Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Carcò, Giuseppe (2018) Effect of reductions in feed allowance and dietary amino acids content on feeding behaviour, growth performance, nutrient excretion and meat quality of growing pigs belonging to different genetic types. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document
Thesis not accessible until 28 September 2021 for intellectual property related reasons.
Visibile to: nobody

2390Kb

Abstract (italian or english)

Pig industry is required to reduce its environmental footprint, in order to satisfy the increasing demand of eco-friendly products. Moreover, the producers need to cut down with the feeding costs, by improving the pigs’ feed efficiency. Despite the rich literature, knowledge about the effect of some feeding strategies on feeding behaviour, performance, and quality of meat and meat products seems still controversial or scarce.
With this background, the aims of this Ph.D. project were: i) to assess the influence of a reduction in dietary indispensable amino acids (AA) on feed intake, growth performance, N excretion and carcass and meat quality traits of fast growing pigs fed according to an ad libitum or a restricted feeding regime; ii) to study the feeding behaviour of group-housed pigs fed individually from single-space feeders and subjected to feed restriction and a reduction in the dietary indispensable AA content; iii) to explore the influence of feeding behaviour on growth performance, carcass and meat characteristics of pigs; iv) to investigate the influence of low-protein and AA diets on the characteristics of San Daniele like dry-cured hams obtained from two genetic groups of pigs with different lean growth potential.
In the 1st Chapter, 96 barrows were individually fed through automatic feeding stations, according to an ad libitum or restricted feeding regime and to a conventional or low-AA diet. Feed restriction decreased feed intake, average daily gain, carcass weight, backfat depth, but increased gain:feed ratio. The low-AA diets increased feed intake, carcass weight and the intramuscular fat content, with no effects on the feed efficiency and the estimated Pr. Nitrogen excretion was reduced by feed restriction and by the reduction of the dietary AA content.
In the 2nd Chapter, the data recorded by the automatic feeding stations were used to study the effects of the feeding regime and the dietary AA restriction on the feeding patterns of the pigs of the previous contribution. Feed restriction decreased daily feed intake, the number of visits and the time spent feeding, but increased feed consumption per visit and feeding rate. The low-AA diets increased daily feed intake, tended to increase feeding rate and interacted with feeding regime for the number and duration of feeding visits. The pigs were able to adapt their feeding patterns to compensate for a reduction in feed allowance or nutrient restriction.
In the 3rd Chapter the phenotypic correlations among feeding patterns, growth performances and carcass traits were studied. The records of each pig were classified into feeding rate tertiles. Pigs eating faster showed greater final body weights, average daily gains, estimated protein gains, estimated lipid retention, carcass weights, weights of lean cuts, weights of fat cuts, proportions of fat in the carcass, and lower proportions of carcass lean cuts than pigs eating slowly. Manipulating the eating rate, through management or genetic strategies, could affect growth performances and carcass quality, with little influence on feed efficiency.
The 4th Chapter investigated the influence of diets lowered in protein and AA contents on the quality of 40 San Daniele like dry-cured hams produced by pigs of two genetic groups (Danbred and Anas) characterized by different potential for lean growth, eating conventional or low-protein diets. The Danbred fresh hams were heavier, but showed greater seasoning losses and thinner fat cover than Anas hams. Dry-cured hams from Danbred had higher protein content than the Anas ones. Dietary protein restriction had small influence on dry-cured ham quality. Due to its positive effects on sustainability of dry-cured ham chain by decreasing pig farm nitrogen excretion and feeding costs, the use of low-protein diets seems an advisable strategy for the feeding of traditional PDO heavy pigs.

Abstract (a different language)

Il settore suinicolo deve oggi soddisfare la domanda di prodotti eco-friendly, ridurre i costi di produzione e migliorare l’efficienza alimentare dei maiali attraverso l’utilizzo di nuove strategie alimentari.
Gli obiettivi di questo progetto di dottorato sono: i) valutare l’influenza di una riduzione del contenuto di amminoacidi della dieta su consumo alimentare, prestazioni e qulità della carne di maiali alimentati secondo un regime alimentare ad libitum o razionato; ii) studiare il comportamento alimentare dei maiali sottoposti ad una restrizione alimentare e ad una riduzione del contenuto di amminoacidi essenziali dell’alimento; iii) conoscere l’influenza del comportamento alimentare sulle prestazioni e le caratteristiche della carcassa; iv) esaminare gli effetti di una riduzione del contenuto di proteina e amminoacidi sulla qualità di prosciutti crudi ottenuti da due linee genetiche caratterizzate da diversi potenziali di crescita magra e stagionati come prosciutti San Daniele DOP.
Nel I contributo, 96 maiali sono stati alimentati attraverso un regime alimentare ad libitum o una leggera restrizione alimentare utilizzando diete convenzionali o con basso contenuto di amminoacidi essenziali (LAA). La restrizione alimentare ha ridotto i consumi di alimento, gli accrescimenti, i pesi delle carcasse e gli spessori del grasso, ma ha aumentato l’efficienza alimentare. La dieta LAA ha aumentato i consumi, i pesi e il contenuto di grasso delle carcasse, senza influenzare l’efficienza alimentare e la crescita proteica. I due trattamenti alimentari hanno ridotto l’escrezione di azoto.
Nel II contributo, si sono valutati gli effetti del regime alimentare e della dieta LAA sul comportamento alimentare dei maiali. La restrizione alimentare ha ridotto l’ingestione di alimento, il numero di visite alla mangiatoia e il tempo utilizzato per mangiare, ma ha aumentato il consumo per visita, e la velocità d’ingestione. La dieta LAA ha aumentato i consumi alimentari, e ha provocato un leggero aumento della velocità d’ingestione. I maiali sono stati in grado di adattare il loro comportamento alimentare per superare i limiti dovuti alla restrizione alimentare e alla riduzione di nutrienti del mangime.

Nel III capitolo, si sono studiate le relazioni tra comportamento alimentare, prestazioni e caratteristiche della carcassa. I dati di ciascun maiale sono stati classificati secondo tre classi di velocità d’ingestione. I maiali che mangiavano più rapidamente avevano maggiori pesi, accrescimenti proteici e lipidici, pesi delle carcasse, dei tagli magri e dei tagli grassi, con una più elevata proporzione di tagli grassi, rispetto ai maiali più lenti. Manipolare il comportamento alimentare attraverso strategie manageriali e alimentari può avere effetti favorevoli sulle prestazioni produttive e la qualità della carcassa, senza alterare l’efficienza alimentare dei maiali.
Nel IV capitolo della tesi si è valutato l’effetto di una riduzione del contenuto di proteina e amminoacidi essenziali della dieta sulle caratteristiche di qualità di 40 prosciutti crudi lavorati come prosciutti San Daniele DOP e ottenuti da due linee genetiche con un diverso potenziale per la crescita magra alimentate con diete convenzionali o a basso tenore proteico. Le cosce rifilate dei Danbred erano più pesanti, ma mostravano maggiori perdite di stagionatura e minori spessori del grasso di copertura rispetto a quelle ottenute degli Anas. Inoltre, i prosciutti dei Danbred hanno avuto un maggior contenuto di proteina. Invece, la riduzione del contenuto proteico e amminoacidico della dieta ha influenzato poco le caratteristiche di qualità dei prosciutti crudi. Dunque, dati gli effetti favorevoli alla riduzione delle escrezioni di azoto e dei costi di alimentazione, l’uso di diete a basso tenore proteico può essere un’efficace soluzione per l’alimentazione del suino pesante italiano.

