Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Guarracino, Paola (2018) Photophysical processes and molecular ordering in organic materials for third generation photovoltaics studied by EPR spectroscopy. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document
5Mb

Abstract (italian or english)

The world energy consumption is increasing at an average rate of 2.1 % per year, spurred by the economic growth in most of Asian countries, Europe and Canada. The consequent depletion of fossil fuels reservoirs and the reinforced need of environmental sustainability are making the challenge of clean and renewable energy sources one of the most urgent challenges for humankind. Solar power is among the best candidates for the leading role in the energy revolution, being clean, infinite and well distributed over the planet. For this reason, photovoltaic technologies for electricity production are gaining increasing popularity. Although inorganic silicon solar cells dominate the market of photovoltaics, organic and hybrid materials attract considerable interest since their properties like flexibility, light-weight, transparency and low-cost could make the difference in the raising of solar electricity. So far, these materials could not yet outperform conventional silicon, stimulating intensive scientific research on both the development of new materials and the understanding of the photophysical mechanisms governing the photovoltaic behavior of organic/hybrid semiconductors.
In this thesis, a series of new organic and hybrid photoactive materials is studied using Electron Paramagnetic Resonance spectroscopy (EPR). This technique, combined with photoexcitation, allows to unambiguously characterize the photoinduced processes involving the formation of paramagnetic states like radicals and triplet states. As shown in the thesis, EPR can also give useful information about molecular ordering in the materials, which is known to be intimately connected with charge transport properties.
Conjugated polymers are known for their semiconducting properties and their blends with strong electron accepting fullerene derivatives are among the best performing organic photovoltaic systems. Donor-acceptor alternating copolymers have been introduced to enhance the light-harvesting properties of the blends. Compared to homopolymers, they usually display a lower crystallinity of the deposited films. Thus, XRD techniques are often not suitable to investigate their molecular ordering features. We apply EPR to the analysis of molecular orientational order in the films of two polymers representative of this class, showing that a consistent degree of preferential orientation occurs with two common deposition methods.
Fullerene-free materials for polymer solar cells have been recently introduced and overcome some of the drawbacks of fullerene acceptors like the limited absorption and the poor bandgap tunability. In this framework, we study two blends of electron-donor and acceptor polymers to probe their properties with respect to the common fullerene/donor combination, showing that they avoid charge recombination to triplet states which is an active loss mechanism in fullerene-containing blends. Furthermore, the all-polymer films provide a high degree of orientational order and efficient interaction between the donor and acceptor phases that make them promising alternatives to polymer-fullerene blends.
A reduced graphene oxide-triphenylamine covalently-linked nanohybrid is studied as potential photosensitizer for TiO2 in dye-sensitized solar cells, able to improve the conductivity and the stability of the system. EPR shows that efficient photoinduced electron transfer from the sensitizer to the semiconductor occurs, paving the way to this new class of photosensitizers.
Finally, we investigate the photoactivity of a supramolecular soft-material, forming a gel, composed of small self-assembling donor and acceptor molecules. In this case, EPR allows to verify the efficiency of charge transport across the supramolecular structures, suggesting appealing semiconducting properties of the material.
The results of this thesis show the relevance of EPR for unraveling functional and morphological properties of photovoltaic materials and provide a useful characterization of the photophysics of new systems that may be further explored to bring substantial progresses to the field of organic photovoltaics.

Abstract (a different language)

