 135
List of tables

1.1. Main events in the thermal history of the universe 13

3.1. Cross-validation datasets A and B for the various runs 77

3.2. Comparison of neutrino damping with reconstruction error 79

3.3. PPS reconstruction results for $\alpha_p = 1$.. 87

3.4. PPS reconstruction results for $\alpha_p = 0.01$ 88

3.5. Masked clusters characteristics .. 112

3.6. 1σ forecasted error bars on f' .. 114

4.1. 1σ forecasted error bars on f^μ_{NL} .. 132

4.2. 1σ forecasted error bars on f^ν_{NL} for PIXIE 134

4.3. 1σ forecasted error bars on f^ν_{NL} for PRISM 134

4.4. 1σ forecasted error bars on f^ν_{NL} for a cosmic variance limited survey 135

4.5. Integration boundaries that define the different masks we use. 136