EPrint type:Ph.D. thesis
Tutor:Schiavon, Stefano
Ph.D. course:Ciclo 31 > Corsi 31 > ANIMAL AND FOOD SCIENCE
Data di deposito della tesi:30 November 2018
Anno di Pubblicazione:30 November 2018
Key Words:growing pigs, low-protein diets, feed restriction, genetic groups, feeding behaviour, growth performance, carcass traits, meat quality, dry-cured ham quality
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/18 Nutrizione e alimentazione animale
Struttura di riferimento:Dipartimenti > Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente
Codice ID:11520
Depositato il:07 Nov 2019 12:17
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, Falcucci A, Tempio G. Tackling climate change through livestock – A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO). Rome; 2013, pp. 35-37. Cerca con Google

2. FAO, 2018. Available from: http://www.fao.org/faostat/en/#data/QL Vai! Cerca con Google

3. Basset-Mens C, van der Werf HMG. Scenario-based environmental assessment of farming systems: the case of pig production in France. Agricul., Eco. and Env. 2005, 105: 127-144. Cerca con Google

4. Bava L, Zucali M, Sandrucci A, Tamburini A. Environmental impact of typical heavy pig production in Italy. J. Clean. Prod. 2017, 140: 685-691. Cerca con Google

5. Noya I, Villanueva-Rey P, González-García S, Fernandez MD, Rodriguez MR, Moreira MT. Life Cycle Assessment of pig production: A case of study in Galicia. J. Clean. Prod. 2017, 142: 4327-4338. Cerca con Google

6. Cherubini E, Zanghelini GM, Freitas Alvarenga RA, Franco D, Soares SR. Life Cycle Assessment of swine production in Brazil: a comparison of four manure management systems. J. Clean. Prod. 2015, 87: 68-77. Cerca con Google

7. Kingston C, Fry JM, Aumonier S. Life Cycle Assessment of Pork. Final Report. Environmental Resources Management, Agriculture and Horticulture Development Board Meat Services e AHDBMS. Available from: http://www.bpex.org.uk/prices-facts-figures/documents/LifeCycelAssmntofPorklaunchversion.pdf. Vai! Cerca con Google

8. Schenck R. Life Cycle Assessment of USA Pork Production in 2004. Institute for Environmental Research and Education e IERE; 2016. Cerca con Google

9. Williams AG, Audsley E, Sandars DL. Determining the environmental burdens and resource use in the production of agricultural and horticultural commodities. Cranfield Unverstity and Defra, Bedford; 2006 [online] Available from: www.silsoe.cranfield.ac.uk. Vai! Cerca con Google

10. Santonja GG, Georgitzikis K, Scalet BM, Montobbio P, Roudier S, Delgado Sancho L. Best Available Techniques (BAT) Reference Document for the Intensive Rearing of Poultry or Pigs 2017; EUR 28674 EN Cerca con Google

11. Dalla Bona M, Schiavon S, Carraro L, Gallo L. Growth performance, carcass traits and meat quality of growing pigs on different feeding regimes slaughtered at 145 kg –BW. Ital. J. Anim. Sci. 2016, 153: 419-427. Cerca con Google

12. Gallo L, Dalla Bona M, Carraro L, Cecchinato A, Carnier P, Schiavon S. Effect of progressive reduction in crude protein and lysine of heavy pig diets on some technological properties of green hams destined for PDO dry-cured ham production. Meat Sci. 2016; 121: 135–140. Cerca con Google

13. Schiavon S, Carraro L, Dalla Bona M, Cesaro G, Carnier P, Tagliapietra F, Sturaro E, Galassi G, Malagutti L, Trevisi E, Crovetto GM, Cecchinato A, Gallo L. Growth performance, and carcass and raw ham quality of crossbred heavy pigs from four genetic groups fed low protein diets for dry-cured ham production. Anim. Feed Sci. Technol. 2015, 208: 170-181. Cerca con Google

14. Xiccato G, Schiavon S, Gallo L, Bailoni L, Bittante G. Nitrogen excretion in dairy cow, beef and veal cattle, pig, and rabbit farms in Northern Italy. Ital. J. Anim. Sci. 2005, 4: 103-111. Cerca con Google

15. Garcia-Launay F, van der Werf HMG, Nguyen TTH, Le Tutour L, Dourmad JY. Evaluation of the environmental implications of the incorporation of feed-use amino acids in pig production using Life Cycle Assessment. Livest. Sci. 2014, 161:158-175. Cerca con Google

16. Portejoie S, Dourmad JY, Martinez J, Lebreton Y. Effect of lowering dietary crude protein on nitrogen excretion, manure composition and ammonia emission from fattening pigs. Livest. Prod. Sci. 2004, 91: 45–55. Cerca con Google

17. Osada T, Takada R, Shinzato I. Potential reduction of greenhouse gas emission from swine manure by using a low-protein diet supplemented with synthetic amino acids. Anim. Feed. Sci. Technol. 2011, 166-67: 562-574. Cerca con Google

18. Kyriazakis I, Whittemore CT. Whittemore’s science and practice of pig production. Blackwell Publishing, Oxford, UK; 2006. Cerca con Google

19. Emmans GC. Genetic components of potential and actual growth. In: British Society of Animal Production (Eds), Animal Breeding Opportunities. Occasional Publication no. 12; 1999, pp. 153-181. Cerca con Google

20. Emmans G, Kyriazakis I. Consequences of genetic change in farm animals on food intake and feeding behaviour. Proc. Nutr. Soc. 2001, 60: 115–125. Cerca con Google

21. Black JL. Models to predict feed intake. In: Tollardona D, Roura E, editors. Voluntary feed intake in pigs. Wageningen: Wageningen Academic Publishes; 1999, pp. 323-344. Cerca con Google

22. Nyachoti CM, Zijlstra RT, de Lange CFM, Patience JF. Voluntary feed intake in growing-finishing pigs: A review of the main determining factors and potential approaches for accurate predictions. Can. J. Anim. Sci. 2004, 84: 549–566. Cerca con Google

23. Mordenti A, Bosi P, Corino C, Crovetto GM, Casa GD, Franci O, Piva A, Prandini A, Russo V, Schiavon S, Aspa commission’ activity. A methodological approach to assess nutrient requirements of heavy pigs in Italy. Ital. J. Anim. Sci. 2003, 2: 73-87. Cerca con Google

24. Suárez-Belloch J, Guada JA, Latorre MA. Effects of sex and dietary lysine on performances and serum and meat traits in finisher pigs. Anim. 2015, 9: 1731-1739. Cerca con Google

25. Wood JD, Lambe NR, Walling GA, Whitney H, Jagger S, Fullarton PJ, Bayntun J, Hallett K, Bünger L. Effects of low protein diets on pigs with a lean genotype. 1. Carcass composition measured by dissection and muscle fatty acid composition. Meat Sci. 2013, 95: 123-128. Cerca con Google

26. Bosi P, Russo V. The production of the heavy pig for high quality processed products. Ital. J. Anim. Sci. 2004, 3: 309-321. Cerca con Google

27. Ball R, Aherne FX. Effect of diet complexity and feed restriction on the incidence and severity of diarrhea in early-weaned pigs. Can. J. Anim. Sci. 1982, 62: 907-913. Cerca con Google