Il consumo mondiale di energia ha un tasso medio di crescita del 2.1 % all’anno, trainato dalla crescita economica di molti Paesi asiatici, dell’Europa e del Canada. Il conseguente depauperamento delle risorse di combustibili fossili e il più stringente bisogno di proteggere l’ambiente stanno facendo della sfida delle energie rinnovabili una delle più urgenti sfide che l’umanità deve affrontare. L’energia solare è tra i migliori candidati a svolgere il ruolo di punta nella rivoluzione energetica, essendo una fonte di energia pulita, infinita e ben distribuita nel pianeta. Per questo motivo le tecnologie fotovoltaiche per la produzione di energia elettrica stanno acquistando crescente popolarità. Sebbene le celle solari a base di Silicio dominino il mercato del fotovoltaico, materiali organici e ibridi sono fonte di crescente interesse grazie alle loro peculiari proprietà, come la flessibilità, la leggerezza e la trasparenza, il basso costo, che ci si aspetta possano fare la differenza nell’affermazione del fotovoltaico. Fino ad ora questi materiali non hanno superato il rendimento dei materiali convenzionali a base di Silicio, stimolando la ricerca scientifica verso lo sviluppo di nuovi materiali e lo studio dei meccanismi fotofisici che governano il comportamento fotovoltaico dei semiconduttori organici e ibridi.
In questa tesi, una serie di nuovi materiali fotoattivi, organici e ibridi, è stata studiata utilizzando la spettroscopia di Risonanza Paramagnetica Elettronica (EPR). Tale tecnica, combinata con la fotoeccitazione, permette di caratterizzare i processi fotoindotti che portano alla formazione di stati paramagnetici come radicali e stati di tripletto. Come mostrato nella tesi, la tecnica EPR può essere anche utilizzata per ottenere informazioni circa l’ordine molecolare nei materiali, che è noto essere strettamente collegato alle loro proprietà di trasporto di carica.
I polimeri coniugati sono noti per le loro proprietà di semiconduttori e le loro miscele con derivati fullereneci - forti electron-accettori - sono tra i sistemi fotovoltaici organici più efficienti. Copolimeri alternanti composti da unità elettron-accettrici e donatrici sono stati introdotti per aumentare l’efficienza di assorbimento dello spettro solare. Rispetto ai classici omopolimeri, questi mostrano solitamente una minore cristallinità dei film depositati. Pertanto, tecniche diffrattometriche si rivelano spesso inadeguate per caratterizzarne l’ordine molecolare. In questa tesi l’EPR viene utilizzato per analizzare l’ordine orientazionale in due polimeri rappresentativi di questa classe, mostrando che un grado consistente di orientazione preferenziale è presente nei film ottenuti con due diverse tecniche di deposizione.
Materiali fullerene-free per le celle solari polimeriche sono stati recentemente introdotti per superare alcuni degli svantaggi degli accettori fullerenici, come il limitato assorbimento della luce solare e la difficoltà nel regolare il bandgap e le proprietà elettroniche. In questo conteso, abbiamo studiato due blend costituiti da polimeri elettron-accettori e donatori al fine di investigarne le proprietà e di compararle a quelle dei convenzionali blend di polimeri donatori con derivati fullerenici, dimostrando che essi eliminano la ricombinazione di cariche a formare stati di tripletto, meccanismo noto come fonte di perdita di efficienza nei materiali contenti fullereni. Inoltre, i film polimerici mostrano un elevato grado di ordine orientazionale e un’efficiente interazione tra le fasi di donatore e di accettore che li rendono promettenti alternative ai blend di polimero e fullerene.
Un nanoibrido composto da grafene ossido ridotto e molecole di trifenilammina legati covalentemente, è stato studiato come potenziale colorante per la titania in celle solari sensibilizzate a colorante, capace di migliorare la conducibilità e la stabilità del sistema. L’EPR ha mostrato che un efficiente trasferimento elettronico fotoindotto avviene tra l’ibrido e il semiconduttore, aprendo la strada all’applicazione di una nuova classe di coloranti.
Infine, la fotoattività di un materiale supramolecolare, un gel composto da piccole molecole di donatore e accettore che autoassemblano, è stata studiata. In questo caso l’EPR ha permesso di verificare un efficiente trasporto di carica attraverso le strutture supramolecolari, suggerendo interessanti proprietà semiconduttive del materiale.
I risultati di questa tesi dimostrano la rilevanza dell’EPR per l’indagine su aspetti funzionali e morfologici di materiali fotovoltaici e forniscono una caratterizzazione della fotofisica di nuovi sistemi che potrebbero essere ulteriormente esplorati per apportare progressi sostanziali nel campo del fotovoltaico organico e ibrido.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Franco, Lorenzo
Ph.D. course:Ciclo 31 > Corsi 31 > SCIENZE MOLECOLARI
Data di deposito della tesi:30 November 2018
Anno di Pubblicazione:30 November 2018
Key Words:EPR, organic photovoltaics, TR-EPR, conjugated polymers, molecular order, bulk-heterojunction solar cells, dye-sensitized solar cells
Settori scientifico-disciplinari MIUR:Area 03 - Scienze chimiche > CHIM/02 Chimica fisica
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Chimiche
Codice ID:11530
Depositato il:06 Nov 2019 11:03
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Armaroli, N.; Balzani, V. Solar Electricity and Solar Fuels: Status and Perspectives in the Context of the Energy Transition. Chem. - A Eur. J. 2015, 22, 32–57. Cerca con Google

Petroleum, B. British Petroleum, BP Statistical Review of World Energy 2017, Http://www.bp.com. Vai! Cerca con Google

REN21-Renewable Energy Policy Network for the 21st Century, Renewables Global Status Report 2018, http://www.ren21.net. Vai! Cerca con Google

Green, M. a.; Hishikawa, Y.; Dunlop, E. D.; Levi, D. H.; Hohl-Ebinger, J.; Ho-Baillie, A. W. Y. Solar Cell Efficiency Tables (version 52). Prog. Photovoltaics Res. Appl. 2018, 26, 427–436. Cerca con Google

Brabec, C.; Dyakonov, V.; Scherf, U. Organic Photovoltaics: Materials, Device Physics and Manufaturing Technology; Brabec, C., Dyakonov, V., Scherf, U., Eds.; Wiley, VCH, 2008. Cerca con Google

Cornaro, C.; Di Carlo, A. Organic Photovoltaics for Energy Efficiency in Buildings. In Nano and Biotech Based Materials for Energy Building Efficiency; Pacheco Torgal, F., Buratti, C., Kalaiselvam, S., Granqvist, C. G., Ivanov, V., Eds.; Springer, 2016; pp 1–496. Cerca con Google

Krebs, F. C.; Søndergaard, R. R.; Markus, H. Roll-to-Roll Fabrication of Large Area Functional Organic Materials. J. Polym. Sci. Part B Polym. Phys. 2013, 51, 16–34. Cerca con Google

Krebs, F. C. Fabrication and Processing of Polymer Solar Cells: A Review of Printing and Coating Techniques. Sol. Energy Mater. Sol. Cells 2009, 93, 394–412. Cerca con Google

Zhang, Q.; Kan, B.; Liu, F.; Long, G.; Wan, X.; Chen, X.; Zuo, Y.; Ni, W.; Zhang, H.; Li, M.; et al. Small-Molecule Solar Cells with Efficiency over 9%. Nat. Photonics 2014, 9, 35–41. Cerca con Google

Moench, T.; Koerner, C.; Murawski, C.; Murawski, J.; Nikolis, V. C.; Vandewal, K.; Leo, K. Small Molecule Solar Cells. In Molecular Devices for Solar energy Conversion and Storage; Tian, H., Boschloo, G., Hagfeldt, A., Eds.; Springer: Singapore, 2018; pp 1–43. Cerca con Google

Xiao, Z.; Jia, X.; Ding, L. Ternary Organic Solar Cells Offer 14% Power Conversion Efficiency. Sci. Bull. 2017, 62 (23), 1562–1564. Cerca con Google

Schenning, A. P. H. J.; Meijer, E. W. Supramolecular Electronics ; Nanowires from Self-Assembled P -Conjugated Systems. Chem. Commun. 2005, 0, 3245–3258. Cerca con Google

Babu, S. S.; Prasanthkumar, S.; Ajayaghosh, A. Self-Assembled Gelators for Organic Electronics. Angew. Chemie Int. Ed. 2012, 51, 1766–1776. Cerca con Google

Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F. E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M. Dye-Sensitized Solar Cells with 13% Efficiency Achieved through the Molecular Engineering of Porphyrin Sensitizers. Nat. Chem. 2014, 6, 242–247. Cerca con Google