28. Kim JS, Ingale SL, Lee SH, Choi YH, Kim EH, Lee DC, Kim YH, Chae BJ. Impact of dietary fat sources and feeding level on adipose fatty acids composition and lipid metabolism related gene expression in finisher pigs. Anim. Feed Sci. and Technol. 2014, 196: 60-67. Cerca con Google

29. Garcia-Valverde R, Barea R, Lara L, Nieto R, Aguilera JF. The effects of feeding level upon protein and fat deposition in Iberian heavy pigs. Livest. Sci. 2008, 114: 263-273. Cerca con Google

30. Candek-Potokar M, Skrlep M. Factors in pig production that impact the quality of dry-cured ham: a review. Animal 2012, 6: 327-338. Cerca con Google

31. Batorek N, Skrlep M, Prunier I, Louveau J, Noblet M, Bonneau M, Candek-Potokar M. Effect of feed restriction on hormones, performance, carcass traits, and meat quality in immunocastrated pigs. J. Anim. Sci. 2012, 90: 4593-4603. Cerca con Google

32. Maselyne J, Saeys W, Van Nuffel A. Review: Quantifying animal feeding behaviour with a focus on pigs. Physiol. Behav. 2015, 138: 37–51. Cerca con Google

33. Hyun Y, Ellis M, McKeith FK, Wilson ER. Feed intake pattern of group-housed growing-finishing pigs monitored using a computerized feed intake recording system. J. Anim. Sci. 1997, 75: 1443-1451. Cerca con Google

34. Boumans IJMM, Bokkers EAM., Hofstede GJ, de Boer IJM. Understanding feeding patterns in growing pigs by modelling growth and motivation. Appl. Anim. Behav. Sci. 2015, 171: 69–80. Cerca con Google

35. De Haer LCM., De Vries AG. Feed intake patterns of and feed digestibility in growing pigs housed individually or in groups. Livest. Prod. Sci. 1993, 33: 277-292. Cerca con Google

36. Bornett HLI, Morgan CA, Lawrence AB, Mann J. The flexibility of feeding patterns in individually housed pigs. Anim. Sci. 2000, 40: 457-469. Cerca con Google

37. Bornett HLI, Morgan CA, Lawrence AB, Mann J. The effect of group housing on feeding patterns and social behaviour of previously individually housed growing pigs. Appl. Anim. Behav. Sci. 2000, 70: 127–141. Cerca con Google

38. Nielsen BL, Lawrence AB, Whittemore CT. Effect of group size on feeding behaviour, social behaviour, and performance of growing pigs using single-space feeders. Livest. Prod. Sci. 1995, 44: 73–85. Cerca con Google

39. Montgomery GW, Flux DS, Carr JR. Feeding patterns in pigs: the effect of amino acids deficiency. Physiol. & Behav. 1978, 20:693-698. Cerca con Google

40. Andretta I, Pomar C, Kipper M, Hauschild L, Rivest J. Feeding behaviour of growing – finishing pigs reared under precision feeding strategies 1. J. Anim. Sci. 2016, 94: 3042–3050. Cerca con Google

41. Nielsen BL. On the interpretation of feeding behaviour measures and the use of feeding rate as an indicator of social constraint. Appl. Anim. Behav. Sci. 1999, 63: 79–91. Cerca con Google

42. Labroue F, Guéblez R, Sellier P. Genetic parameters of feeding behaviour and performance traits in group-housed Large White and French Landrace growing pigs. Genet. Sel. Evol. 1997, 29: 451–468. Cerca con Google

43. De Haer LCM, Luiting P, Aarts HLM. Relationship between individual (residual) feed intake and feed intake pattern in group housed growing pigs. Livest. Prod. Sci. 1993, 36: 233-253. Cerca con Google

44. Rauw WM, Soler J, Tibau J, Reixach J, Raya LG. Feeding time and feeding rate and its relationship with feed intake, feed efficiency, growth rate, and rate of fat deposition in growing Duroc barrows. Am. Soc. Anim. Sci. 2006, 84: 3404–3409. Cerca con Google

1. Kyriazakis I, Whittemore CT. Whittemore’s science and practice of pig production. Blackwell Publishing, Oxford, UK; 2006. Cerca con Google

2. Ferguson NS, Gous RM. The influence of heat production on voluntary food intake in growing pigs given protein-deficient diets. Anim. Sci. 1997, 64: 365-378. Cerca con Google

3. Ferguson NS, Arnold GA, Lavers G, Gous RM. The response of growing pigs to amino acids as influenced by environmental temperature. 1 Threonine. Anim. Sci. 2000, 70: 287-297. Cerca con Google

4. Schiavon S, Emmans GC. A model to predict water intake of a pig growing in a known environment on a known diet. Brit. J. Nutr. 2000, 84: 873-883. Cerca con Google

5. Mordenti A, Bosi P, Corino C, Crovetto GM, Casa GD, Franci O, Piva A, Prandini A, Russo V, Schiavon S, Aspa commission’ activity. A methodological approach to assess nutrient requirements of heavy pigs in Italy. Ital. J. Anim. Sci. 2003, 2: 73-87. Cerca con Google

6. Schiavon S, Carraro L, Dalla Bona M, Cesaro G, Carnier P, Tagliapietra F, Sturaro E, Galassi G, Malagutti L, Trevisi E, Crovetto GM, Cecchinato A, Gallo L. Growth performance, and carcass and raw ham quality of crossbred heavy pigs from four genetic groups fed low protein diets for dry-cured ham production. Anim. Feed Sci. Technol. 2015, 208: 170-181. Cerca con Google

7. Schiavon, S, Cesaro, G, Tagliapietra, F, Gallo, L Influence of N shortage and conjugated linoleic acid supplementation on some productive, digestive, and metabolic parameters of lactating cows. Anim. Feed Sci. Technol. 2015, 208, 86-97. Cerca con Google

8. Pierer M, Amon B, Winiwarter W. Adapting feeding methods for less nitrogen pollution from pig and dairy cattle farming: abatement costs and uncertainties. Nutr. Cycl. Agroecosyst. 2016, 104: 201-220. Cerca con Google

9. Nyachoti CM, Zijlstra RT, de Lange CFM, Patience JF. Voluntary feed intake in growing-finishing pigs: A review of the main determining factors and potential approaches for accurate predictions. Can. J. Anim. Sci. 2004, 84: 549–566. Cerca con Google

10. Black JL. Models to predict feed intake. In: Tollardona D, Roura E, editors. Voluntary feed intake in pigs. Wageningen: Wageningen Academic Publishes; 1999, pp. 323-344. Cerca con Google

11. Bosi P, Russo V. The production of the heavy pig for high quality processed products. Ital. J. Anim. Sci. 2004, 3: 309-321. Cerca con Google

12. Patience JF, Rossoni-Serão MC, Gutiérrez NA. A review of feed efficiency in swine: biology and appplication. J. Anim. Sci. Biotechnol. 2015, 6: 33-42. Cerca con Google

13. Topigs, 2012. Feeding manual Talent. Available from: https://varkens.nl/sites/default/files/Feeding%20Manual%20Talent%20progeny%202012.pdf. Accessed 18th February 2018. Vai! Cerca con Google

14. NRC, 2012. Nutrient Requirements of Swine. 11th revised ed. Washington: National Academy Press. Cerca con Google

15. Kloareg M, Noblet J, Van Milgen J. Estimation of whole lipid mass in finishing pigs. Anim. Sci. 2006, 82: 241-251. Cerca con Google

16. Gallo L, Dalla Montà G, Carraro L, Cecchinato A, Carnier P, Schiavon S. Growth performance of heavy pigs fed restrictively diets with decreasing crude protein and indispensable amino acids content. Livest. Sci. 2014, 16: 130-138. Cerca con Google

17. AOAC, 2012. Official Methods of Analysis of the Association of Official Agricultural Chemists, 19th ed. AOAC International, Gaithersburg, MD, USA. Cerca con Google

18. Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and no starch polysaccharides in relation to animal nutrition. J. Anim. Sci. 1991, 74: 3583–3597. Cerca con Google

19. Bouchard J, Chornet E, Overend RP, High-performance liquid chromatographic monitoring carbohydrate fractions in partially hydrolyzed corn starch. J. Agric. Food Chem. 1988, 36: 1188-1192. Cerca con Google

20. Council of Europe, 2005. Amino acid analysis. In: European Pharmacopoeia 5.0, 5th ed. Main volume 5.0, Strasbourg: Council of Europe; 2005, pp. 86-92. Cerca con Google

21. Slump P, Flissendaalje TD, Haaksman IK. Tryptophan in food proteins: a comparison of two hydrolytic procedures. J. Sci. Food Agric. Chem. 1991, 55: 493-496. Cerca con Google

22. EU, 2014a. Commission Implementing Decision of 24 January 2014 authorising methods for grading pig carcases in Italy [notified under document C (2014) 279]. Off. J. L 23. Cerca con Google

23. EU, 2014b. Corrigendum to Commission Implementing Decision 2014/38/EU of 24 January 2014 authorising methods for grading pig carcases in Italy (Off. J. L 23, 28.1.2014). Off. J. L 54. Cerca con Google

24. Steyn WJ, Casey NH, Jansen van Rensburg C. Effects of different penning conditions, feeding regimens and season on growth and carcass attributes of boars of a selected genetic line. S. Afr. J. Anim. Sci. 2012, 42: 178-188. Cerca con Google

25. Knap PW. Voluntary feed intake and pig breeding. In: Tollardona D, Roura E, editors. Voluntary feed intake in pigs. Wageningen Academic Publishes, Wageningen; 2009. pp. 13-31. Cerca con Google

26. Lebret B. Effects of feeding and rearing systems on growth, carcass composition and meat quality of pigs. Anim. 2008. 2: 1548-1558. Cerca con Google

27. Dalla Bona M, Schiavon S, Carraro L, Gallo L. Growth performance, carcass traits and meat quality of growing pigs on different feeding regimes slaughtered at 145 kg BW. Ital. J. Anim. Sci. 2016, 15: 419-427. Cerca con Google

28. Alfonso L, Zudaire G, Sarries MV, Vigueraand J, Flamarique F. Investigation of uniformity in pig carcass and meat quality traits. Anim. 2010, 4: 1739-1745. Cerca con Google

29. Gallo L, Dalla Montà G, Carraro L, Cecchinato A, Carnier P, Schiavon S. Carcass quality and uniformity of heavy pigs fed restrictive diets with progressive reductions in crude protein and indispensable amino acids. Livest. Sci. 2015, 172: 50-58. Cerca con Google

30. Schiavon S, Tagliapietra F, Cesaro G, Gallo L, Cecchinato A, Bittante G. Low crude protein diets and phase feeding for double-muscled crossbred young bulls and heifers. Livest. Sci. 2013, 157: 462-470. Cerca con Google

31. Carcò G, Dalla Bona M, Carraro L, Latorre MA, Fondevila M, Gallo L, Schiavon S. Influence of mild feed restriction and mild reduction in dietary amino acid content on feeding behavior of group-housed growing pigs. Applied Animal Behavior Science 2018, 198: 27-35. Cerca con Google

32. Tous N, Lizardo R, Vilà B, Gispert M, Font-I-Furnols M., Esteve-Garcia E. Effect of reducing dietary protein and lysine on growth performance, carcass characteristics, intramuscular fat, and fatty acid profile of finishing barrows. J. Anim. Sci. 2014, 92: 129-140. Cerca con Google

33. Henry Y, Seve B, Colleaux Y, Ganier P, Saligaut C, Jego P. Interactive effects of dietary levels of tryptophan and protein on voluntary feed intake and growth performance in pigs. J. Anim. Sci. 1992, 70: 1873-1887. Cerca con Google

34. Henry Y. Effect of a dietary amino-acid deficiency or imbalance during the initial period of growth in pigs and subsequent performance at slaughter. Annal. Zootech. 1995, 44: 3-28. Cerca con Google

35. Chiba LI, Kuhlers DL, Frobish LT, Jungst SB, Huff-Lonergan EJ, Lonergan SM, Cummins KA. Effect of dietary restrictions on growth performance and carcass quality of pigs selected for lean growth efficiency. Livest. Prod. Sci. 2002, 74: 93-102). Cerca con Google

36. Càmara L, Berrocoso JD, Coma J, Lopez-Bote CJ, Mateos GG. Growth performance and carcass quality of crossbred pigs from two Pietrain sire lines fed isoproteic diets varying in energy concentration. Meat Sci. 2016, 114: 69-74. Cerca con Google

37. Kyriazakis I, Emmans GC, Whittemore CT. The ability of pigs to control their protein intake when fed in three different ways. Physiol. Behav. 1991, 50: 1197-1203. Cerca con Google

38. Emmans GC. Genetic components of potential and actual growth. In: Land RB, Bulfield G, Hill, W.G., editors. Animal Breeding Opportunities. British Society of Animal Production Occasional Publication no. 12, 1988 pp. 153-181. Cerca con Google

39. Emmans GC, Kyriazakis I. Consequences of genetic change in farm animals on food intake and feeding behavior. Proc. Nutr. Soc. 2001, 60: 115-125. Cerca con Google

40. Kouba M, Hermier D, Le Dividich J. Influence of a high ambient temperature on lipid metabolism in the growing pig. J. Anim. Sci. 2001, 79: 81-87. Cerca con Google

41. Rodriguez-Sanchez JA, Sanz MA, Blanco M, Serrano MP, Joy M, Latorre MA. The influence of dietary lysine restriction during the finishing period on growth performance and carcass, meat, and fat characteristics of barrows and gilts intended for dry-cured ham production. J. Anim. Sci. 2011, 89: 3651-3662. Cerca con Google

42. Suárez-Belloch J, Guada JA, Latorre MA. Effects of sex and dietary lysine on performances and serum and meat traits in finisher pigs. Anim. 2015, 9: 1731-1739. Cerca con Google

43. Wood JD, Lambe NR, Walling GA, Whitney H, Jagger S, Fullarton PJ, Bayntun J, Hallett K, Bünger L. Effects of low protein diets on pigs with a lean genotype. 1. Carcass composition measured by dissection and muscle fatty acid composition. Meat Sci. 2013, 95: 123-128. Cerca con Google

44. Cisneros F, Ellis M, Baker DH, Easter RA, McKeith FK. The influence of short term feeding of amino acid-deficient diets and high dietary leucine levels on the intramuscular fat content of pig muscle. Anim. Sci. 1996, 63: 517-522. Cerca con Google