Arora, N.; Dar, M. I.; Hinderhofer, A.; Pellet, N.; Schreiber, F.; Zakeeruddin, S. M.; Grätzel, M. Perovskite Solar Cells with CuSCN Hole Extraction Layers Yield Stabilized Efficiencies Greater than 20%. Science 2017, 358, 768–771. Cerca con Google

Correa-Baena, J.-P.; Abate, A.; Saliba, M.; Tress, W.; Jesper Jacobsson, T.; Grätzel, M.; Hagfeldt, A. The Rapid Evolution of Highly Efficient Perovskite Solar Cells. Energy Environ. Sci. 2017, 10 (3), 710–727. Cerca con Google

Hideki, S.; Louis, J.; Macdiarmid, A. G.; Chwan, K. C.; Heeger, A. J. Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene. J.C.S. Chem. Comm. 1977, 578–580. Cerca con Google

Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Polymer Photovoltaic Cells : Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science 1995, 270, 1789–1791. Cerca con Google

Schilinsky, P.; Waldauf, C.; Brabec, C. J. Recombination and Loss Analysis in Polythiophene Based Bulk Heterojunction Photodetectors. Appl. Phys. Lett. 2002, 81, 3885–3887. Cerca con Google

Dang, M. T.; Hirsch, L.; Wantz, G. P3HT:PCBM , Best Seller in Polymer Photovoltaic Research. Adv. Mater. 2011, 23, 3597–3602. Cerca con Google

Kim, Y.; Cook, S.; Tuladhar, S. M.; Choulis, S. a.; Nelson, J.; Durrant, J. R.; Bradley, D. D. C.; Giles, M.; McCulloch, I.; Ha, C.-S.; et al. A Strong Regioregularity Effect in Self-Organizing Conjugated Polymer Films and High-Efficiency Polythiophene:fullerene Solar Cells. Nat. Mater. 2006, 5, 197–203. Cerca con Google

Zhao, G. J.; He, Y. J.; Li, Y. 6.5% Efficiency of Polymer Solar Cells Based on poly(3-Hexylthiophene) and Indene-C60 Bisadduct by Device Optimization. Adv. Mater. 2010, 22, 4355–4358. Cerca con Google

Dang, M. T.; Hirsch, L.; Wantz, G.; Wuest, J. D. Controlling the Morphology and Performance of Bulk Heterojunctions in Solar Cells. Lessons Learned from the Benchmark poly(3-hexylthiophene):[6,6]-Phenyl- C61-Butyric Acid Methyl Ester System. Chem. Rev. 2013, 113, 3734–3765. Cerca con Google

Winder, C.; Sariciftci, N. S. Low Bandgap Polymers for Photon Harvesting in Bulk Heterojunction Solar Cells. J. Mater. Chem. 2004, 14, 1077. Cerca con Google

Lu, L.; Zheng, T.; Wu, Q.; Schneider, A. M.; Zhao, D.; Yu, L. Recent Advances in Bulk Heterojunction Polymer Solar Cells. Chem. Rev. 2015, 115, 12666–12731. Cerca con Google

Liu, C.; Wang, K.; Heeger, A. J. Low Bandgap Semiconducting Polymers for Polymeric Photovoltaics. Chem. Soc. Rev. 2016, 45, 4825–4846. Cerca con Google

Hou, J.; Inganäs, O.; Friend, R. H.; Gao, F. Organic Solar Cells Based on Non-Fullerene Acceptors. Nat. Mater. 2018, 17, 119–128. Cerca con Google

Chen, W.; Zhang, Q. Recent Progress in Non-Fullerene Small Molecule Acceptors in Organic Solar Cells (OSCs). J. Mater. Chem. C 2017, 5, 1275–1302. Cerca con Google

Behrends, J.; Sperlich, A.; Schnegg, A.; Biskup, T.; Teutloff, C.; Lips, K.; Dyakonov, V.; Bittl, R. Direct Detection of Photoinduced Charge Transfer Complexes in Polymer Fullerene Blends. Phys. Rev. B 2012, 85, 125206. Cerca con Google

Niklas, J.; Beaupré, S.; Leclerc, M.; Xu, T.; Yu, L.; Sperlich, A.; Dyakonov, V.; Poluektov, O. G. Photoinduced Dynamics of Charge Separation: From Photosynthesis to Polymer–Fullerene Bulk Heterojunctions. J. Phys. Chem. B 2015, 119, 7407–7416. Cerca con Google

Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-Sensitized Solar Cells. Chem. Rev. 2010, 110, 6595–6663. Cerca con Google

O’Regan, B.; Gratzel, M. A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sesitized Colloidal TiO2 Films. Nature 1991, 353, 737–739. Cerca con Google

Mishra, A.; Fischer, M. K. R.; Bäuerle, P. Metal-Free Organic Dyes for Dye-Sensitized Solar Cells : From Structure : Property Relationships to Design Rules Angewandte. Angew. Chemie Int. Ed. 2009, 48, 2474–2499. Cerca con Google

Wang, J.; Liu, K.; Ma, L.; Zhan, X. Triarylamine: Versatile Platform for Organic, Dye-Sensitized, and Perovskite Solar Cells. Chem. Rev. 2016, 116, 14675–14725. Cerca con Google

Boschloo, G.; Hagfeldt, A.; Spectus, C. O. N. Characteristics of the Iodide/Triiodide Redox Mediator in Dye-Sensitized Solar Cells. Acc. Chem. Res. 2009, 42, 1819–1826. Cerca con Google

Koops, S. E.; Barnes, P. R. F.; O’Regan, B. C.; Durrant, J. R. Kinetic Competition in a Coumarin Dye-Sensitized Solar Cell: Injection and Recombination Limitations upon Device Performance. J. Phys. Chem. C 2010, 114, 8054–8061. Cerca con Google