45. Teye GA, Sheard PR, Whittington FM, Nute GR, Stewart A, Wood JD. Influence of dietary oils and protein level on pork quality. 1. Effects on muscle fatty acid composition, carcass, meat and eating quality. Meat Sci. 2006, 73: 157-165. Cerca con Google

46. Rossi R, Ratti S, Pastorelli G, Crotti A, Corino C. The effect of dietary vitamin E and verbascoside on meat quality and oxidative stability of longissimus dorsi muscle in medium-heavy pigs. Food Res. Int. 2014, 65: 88-94. Cerca con Google

47. He L, Wu L, Xu Z, Li T, Yao K, Cui Z, Yin Y, Wu G. Low-protein diets affect ileal amino acid digestibility and gene expression of digestive enzymes in growing and finishing pigs. Amino Acids. 2016, 48: 21-30. Cerca con Google

1. Emmans G, Kyriazakis I. Consequences of genetic change in farm animals on food intake and feeding behaviour. Proc. Nutr. Soc. 2001, 60: 115–125. Cerca con Google

2. Nielsen BL. On the interpretation of feeding behaviour measures and the use of feeding rate as an indicator of social constraint. Appl. Anim. Behav. Sci. 1999, 63: 79–91. Cerca con Google

3. Young RJ, Lawrence AB. Feeding behaviour of pigs in groups monitored by a computerized feeding system. Anim. Prod. 1994, 58: 145–152. Cerca con Google

4. Boumans IJMM, Bokkers EAM, Hofstede GJ, de Boer IJM. Understanding feeding patterns in growing pigs by modelling growth and motivation. Appl. Anim. Behav. Sci. 2015, 171: 69–80. Cerca con Google

5. Maselyne J, Saeys W, Van Nuffel A. Review: Quantifying animal feeding behaviour with a focus on pigs. Physiol. Behav. 2015, 138: 37–51. Cerca con Google

6. De Haer LCM & De Vries AG. Feed intake patterns of and feed digestibility in growing pigs housed individually or in groups. Livestock Production Science 1993, 33: 277-292. Cerca con Google

7. Schiavon S, Dalla Bona M, Carcò G, Carraro L, Bunger L, Gallo L. Effects of feed and indispensable amino acid restrictions on feed intake, growth performance and carcass characteristics of growing pigs. PLoS ONE 2018, https://doi.org/10.1371/journal.pone.0195645. Vai! Cerca con Google

8. Topigs, 2012. Feeding manual Talent. Available from: http://www.varkens.nl/dier/voeren-vleesvarkens. Vai! Cerca con Google

9. NRC, 2012. Nutrient Requirements of Swine. 11th revised ed. Washington: National Academy Press. Cerca con Google

10. AOAC, 2012. Official Methods of Analysis of the Association of Official Agricultural Chemists, 19th ed. AOAC International, Gaithersburg, MD, USA. Cerca con Google

11. Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and no starch polysaccharides in relation to animal nutrition. J. Anim. Sci. 1991, 74: 3583–3597. Cerca con Google

12. Bouchard J, Chornet E, Overend RP. High-performance liquid chromatographic monitoring carbohydrate fractions in partially hydrolyzed corn starch. J. Agric. Food Chem. 1988, 36: 1188–1192. Cerca con Google

13. Council of Europe, 2005. Amino acid analysis. In: European Pharmacopoeia 5.0, 5th ed. Main volume 5.0, Strasbourg: Council of Europe, pp. 86-92. Cerca con Google

14. R Development Core Team, 2011. R: A Language and Environment for Statistical Computing. Vienna, Austria. Cerca con Google

15. SAS Institute, Inc., 2009. SAS/STAT®. 9.4. Cary, NC. Cerca con Google

16. De Haer LCM. Relevance of feeding pattern for selection of growing pigs. Wageningen University 1992, The Netherlands. Cerca con Google

17. Andretta I, Pomar C, Kipper M, Hauschild L, Rivest J. Feeding behavior of growing – finishing pigs reared under precision feeding strategies 1. J. Anim. Sci. 2016, 94: 3042–3050. Cerca con Google

18. Nielsen BL, Lawrence AB, Whittemore CT. Effect of group size on feeding behaviour, social behaviour, and performance of growing pigs using single-space feeders. Livest. Prod. Sci. 1995, 44: 73–85. Cerca con Google

19. Colpoys JD, Johnson AK, Gabler NK. Daily feeding regimen impacts pig growth and behavior. Physiol. Behav. 2016, 159: 27–32. Cerca con Google

20. Labroue F, Guéblez R, Sellier P. Genetic parameters of feeding behaviour and performance traits in group-housed Large White and French Landrace growing pigs. Genet. Sel. Evol.1997, 29: 451–468. Cerca con Google

21. Bornett HLI, Morgan CA, Lawrence AB, Mann J. The flexibility of feeding patterns in individually housed pigs. Anim. Sci. 2000, 40: 457-469. Cerca con Google

22. Bornett HLI, Morgan CA, Lawrence AB, Mann J. The effect of group housing on feeding patterns and social behaviour of previously individually housed growing pigs. Appl. Anim. Behav. Sci. 2000, 70: 127–141. Cerca con Google

23. Nyachoti CM, Zijlstra RT, de Lange CFM, Patience JF. Voluntary feed intake in growing-finishing pigs: A review of the main determining factors and potential approaches for accurate predictions. Can. J. Anim. Sci. 2004, 84: 549–566. Cerca con Google

24. Whittemore EC, Green DM. Technical review of the energy and protein requirements of growing pigs: food intake. Anim. Sci. 2001, 73: 3–17. Cerca con Google

25. Li Q, Patience JF. Factors involved in th eregulation of feed and energy intake of pigs. Anim. Feed. Sci. Technol. 2016 http://dx.doi.org/10.1016/j.anifeedsci.2016.01.001 Vai! Cerca con Google

26. Cámara L, Berrocoso JD, Fuentetaja A, Lopez-Bote CJ, De Blas C, Mateos GG. Regrouping of pigs by body weight at weaning does not affect growth performance, carcass quality or uniformity at slaughter of heavy weight pigs. Anim. Sci. J. 2016, 87: 134–142. Cerca con Google

27. Gallo L, Dalla Montà G, Carraro L, Cecchinato A, Carnier P, Schiavon S. Carcass quality and uniformity of heavy pigs fed restrictive diets with progressive reductions in crude protein and indispensable amino acids. Livest. Sci. 2015, 172: 50–58. Cerca con Google

28. Schiavon S, Carraro L, Dalla Bona M, Cesaro G, Carnier P, Tagliapietra F, Sturaro E, Galassi G, Malagutti L, Trevisi E, Crovetto GM, Cecchinato A, Gallo L. Growth performance, and carcass and raw ham quality of crossbred heavy pigs from four genetic groups fed low protein diets for dry-cured ham production. Anim. Feed Sci. Technol. 2015, 208: 170–181. Cerca con Google

29. Suárez-Belloch J, Guada JA, Latorre MA. Effects of sex and dietary lysine on performances and serum and meat traits in finisher pigs. Animal 2015, 9: 1731–1739. Cerca con Google

30. Henry Y, Seve B, Colleaux Y, Ganier P, Saligaut C, Jego P, Saligautt C, Jegot P. Interactive effects of dietary levels of tryptophan and protein on voluntary feed intake and growth performance in pigs, in relation to plasma free amino acids and hypothalamic serotonin. J. Anim. Sci. 1992, 70: 1873–1887. Cerca con Google

31. Ferguson NS, Gous RM. The influence of heat production on voluntary food intake in growing pigs given protein-deficient diets. Anim. Sci. 1997, 64: 365-378. Cerca con Google

32. Henry Y. Effect of a dietary amino-acid deficiency or imbalance during the initial period of growth in pigs and subsequent performance at slaughter. Annal Zootech. 1995, 44: 3-28. Cerca con Google

33. Chiba LI, Kuhlers DL, Frobish LT, Jungst SB, Huff-Lonergan EJ, Lonergan SM, Cummins KA. Effect of dietary restrictions on growth performance and carcass quality of pigs selected for lean growth efficiency. Livest. Prod. Sci. 2002, 74: 93-102. Cerca con Google

34. Kyriazakis I, Emmans GC, Whittemore CT. The ability of pigs to control their protein intake when fed in three different ways. Physiol. Behav. 1191, 50: 1197-1203. Cerca con Google

35. Dalcin Castilha L, Pagliari Sangali C, Costa Esteves LA, Muniz CF, Furlan AC, Souza Vasconcellos R, Pozza PC. Day-night behaviour and performance of barrows and gilts (70–100 kg) fed low protein diets with different levels of tryptophan and B6 vitamin. Appl. Anim. Behav. Sci. 2016, 180: 35–42. Cerca con Google

36. Jensen MB, Kyriazakis I, Lawrence AB. The activity and straw directed behaviour of pigs offered foods with different crude protein content. Applied Animal Behaviour Science 1993, 37: 211-221. Cerca con Google

37. Montgomery GW, Flux DS, Carr JR. Feeding patterns in pigs: the effect of amino acids deficiency. Physiol. & Behav. 1978, 20:693-698. Cerca con Google

38. Black JL. Models to predict feed intake. In: Tollardona D, Roura E, editors. Voluntary feed intake in pigs. Wageningen: Wageningen Academic Publishes; 1999, pp. 323-344. Cerca con Google

39. Emmans GC. Genetic components of potential and actual growth. In: British Society of Animal Production (Eds), Animal Breeding Opportunities. Occasional Publication no. 12; 1999, pp. 153-181. Cerca con Google

40. Ferguson NS, Arnold GA, Lavers G, Gous RM. The response of growing pigs to amino acids as influenced by environmental temperature. 1 Threonine. Anim. Sci. 2000, 70: 287-297. Cerca con Google

1. Maselyne J, Saeys W, Van Nuffel A. Review: Quantifying animal feeding behaviour with a focus on pigs. Physiol. Behav. 2015, 138: 37–51. Cerca con Google

2. de Haer LCM, Luiting P, Aarts HLM. Relationship between individual (residual) feed intake and feed intake pattern in group housed growing pigs. Livest. Prod. Sci. 1993, 36: 233-253. Cerca con Google

3. Colpoys JD, Johnson AK, Gabler NK. Daily feeding regimen impacts pig growth and behavior. Physiol. & Behav. 2016, 159: 27-32. Cerca con Google

4. de Haer LCM, de Vries AG. Feed intake patterns of and feed digestibility in growing pigs housed individually or in groups. Livest. Prod. Sci. 1993, 33: 277-292. Cerca con Google

5. Labroue F, Guéblez R, Sellier P, Meunier-Salaün MC. Feeding behaviour of group-housed Large White and Landrace pigs in French central test stations. Livest. Prod. Sci. 1994, 40: 303–312. Cerca con Google

6. Meunier-Salaun MC, Guérin C, Billon Y, Sellier P, Noblet J, Gilbert H. Divergent selection for residual feed intake in group-housed growing pigs: characteristics of physical and behavioural acitivity according to line and sex. Anim. 2014, 8: 1898-1906. Cerca con Google

7. Rauw WM, Soler J, Tibau J, Reixach J, Raya LG. Feeding time and feeding rate and its relationship with feed intake, feed efficiency, growth rate, and rate of fat deposition in growing Duroc barrows. Am. Soc. Anim. Sci.2006, 84: 3404–3409. doi:10.2527/jas.2006-209. Cerca con Google

8. Le Naou T, Le Floc'h N, Louveau I, van Milgen J, Gondret F. Meal frequency changes the basal and time-course profiles of plasma nutrient concentrations and affects feed efficiency in young growing pigs, J. Anim. Sci. 2014, 92: 2008–2016. Cerca con Google

9. Newman RE, Downing JA, Thomson PC, Collins CL, Henman DJ, Wilkinson SJ. Insulin secretion, body composition and pig performance are altered by feeding pattern. Anim. Prod. Sci. 2014, 54: 319–328. Cerca con Google

10. Schneider JD, Tokach MD, Goodband RD, Nelssen JL, Dritz SS, DeRouchey JM, et al. Effects of restricted feed intake on finishing pigs weighing between 68 and 114 kilograms fed twice or 6 times daily, J. Anim. Sci. 2011, 89: 3326–3333. Cerca con Google

11. Andretta I, Pomar C, Kipper M, Hauschild L, Rivest J. Feeding behavior of growing – finishing pigs reared under precision feeding strategies. J. Anim. Sci. 2016, 94: 3042–3050. doi:10.2527/jas2016-0392. Cerca con Google

12. Carcò G, Dalla Bona M, Carraro L, Latorre MA, Fondevila M, Gallo L et al. Influence of mild feed restriction and mild reduction in dietary amino acid content on feeding behavior of group-housed growing pigs. Appl. Anim. Behav. Sci. 2018, 198: 27-35. Cerca con Google

13. Nielsen BL. On the interpretation of feeding behaviour measures and the use of feeding rate as an indicator of social constraint. Appl. Anim. Behav. Sci. 1999, 63: 79–91. Cerca con Google

14. Emmans GC, Kyriazakis I. Consequences of genetic changes in farm animals on food intake and feeding behaviour. Proc.Nutr. Soc. 2001, 60: 115-125. Cerca con Google

15. Emmans GC. A Method to predict the food intake of domestic animals from birth to maturity as a function of time. J. Theor. Biol. 1997, 186: 189-199. Cerca con Google

16. Nyachoti CM, Zijlstra, RT, de Lange CFM., Patience JF. Voluntary feed intake in growing-finishing pigs: A review of the main determining factors and potential approaches for accurate predictions. Can. J. Anim. Sci. 2004, 84: 549–566. Cerca con Google

17. Schiavon S, Dalla Bona M, Carcò G, Carraro L, Bunger L, Gallo L. Effects of feed and indispensable amino acid restrictions on feed intake, growth performance and carcass characteristics of growing pigs. PLoS ONE 2018, https://doi.org/10.1371/journal.pone.0195645. Vai! Cerca con Google

18. Mordenti A, Bosi P, Corino C, Crovetto GM, Casa GD, Franci O, et al. A methodological approach to assess nutrient requirements of heavy pigs in Italy. Ital. J. Anim. Sci. 2003, 2: 73-87. Cerca con Google

19. Ferguson NS, Arnold GA, Lavers G, Gous RM. The response of growing pigs to amino acids as influenced by environmental temperature. 1 Threonine. Anim. Sci. 2000, 70: 287-297. Cerca con Google