Kallioinen, J.; Benkö, G.; Sundström, V.; Korppi-Tommola, J. E. I.; Yartsev, A. P. Electron Transfer from the Singlet and Triplet Excited States of Ru(dcbpy)2 (NCS)2 into Nanocrystalline TiO2 Thin Films. J. Phys. Chem. B 2002, 106, 4396–4404. Cerca con Google

Bisquert, J. Chemical Diffusion Coefficient of Electrons in Nanostructured Semiconductor Electrodes and Dye-Sensitized Solar Cells. J. Phys. Chem. B 2004, 108, 2323–2332. Cerca con Google

Atherton, N. M. Principles of Electron Spin Resonance; Ellis Horwood: Chichester, 1993. Cerca con Google

Bolton, J. R.; Weil, J. A. Electron Paramagnetic Resonance: Elementary Theory and Practical Applications; John Wiley & Sons, 2007. Cerca con Google

Carrington, A.; McLachlan, A. D. Introduction to Magnetic Resonance; Chapman and Hall: London, 1979. Cerca con Google

Atkins, P. W. Molecular Quantum Mechanics; Oxford University Press: London, 1970. Cerca con Google

Marian, C. M. Spin-Orbit Coupling and Intersystem Crossing in Molecules. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 187–203. Cerca con Google

Levanon, H.; Norris, J. R.; Levanon, H.; Norris, J. R. The Photoexcited Triplet State and Photosynthesis. Chem. Rev. 1978, 78, 185–198. Cerca con Google

Dance, Z. E. X.; Mi, Q.; McCamant, D. W.; Ahrens, M. J.; Ratner, M. A.; Wasielewski, M. R. Time-Resolved EPR Studies of Photogenerated Radical Ion Pairs Separated by P-Phenylene Oligomers and of Triplet States Resulting from Charge Recombination. J. Phys. Chem. B 2006, 110, 25163–25173. Cerca con Google

Buckley, C. D.; Hunter, D. a.; Hore, P. J.; McLauchlan, K. a. Electron Spin Resonance of Spin-Correlated Radical Pairs. Chem. Phys. Lett. 1987, 135, 307–312. Cerca con Google

Franco, L.; Toffoletti, A.; Ruzzi, M.; Montanari, L.; Carati, C.; Bonoldi, L.; Po’, R. Time-Resolved EPR of Photoinduced Excited States in a Semiconducting polymer/PCBM Blend. J. Phys. Chem. C 2013, 117, 1554–1560. Cerca con Google

EPR Spectroscopy: Fundamentals and Methods, First Edit.; Goldfarb, D., Stoll, S., Eds.; John Wiley & Sons: Chichester, UK, 2018. Cerca con Google

Advanced EPR: Applications in Biology and Biochemistry; Hore, P. J., Ed.; Elsevier: Amsterdam, 1989. Cerca con Google

Schweiger, A.; Jeschke, G. Principles of Pulse Electron Paramagnetic Resonance; Oxford University Press: New York, 2001. Cerca con Google

Hofer, P.; Grupp, A.; Nebenfuhr, H.; Mehring, M. Hyperfine Sublevel Correlation (HYSCORE) Spectroscopy: A 2D ESR Investigation of the Squaric Acid Radical. Chem. Phys. Lett. 1986, 132, 279–282. Cerca con Google

Kline, R. J.; McGehee, M. D.; Toney, M. F. Highly Oriented Crystals at the Buried Interface in Polythiophene Thin-Film Transistors. Nat. Mater. 2006, 5, 222–228. Cerca con Google

Chirvase, D.; Parisi, J.; Hummelen, J. C.; Dyakonov, V. Influence of Nanomorphology on the Photovoltaic Action of Polymer – Fullerene Composites. Nanotechnology 2004, 15, 1317–1323. Cerca con Google

Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. High-Efficiency Solution Processable Polymer Photovoltaic Cells by Self-Organization of Polymer Blends. Nat. Mater. 2005, 4, 864–868. Cerca con Google

Kim, Y.; Cook, S.; Tuladhar, S. M.; Choulis, S. a.; Nelson, J.; Durrant, J. R.; Bradley, D. D. C.; Giles, M.; McCulloch, I.; Ha, C.-S.; et al. A Strong Regioregularity Effect in Self-Organizing Conjugated Polymer Films and High-Efficiency Polythiophene:fullerene Solar Cells. Nat. Mater. 2006, 5, 197–203. Cerca con Google

Keivanidis, P. E.; Clarke, T. M.; Lilliu, S.; Agostinelli, T.; Macdonald, J. E.; Durrant, J. R.; Bradley, D. D. C.; Nelson, J. Dependence of Charge Separation Efficiency on Film Microstructure in Poly(3-Hexylthiophene-2,5-diyl):[6,6]-Phenyl-C61 Butyric Acid Methyl Ester Blend Films. J. Phys. Chem. Lett. 2010, 1, 734–738. Cerca con Google

Chen, D.; Nakahara, A.; Wei, D.; Nordlund, D.; Russell, T. P. P3HT/PCBM Bulk Heterojunction Organic Photovoltaics: Correlating Efficiency and Morphology. Nano Lett. 2011, 11, 561–567. Cerca con Google

Brabec, C. J.; Heeney, M.; McCulloch, I.; Nelson, J. Influence of Blend Microstructure on Bulk Heterojunction Organic Photovoltaic Performance. Chem. Soc. Rev. 2011, 40, 1185–1199. Cerca con Google

Noriega, R.; Rivnay, J.; Vandewal, K.; Koch, F. P. V; Stingelin, N.; Smith, P.; Toney, M. F.; Salleo, A. A General Relationship between Disorder, Aggregation and Charge Transport in Conjugated Polymers. Nat. Mater. 2013, 12. Cerca con Google

Beaujuge, P. M.; Fréchet, J. M. J. Molecular Design and Ordering Effects in π-Functional Materials for Transistor and Solar Cell Applications. JACS 2011, 133, 20009–20029. Cerca con Google