20. Schiavon S, Emmans GC. A model to predict water intake of a pig growing in a known environment on a known diet. Brit. J. Nutr. 2000, 84: 873-883. Cerca con Google

21. Topigs, 2012. Feeding manual Talent. Available from: https://varkens.nl/sites/default/files/Feeding%20Manual%20Talent%20progeny%202012.pdf. Accessed 05th April 2018. Vai! Cerca con Google

22. NRC. Nutrient Requirements of Swine. 11th revised ed. Washington: National Academy Press; 2012. Cerca con Google

23. Kloareg M, Noblet J, Van Milgen J. Estimation of whole lipid mass in finishing pigs. Anim. Sci. 2006, 82: 241-251. Cerca con Google

24. EU. Commission Implementing Decision of 24 January 2014 authorising methods for grading pig carcases in Italy [notified under document C (2014) 279]. Off. J. L 23. Cerca con Google

25. EU. Corrigendum to Commission Implementing Decision 2014/38/EU of 24 January 2014 authorising methods for grading pig carcases in Italy (Off. J. L 23, 28.1.2014). Off. J. L 54. Cerca con Google

26. AOAC. Official Methods of Analysis of the Association of Official Agricultural Chemists, 19th ed. AOAC International, 2012. Cerca con Google

27. SAS. SAS Institute, SAS/STAT®. 9.4. Cary, NC. 2009 Cerca con Google

28. de Haer LCM., Merks JWM. Patterns of daily food intake in growing pigs. Anim. Sci. 1992, 54: 95-104. Cerca con Google

29. Labroue F, Guéblez R, Sellier P. Genetic parameters of feeding behaviour and performance traits in group-housed Large White and French Landrace growing pigs. Genet. Sel. Evol. 1997, 29: 451–468. Cerca con Google

30. Hyun Y, Ellis M, Mckeith FK, Wilson ER. Feed intake pattern of group-housed growing-finishing pigs monitored using a computerized feed intake recording system. J. Anim. Sci. 1997, 75: 1443–1451. Cerca con Google

31. Bornett HLI, Morgan CA, Lawrence AB, Mann J. The flexibility of feeding patterns in individually housed pigs. Anim. Sci. 2000, 40: 457-469. Cerca con Google

32. Nielsen BL, Lawrence AB, Whittemore CT. Effect of group size on feeding behaviour, social behaviour, and performance of growing pigs using single-space feeders. Livest. Prod. Sci. 1995, 44: 73–85. Cerca con Google

33. Young RJ, Lawrence AB. Feeding behaviour of pigs in groups monitored by a computerized feeding system. Anim. Prod. 1994, 58: 145–152. Cerca con Google

34. von Felde A, Roehe R, Looft H, Kalm E. Genetic association between feed intake and feed intake behaviour at different stages of growth of group-housed boars. Livest. Prod. Sci. 1996, 47: 11–22. Cerca con Google

35. Schulze V, Roehe R, Bermejo JL, Looft H, Kalm E. The influence of feeding behaviour on feed intake curve parameters and performance traits of station-tested boars. Livest. Prod. Sci. 2003, 82: 105-116. Cerca con Google

1. Toldrá F, Aristoy MC. (2010). Dry cured ham. In: F. Toldrá editor. Handbook of meat processing. Ames, Iowa: Blackwell Publishing; 2010. pp. 351-362. Cerca con Google

2. EC, 2015. http://ec.europa.eu/agriculture/quality/door/list.html (accessed 15/05/2018) Vai! Cerca con Google

3. Bermúdez R, Franco D, Carballo J, Lorenzo JM. Physicochemical changes during manufacture and final sensory characteristics of dry-cured Celta ham. Effect of muscle type. Food Contr. 2014; 43: 263–269. Cerca con Google

4. Čandek-Potokar M, Škrlep M. Factors in pig production that impact the quality of dry-cured ham: a review. Anim. 2012; 6: 327-338. http://doi.org/10.1017/S1751731111001625 Vai! Cerca con Google

5. Bosi P, Russo V. The production of the heavy pig for high quality processed products. Ital. J. Anim. Sci. 2004; 3: 309–32145. Cerca con Google

6. Pagliarini E, Laureati M, Dinnella C, Monteleone E, Proserpio C, Piasentier E. Influence of pig genetic type on sensory properties and consumer acceptance of Parma, San Daniele and Toscano dry-cured hams. J. Sci. Food Agric. 2016; 96: 798–806. Cerca con Google

7. Lo Fiego DP, Santoro P, Macchioni P, De Leonibus E. Influence of genetic type, live weight at slaughter and carcass fatness on fatty acid composition of subcutaneous adipose tissue of raw ham in the heavy pig. Meat Sci. 2005; 69: 107–114. Cerca con Google

8. Schiavon S, Carraro L, Dalla Bona M, Cesaro G, Carnier P, Tagliapietra F, Sturaro E, Galassi G, Malagutti L, Trevisi E, Crovetto GM, Cecchinato A, Gallo L. Growth performance, and carcass and raw ham quality of crossbred heavy pigs from four genetic groups fed low protein diets for dry-cured ham production. Anim. Feed Sci. Technol. 2015; 208: 170–181. Cerca con Google

9. Gou P, Guerrero L, Arnau, J. Sex and crossbreed effects on the characteristics of dry-cured ham. Meat Sci. 1995; 40: 21–31. Cerca con Google

10. Peloso JV, Lopes PS, Gomide LAM, Guimarães SEF, Carneiro PLS. Carcass and ham quality characteristics of heavy pigs from different genetic groups intended for the production of dry-cured hams. Meat Sci. 2010; 86: 371–376. Cerca con Google

11. Rodríguez-Sánchez JA, Sanz MA, Blanco M, Serrano MP, Joy M, Latorre MA. The influence of dietary lysine restriction during the finishing period on growth performance and carcass, meat, and fat characteristics of barrows and gilts intended for dry-cured ham production. J. Anim. Sci. 2011; 89: 3651–3662. Cerca con Google

12. Schiavon S, Dalla Bona M, Carcò G, Carraro L, Bunger L, Gallo L. Effects of feed allowance and indispensable amino acid reduction on feed intake, growth performance and carcass characteristics of growing pigs. PLoS ONE 2018; https://doi.org/10.1371/journal.pone.0195645. Vai! Cerca con Google

13. Gallo L, Dalla Bona M, Carraro L, Cecchinato A, Carnier P, Schiavon S. Effect of progressive reduction in crude protein and lysine of heavy pigs diets on some technological properties of green hams destined for PDO dry-cured ham production. Meat Sci. 2016; 121: 135–140. Cerca con Google

14. Suárez-Belloch J, Latorre MA, Guada JA. The effect of protein restriction during the growing period on carcass, meat and fat quality of heavy barrows and gilts. Meat Sci. 2016; 112: 16–23. Cerca con Google

15. EC, 2006. Prosciutto di San Daniele. Protected Designation of Origin. Publication pursuant to article 18/(2) of the commission regulation (EC) No. 1898/2006, in accordance with the article 17 of Council Regulation (EEC) No. 2081/92 of July, 14th 1992. Off. J. Eur. Commun. C188, 24–27 Cerca con Google

16. Fontanesi L, Schiavo G, Galimberti G, Calò DG, Scotti E, Martelli PL, Buttazzoni L, Casadio R, Russo, V. A genome wide association study for backfat thickness in Italian Large White pigs highlights new regions affecting fat deposition including neuronal genes. BMC Genom. 2012; 13: 583. Cerca con Google

17. Sturaro E, Gallo L, Noventa M, Carnier P. The genetic relationship between enzymatic activity of cathepsin B and firmness of dry-cured hams. Meat Sci 2008; 79: 375–381. Cerca con Google

18. Laureati M, Buratti S, Giovanelli G, Corazzin M, Lo Fiego DP, Pagliarini E. Characterization and differentiation of Italian Parma, San Daniele and Toscano dry-cured hams: A multi-disciplinary approach. Meat Sci. 2014; 96: 288–294. Cerca con Google

19. Gaspardo B, Procida G, Toso B, Stefanon B. Determination of volatile compounds in San Daniele ham using headspace GC–MS. Meat Sci. 2008; 80: 204–209. Cerca con Google

20. Botsoglou NA, Fletouris DJ, Papageorgiou GE, Vassilopoulos VN, Mantis AJ, Trakatellis, AG. Rapid, Sensitive, and Specific Thiobarbituric Acid Method for Measuring Lipid Peroxidation in Animal Tissue, Food, and Feedstuff Samples. J. Agric. Food Chem. 1994; 42: 1931-1937. Cerca con Google

21. CIE, 1978. Recommendations on uniform color spaces-color difference equations psychometric color terms. Paris: Commission International de L'Eclairage Supplement No. 2 to CIE Publication No. 15 (E-1.3.1) 1971/(TC-1.3). Cerca con Google

22. Tabilo G, Flores M, Fiszman SM, Toldrá F. Postmortem meat quality and sex affect textural properties and protein breakdown of dry-cured ham. Meat Sci. 1999; 51: 255–260. Cerca con Google

23. AOAC (2003). Official Methods of Analysis of the Association of Official Agricultural Chemists, 19th ed. AOAC International, Gaithersburg, MD, USA. Cerca con Google

24. Careri M, Mangia A, Barbieri G, Bolzoni L, Virgili R, Parolari G. Sensory property relationships to chemical data of Italian-type dry-cured ham. J. Food Sci. 1993, 58, 968–972. Cerca con Google

25. EU, 2011. Regulation (EU) No. 1169/2011 of the European Parliament and of the Council of 25 October 2011. Official Journal of the European Union 22/11/2011. Cerca con Google

26. Schiavon S, Pellattiero E, Cecchinato A, Tagliapietra F, Dannenberger D, Nuernberg K, Nuemberg G, Bittante G. The influence of different sample preparation procedures on the determination of fatty acid profiles of beef subcutaneous fat, liver and muscle by gas chromatography. J. Food Comp. Analysis 2016; 50: 10–18. Cerca con Google

27. Schäfer K. Accelerated solvent extraction of lipids for determining the fatty acid composition of biological material. Analytica Chim. Acta, 1998; 358: 69–77. Cerca con Google

28. Christie WW. Preparation of ester derivatives of fatty acids for chromatographic analysis. In: Christie WW editor. Advances in Lipid Methodology – Two. Dundee, Scotland, United Kingdom: Oily Press; 1993. pp. 69-111 Cerca con Google

29. Canh TT, Aarnik AJA, Schutte JB, Sutton A, Langhout DJ, Verstegen, MWA. Dietary protein affects nitrogen excretion and ammonia emission from slurry of growing–finishing pigs. Livest. Prod. Sci. 1998; 56: 181-191. Cerca con Google

30. Gallo L, Dalla Montà G, Carraro L, Cecchinato A, Carnier P, Schiavon S. Growth performance of heavy pigs fed restrictively diets with decreasing crude protein and indispensable amino acids content. Livestock Sci. 2014; 161: 130–138. Cerca con Google

31. Gallo L, Dalla Bona M, Carraro L, Cecchinato A, Carnier P, Schiavon S. Carcass quality and uniformity of heavy pigs fed restrictive diets with progressive reductions in crude protein and indispensable amino acids. Livest. Sci. 2015; 172: 50-58. Cerca con Google

32. Lambe NR, Wood JD, McLean KA, Walling GA, Whitney H, Jagger S, Fullarton P, Bayntun J, Bünger L Effects of low protein diets on pigs with a lean genotype 2. Compositional traits measured with computed tomography (CT). Meat Sci. 2013; 95: 129–136. Cerca con Google

33. Wood JD, Lambe NR, Walling GA, Whitney H, Jagger S, Fullarton PJ, Bayntun J, Hallett K, Bünger L. Effects of low protein diets on pigs with a lean genotype. 1. Carcass composition measured by dissection and muscle fatty acid composition. Meat Sci. 2013; 95: 123–128. Cerca con Google

34. Tous N, Lizardo R, Vilà B, Gispert M. Effect of reducing dietary protein and lysine on growth performance, carcass characteristics, intramuscular fat, and fatty acid profile of finishing barrows 1. J. Anim. Sci. 2014; 92: 129–140. Cerca con Google

35. Grassi S, Casiraghi E, Benedetti S, Alamprese C. Effect of low-protein diets in heavy pigs on dry-cured ham quality characteristics. Meat Sci. 2017; 131: 152–157. Cerca con Google

36. Carrapiso AI, García C. Effect of the Iberian pig line on dry-cured ham characteristics. Meat Sci. 2008; 80: 529–53416. Cerca con Google

37. Vitale M, Corazzin M, Favotto S, Saccà E, Piasentier E. Variability in the characteristics of fresh meat and thighs in relationship to genetic type of the heavy pig. Ital. J. Anim. Sci. 2008; 8: 561–563. Cerca con Google

38. Ruiz-Carrascal J, Ventanas J, Cava R, Andrés AI, García C. Texture and appearance of dry cured ham as affected by fat content and fatty acid composition. Food Res. Intern. 2000; 33: 91–95. Cerca con Google

39. Cilla I, Altarriba J, Guerrero L, Gispert M, Martínez L, Moreno C, Beltrán JA, Guàrdia MD, Diestre A, Arnau J, Roncalés P. Effect of different Duroc line sires on carcass composition, meat quality and dry-cured ham acceptability. Meat Sci. 2006; 72: 252–260. Cerca con Google

40. Capraro D, Buccioni A, Piasentier E, Spanghero M. Feeding finishing heavy pigs with corn silages: effects on backfat fatty acid composition and ham weight losses during seasoning. Ital. J. Anim. Sci. 2017; 16: 588–592. Cerca con Google

41. Cecchinato A Schiavon S, Tagliapietra F, Gallo L. Relationships between in vivo measurements of backfat thickness and several carcass and ham traits in heavy pigs. Agric, Conspec. Sci. 2013; 78: 255–258. Cerca con Google

42. Jiménez-Colmenero F, Ventanas J, Toldrá F. Nutritional composition of dry-cured ham and its role in a healthy diet. Meat Sci. 2010; 84: 585–593. Cerca con Google

43. Ruusunen M, Puolanne E. Reducing sodium intake from meat products - a review. Meat Sci. 2005; 70:531-541. Cerca con Google

44. Sárraga C. Meat proteinases and their relation with curing. In: Smulders FJM, Toldrá F, Flores J, Prieto M. editors. New technologies for meat and meat products. Nijmegen, The Netherlands: Audet Tijdschriften BV; 1992. pp. 233–246. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record