Liu, Y.; Zhao, J.; Li, Z.; Mu, C.; Ma, W.; Hu, H.; Jiang, K.; Lin, H. Aggregation and Morphology Control Enables Multiple Cases of High-Efficiency Polymer Solar Cells. Nat. Commun. 2014, 5, 1–8. Cerca con Google

Jackson, N. E.; Savoie, B. M.; Marks, T. J.; Chen, L. X.; Ratner, M. A. The Next Breakthrough for Organic Photovoltaics? J. Phys. Chem. Lett. 2015, 6, 77–84. Cerca con Google

Salleo, B. A.; Kline, R. J.; Delongchamp, D. M.; Chabinyc, M. L. Microstructural Characterization and Charge Transport in Thin Films of Conjugated Polymers. Adv. Mater. 2010, 22, 3812–3838. Cerca con Google

Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, a. J. H.; Janssen, R. a. J.; Meijer, E. W.; Herwig, P.; et al. Two-Dimensional Charge Transport in Self-Organized, High-Mobility Conjugated Polymers. Nature 1999, 401, 685–688. Cerca con Google

Steyrleuthner, R.; Pietro, R. Di; Collins, B. A.; Polzer, F.; Himmelberger, S.; Schubert, M.; Chen, Z.; Zhang, S.; Salleo, A.; Ade, H.; et al. The Role of Regioregularity, Crystallinity, and Chain Orientation on Electron Transport in a High-Mobility N-Type Copolymer. JACS 2014, 136, 4245–4256. Cerca con Google

Vohra, V.; Kawashima, K.; Kakara, T.; Koganezawa, T.; Osaka, I.; Takimiya, K.; Murata, H. Efficient Inverted Polymer Solar Cells Employing Favourable Molecular Orientation. Nat. Photonics 2015, 9, 1–5. Cerca con Google

Zhang, X.; Bronstein, H.; Kronemeijer, A. J.; Smith, J.; Kim, Y.; Kline, R. J.; Richter, L. J.; Anthopoulos, T. D.; Sirringhaus, H.; Song, K.; et al. Molecular Origin of High Field-Effect Mobility in an Indacenodithiophene-Benzothiadiazole Copolymer. Nat. Commun. 2013, 4, 1–9. Cerca con Google

Huang, Y.; Kramer, E. J.; Heeger, A. J.; Bazan, G. C. Bulk Heterojunction Solar Cells: Morphology and Performance Relationships. Chem. Rev. 2014, 114, 7006–7043. Cerca con Google

Giridharagopal, R.; Ginger, D. S. Characterizing Morphology in Bulk Heterojunction Organic Photovoltaic Systems. J. Phys. Chem. Lett. 2010, 1, 1160–1169. Cerca con Google

Baker, J. L.; Jimison, L. H.; Mannsfeld, S.; Volkman, S.; Yin, S.; Subramanian, V.; Salleo, A.; Alivisatos, A. P.; Toney, M. F.; Science, M.; et al. Quantification of Thin Film Crystallographic Orientation Using X-Ray Diffraction with an Area Detector. Langmuir 2010, 26, 9146–9151. Cerca con Google

Chiu, M.; Jeng, U.; Su, M.; Wei, K. Morphologies of Self-Organizing Regioregular Conjugated Polymer / Fullerene Aggregates in Thin Film Solar Cells. Macromolecules 2010, 43, 428–432. Cerca con Google

Gurau, M. C.; Delongchamp, D. M.; Vogel, B. M.; Lin, E. K.; Fischer, D. A.; Sambasivan, S.; Richter, L. J. Measuring Molecular Order in Poly (3-Alkylthiophene) Thin Films with Polarizing Spectroscopies. Langmuir 2007, 23, 834–842. Cerca con Google

Cochran, J. E.; Junk, M. J. N.; Glaudell, A. M.; Miller, P. L.; Cowart, J. S.; Toney, M. F.; Hawker, C. J.; Chmelka, B. F.; Chabinyc, M. L. Molecular Interactions and Ordering in Electrically Doped Polymers: Blends of PBTTT and F4TCNQ. Macromolecules 2014, 47, 6836–6846. Cerca con Google

Melnyk, A.; Junk, M. J. N.; Mcgehee, M. D.; Chmelka, B. F.; Hansen, M. R.; Andrienko, D. Macroscopic Structural Compositions of π-Conjugated Polymers: Combined Insights from Solid-State NMR and Molecular Dynamics Simulations. J. Phys. Chem. Lett. 2017, 8, 4155–4160. Cerca con Google

Aguirre, A.; Gast, P.; Orlinskii, S.; Akimoto, I.; Groenen, E. J. J.; El Mkami, H.; Goovaerts, E.; Van Doorslaer, S. Multifrequency EPR Analysis of the Positive Polaron in I2-Doped poly(3-Hexylthiophene) and in poly[2-Methoxy-5-(3,7-Dimethyloctyloxy)]-1,4-Phenylenevinylene. Phys. Chem. Chem. Phys. 2008, 10, 7129–7138. Cerca con Google

Konkin, a.; Roth, H. K.; Scharff, P.; Aganov, a.; Ambacher, O.; Sensfuss, S. K-Band ESR Studies of Structural Anisotropy in P3HT and P3HT/PCBM Blend Polymer Solid Films: Paramagnetic Defects after Continuous Wave Xe-Lamp Photolysis. Solid State Commun. 2009, 149, 893–897. Cerca con Google

Cambré, S.; De Ceuster, J.; Goovaerts, E.; Bouwen, A.; Detert, H. Quantitative Evaluation of the Preferential Orientation of Para-Phenylene Vinylene Pentamers in Polystyrene Films by Optically Detected Magnetic Resonance. Appl. Magn. Reson. 2007, 31, 343–355. Cerca con Google

Biskup, T.; Sommer, M.; Rein, S.; Meyer, D. L.; Kohlstädt, M.; Würfel, U.; Weber, S. Ordering of PCDTBT Revealed by Time-Resolved Electron Paramagnetic Resonance Spectroscopy of its Triplet Excitons. Angew. Chemie Int. Ed. 2015, 54, 7707–7710. Cerca con Google

Liu, C.; Wang, K.; Heeger, A. J. Low Bandgap Semiconducting Polymers for Polymeric Photovoltaics. Chem. Soc. Rev. 2016, 45, 4825–4846. Cerca con Google

Boudreault, P. T.; Michaud, A.; Leclerc, M. A New Poly (2 ,7-Dibenzosilole) Derivative in Polymer Solar Cells. Macromol. Rapid Commun. 2007, No. 28, 2176–2179. Cerca con Google

Wang, E.; Wang, L.; Lan, L.; Luo, C.; Zhuang, W. High-Performance Polymer Heterojunction Solar Cells of a Polysilafluorene Derivative. Appl. Phys. Lett. 2008, 92, 5–7. Cerca con Google

Beiley, Z. M.; Hoke, E. T.; Noriega, R.; Dacuña, J.; Burkhard, G. F.; Bartelt, J. A.; Salleo, A.; Toney, M. F.; Mcgehee, M. D. Morphology-Dependent Trap Formation in High Performance Polymer Bulk Heterojunction Solar Cells. Adv. Energy Mater. 2011, 1, 954–962. Cerca con Google

Lu, X.; Hlaing, H.; Germack, D. S.; Peet, J.; Jo, W. H.; Andrienko, D.; Kremer, K.; Ocko, B. M. Bilayer Order in a Polycarbazole-Conjugated Polymer. Nat. Commun. 2012, 3, 1–7. Cerca con Google

Lu, L.; Zheng, T.; Wu, Q.; Schneider, A. M.; Zhao, D.; Yu, L. Recent Advances in Bulk Heterojunction Polymer Solar Cells. Chem. Rev. 2015, 115, 12666–12731. Cerca con Google

Patel, D. G. D.; Feng, F.; Ohnishi, Y.; Abboud, K. A.; Hirata, S.; Schanze, K. S.; Reynolds, J. R. It Takes More Than an Imine: The Role of the Central Atom on the Electron-Accepting Ability of Benzotriazole and Benzothiadiazole Oligomers. J. Am. Chem. Soc. 2012, 134, 2599–2612. Cerca con Google

Kotowski, D.; Luzzati, S.; Bianchi, G.; Calabrese, A. Double Acceptor D-A Copolymers Containing Benzotriazole and Benzothiadiazole Units: Chemical Tailoring towards Efficient Photovoltaic Properties. J. Mater. Chem. A 2013, 1, 10736–10744. Cerca con Google

Bonoldi, L.; Calabrese, A.; Pellegrino, A.; Perin, N.; Po, R.; Spera, S.; Tacca, A. Optical and Electronic Properties of Fluorene/Thiophene/Benzothiadiazole Pseudorandom Copolymers for Photovoltaic Applications. J. Mater. Sci. 2011, 46, 3960–3968. Cerca con Google

Segre, U.; Pasimeni, L.; Ruzzi, M. Simulation of EPR and Time Resolved EPR Lineshapes in Partially Ordered Glasses. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2000, 56, 265–271. Cerca con Google

Barbon, A.; Bortolus, M.; Maniero, A. L.; Brustolon, M. Structure and Dynamics of the Triplet State of Oligothiophenes in Isotropic and Partially Oriented Matrices. Phys. Chem. Chem. Phys. 2005, 7, 2894–2899. Cerca con Google

Maier, W.; Saupe, A. Eine Einfache Molekulare Theorie Des Nematischen Kristallinflüssigen Zustandes. Zeitschrift für Naturforsch. A 1958, 13, 564–566. Cerca con Google

Dunmur, D.; Fukuda, A.; Luckhurst, G. Physical Properties of Liquid Crystals: Nematics; INSPEC, The Institution of Electrical Engineers: London, United Kingdom, 2001. Cerca con Google

Bortolus, M.; Ferrarini, A.; Tol, J. Van; Maniero, A. L. Full Determination of Zero Field Splitting Tensor of the Excited Triplet State of C60 Derivatives of Arbitrary Symmetry from High Field TREPR in Liquid Crystals. J. Phys. Chem. B 2006, 110, 3220–3224. Cerca con Google

Ceola, S.; Corvaja, C.; Franco, L. The Orientation of the Principal Axes of the Electron Dipolar Interaction Tensor in Triplet State C60 Monoadducts. Mol. Cryst. Liq. Cryst. 2003, 31–43. Cerca con Google

Onsager, L. The Effects of Shapes on the Interaction of Colloidal Particles. Ann. N. Y. Acad. Sci. 1949, 51, 627–659. Cerca con Google

Fritz, K. P.; Scholes, G. D. Alignment of Conjugated Polymers in a Nematic Liquid-Crystal Host. J Phys Chem B 2003, 107, 10141–10147. Cerca con Google

Barbara, P. F.; Chang, W.; Link, S.; Scholes, G. D.; Yethiraj, A. Structure and Dynamics of Conjugated Polymers in Liquid Crystalline Solvents. Annu. Rev. Phys. Chem. 2007, 58, 565–584. Cerca con Google

Michaeli, S.; Soffer, S.; Levanon, H.; Senge, M. O.; Kalisch, W. W. Triplet Dynamics of Conformationally Distorted Porphyrins in Isotropic Liquids and Liquid Crystals. Time-Resolved Electron Paramagnetic Resonance Study. 1999, 103, 1950–1957. Cerca con Google

Montalti, M.; Credi, A.; Prodi, L.; Gandolfi, M. T. Handbook of Photochemistry, 3rd ed.; CRC Press, Boca Raton, 2006. Cerca con Google

Lammi, R. K.; Fritz, K. P.; Scholes, G. D.; Barbara, P. F. Ordering of Single Conjugated Polymers in a Nematic Liquid Crystal Host. J. Phys. Chem. B 2004, No. 108, 4593–4596. Cerca con Google

Hammond, M. R.; Kline, R. J.; Herzing, A. A.; Richter, L. J.; Germack, D. S.; Ro, H.; Soles, C. L.; Fischer, D. A.; Xu, T.; Yu, L.; et al. Molecular Order in High-Efficiency Polymer/Fullerene Bulk Heterojunction Solar Cells. ACS Nano 2011, No. 10, 8248–8257. Cerca con Google

El-Sayed, M. A.; Siegel, S. Method of "Magnetophotoselection’' of the Lowest Excited Triplet State of Aromatic Molecules. J. Chem. Phys. 1966, 44, 1416–1423. Cerca con Google

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09, Revision B.01. Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT. 2009. Cerca con Google

Visser, J.; Groenen, E. J. J. The Fine-Structure in the Lowest Triplet State of C60 and C70. Chem. Phys. Lett. 2002, 356, 43–48. Cerca con Google

Toffoletti, A.; Wang, Z.; Zhao, J.; Tommasini, M.; Barbon, A. Precise Determination of the Orientation of the Transition Dipole Moment in a Bodipy Derivative by Analysis of the Magnetophotoselection Effect. Phys. Chem. Chem. Phys. 2018, 20, 20497–20503. Cerca con Google

Tait, C. E.; Neuhaus, P.; Anderson, H. L.; Timmel, C. R. Triplet State Delocalization in a Conjugated Porphyrin Dimer Probed by Transient Electron Paramagnetic Resonance Techniques. J. Am. Chem. Soc. 2015, 137, 6670–6679. Cerca con Google

Neese, F. The ORCA Program System. WIREs Comput Mol Sci 2012, 2, 73–78. Cerca con Google

Sinnecker, S.; Neese, F. Spin - Spin Contributions to the Zero-Field Splitting Tensor in Organic Triplets, Carbenes and Biradicals: a Density Functional and Ab Initio Study. J. Phys. Chem. A 2006, 110, 12267–12275. Cerca con Google

Krebs, F. C.; Søndergaard, R. R.; Markus, H. Roll-to-Roll Fabrication of Large Area Functional Organic Materials. J. Polym. Sci. Part B Polym. Phys. 2013, 51, 16–34. Cerca con Google

Stoll, S.; Schweiger, A. EasySpin, a Comprehensive Software Package for Spectral Simulation and Analysis in EPR. J. Magn. Reson. 2006, 178, 42–55. Cerca con Google

Chen, W.; Zhang, Q. Recent Progress in Non-Fullerene Small Molecule Acceptors in Organic Solar Cells (OSCs). J. Mater. Chem. C 2017, 5, 1275–1302. Cerca con Google

Baran, D.; Ashraf, R. S.; Hanifi, D. A.; Abdelsamie, M.; Gasparini, N.; Röhr, J. A.; Holliday, S.; Wadsworth, A.; Lockett, S.; Neophytou, M.; et al. Reducing the Efficiency–stability–cost Gap of Organic Photovoltaics with Highly Efficient and Stable Small Molecule Acceptor Ternary Solar Cells. Nat. Mater. 2017, 16, 363–370. Cerca con Google

Holliday, S.; Ashraf, R. S.; Wadsworth, A.; Baran, D.; Yousaf, S. A.; Nielsen, C. B.; Tan, C.; Dimitrov, S. D.; Shang, Z.; Gasparini, N.; et al. High-Efficiency and Air-Stable P3HT-Based Polymer Solar Cells with a New Non-Fullerene Acceptor. Nat. Commun. 2016, 7, 11585. Cerca con Google

Nielsen, C. B.; Holliday, S.; Chen, H.; Cryer, S. J.; McCulloch, I. Non-Fullerene Electron Acceptors for Use in Organic Solar Cells. Acc. Chem. Res. 2015, 48, 2803–2812. Cerca con Google

Hou, J.; Inganäs, O.; Friend, R. H.; Gao, F. Organic Solar Cells Based on Non-Fullerene Acceptors. Nat. Mater. 2018, 17, 119–128. Cerca con Google

Kim, T.; Kim, J.; Kang, T. E.; Lee, C.; Kang, H.; Shin, M.; Wang, C.; Ma, B.; Jeong, U.; Kim, T.; et al. Flexible, Highly Efficient All-Polymer Solar Cells. Nat. Commun. 2015, 6, 8547. Cerca con Google

Facchetti, A. Polymer Donor – Polymer Acceptor (all-Polymer) Solar Cells. Mater. Today 2013, 16, 123–132. Cerca con Google

Andersson, M. R.; Janssen, R. A. J.; Wang, E. High Performance All-Polymer Solar Cells by Synergistic Effects of Fine-Tuned Crystallinity and Solvent Annealing. J. Am. Chem. Soc. 2016, 138, 10935–10944. Cerca con Google

Cheng, P.; Ye, L.; Zhao, X.; Hou, J.; Yongfang, L.; Zhan, X. Binary Additives Synergistically Boost the Efficiency of All-Polymer Solar Cells up to 3.45%. Energy Environ. Sci. 2014, 7, 1351–1356. Cerca con Google

Liu, S.; Kan, Z.; Thomas, S.; Cruciani, F.; Brédas, J. B.; Beaujuge, P. M. Thieno[3,4-C]pyrrole-4,6-Dione-3,4-Difluorothiophene Polymer Acceptors for Efficient All-Polymer Bulk Heterojunction Solar Cells. Angew. Chemie Int. Ed. 2016, 128, 13190–13194. Cerca con Google

Liu, S.; Song, X.; Thomas, S.; Kan, Z.; Cruciani, F.; Laquai, F.; Bredas, J.; Beaujuge, P. M. Thieno [3,4-c] Pyrrole-4,6-Dione-Based Polymer Acceptors for High Open-Circuit Voltage All-Polymer Solar Cells. Adv. Energy Mater. 2017, 160274/1–12. Cerca con Google

Liao, S.; Jhuo, H.; Cheng, Y.; Chen, S. Fullerene Derivative-Doped Zinc Oxide Nanofilm as the Cathode of Inverted Polymer Solar Cells with Low-Bandgap Polymer (PTB7-Th) for High Performance. Adv. Mater. 2013, 25, 4766–4771. Cerca con Google

Ye, L.; Zhang, S.; Zhao, W.; Yao, H.; Hou, J. Highly Efficient 2D-Conjugated Benzodithiophene-Based Photovoltaic Polymer with Linear Alkylthio Side Chain. Chem. Mater. 2014, 26, 3603–3605. Cerca con Google

He, Z.; Xiao, B.; Liu, F.; Wu, H.; Yang, Y.; Xiao, S.; Wang, C.; Russell, T. P.; Cao, Y. Single-Junction Polymer Solar Cells with High Efficiency and Photovoltage. Nat. Photonics 2015, 9, 174–179. Cerca con Google

Abdou, M. S. A.; Orfino, F. P.; Son, Y.; Holdcroft, S.; Va, C.; December, R. V. Interaction of Oxygen with Conjugated Polymers: Charge Transfer Complex Formation with Poly(3-Alkylthiophenes). J. Am. Chem. Soc. 1997, 119, 4518–4524. Cerca con Google

Susarova, D. K.; Piven, N. P.; Akkuratov, A. V; Frolova, L. A.; Polinskaya, M. S.; Ponomarenko, S. A.; Babenko, S. D.; Troshin, P. A. ESR Spectroscopy as a Powerful Tool for Probing the Quality of Conjugated Polymers Designed for Photovoltaic Applications. Chem. Commun. 2015, 51, 2239–2241. Cerca con Google

Biskup, T.; Sommer, M.; Rein, S.; Meyer, D. L.; Kohlstädt, M.; Würfel, U.; Weber, S. Ordering of PCDTBT Revealed by Time-Resolved Electron Paramagnetic Resonance Spectroscopy of Its Triplet Excitons. Angew. Chemie Int. Ed. 2015, 54, 7707–7710. Cerca con Google

El-Sayed, M. A.; Siegel, S. Method of "Magnetophotoselection’' of the Lowest Excited Triplet State of Aromatic Molecules. J. Chem. Phys. 1966, 44, 1416–1423. Cerca con Google

Niklas, J.; Mardis, K. L.; Banks, B. P.; Grooms, G. M.; Sperlich, A.; Dyakonov, V.; Beaupré, S.; Leclerc, M.; Xu, T.; Yu, L.; et al. Highly-Efficient Charge Separation and Polaron Delocalization in Polymer-Fullerene Bulk-Heterojunctions: A Comparative Multi-Frequency EPR and DFT Study. Phys. Chem. Chem. Phys. 2013, 15, 9562–9574. Cerca con Google

Steyrleuthner, R.; Zhang, Y.; Zhang, L.; Kraffert, F.; Behrends, J. Impact of Morphology on Polaron Delocalization in a Semicrystalline Conjugated Polymer. Phys. Chem. Chem. Phys. 2017, 19, 3627–3639. Cerca con Google

Nevil, N.; Ling, Y.; Mierloo, S. Van; Kesters, J.; Piersimoni, F.; Adriaensens, P.; Lutsen, L.; Vanderzande, D.; Manca, J.; Maes, W.; et al. Charge Transfer in the Weak Driving Force Limit in Blends of MDMO-PPV and Dithienylthiazolo [5,4-D] Thiazoles towards Organic Photovoltaics with High VOC. Phys. Chem. Chem. Phys. 2012, 14, 15774–15784. Cerca con Google

Van Landeghem, M.; Maes, W.; Goovaerts, E.; Van Doorslaer, S. Disentangling Overlapping High-Field EPR Spectra of Organic Radicals: Identification of Light-Induced Polarons in the Record Fullerene-Free Solar Cell Blend PBDB-T:ITIC. J. Magn. Reson. 2018, 288, 1–10. Cerca con Google

Aguirre, A.; Gast, P.; Orlinskii, S.; Akimoto, I.; Groenen, E. J. J.; El Mkami, H.; Goovaerts, E.; Van Doorslaer, S. Multifrequency EPR Analysis of the Positive Polaron in I2-Doped poly(3-Hexylthiophene) and in poly[2-Methoxy-5-(3,7-Dimethyloctyloxy)]-1,4-Phenylenevinylene. Phys. Chem. Chem. Phys. 2008, 10, 7129–7138. Cerca con Google

Niklas, J.; Poluektov, O. G. Charge Transfer Processes in OPV Materials as Revealed by EPR Spectroscopy. Adv. Energy Mater. 2017, 1602226. Cerca con Google

Gerson, F.; Gleiter, R.; Ohya-Nishiguchi, H. Isomerization of the Radical Anions of 6a-Thiathiophthenes. Helv. Chim. Acta 1977, 60, 1220–1225. Cerca con Google

Ling, Y.; Mierloo, S. Van; Schnegg, A.; Fehr, M.; Adriaensens, P.; Lutsen, L.; Vanderzande, D.; Maes, W.; Goovaerts, E.; Van Doorslaer, S. Electronic Structure of Positive and Negative Polarons in Functionalized Dithienylthiazolo-[5,4-D]thiazoles: a Combined EPR and DFT Study. Phys. Chem. Chem. Phys. 2014, 16, 10032–10040. Cerca con Google

Coropceanu, V.; Cornil, J.; A. da Silva Filho, D.; Olivier, Y.; Silbey, R.; Brédas, J.-L. Charge Transport in Organic Semiconductors. Chem. Rev. 2007, 107, 926–952. Cerca con Google

Holst, J. J. M. Van Der; Oost, F. W. A. Van; Coehoorn, R.; Bobbert, P. A. Electron-Hole Recombination in Disordered Organic Semiconductors: Validity of the Langevin Formula. Phys. Rev. B 2009, 80, 235202/1–8. Cerca con Google

Wagenpfahl, A. Mobility Dependent Recombination Models for Organic Solar Cells. J. Phys. Condens. Matter 2017, 29, 373001. Cerca con Google

Adriaenssens, G. J.; Arkhipov, V. I. Non-Langevin Recombination in Disordered Materials with Random Potential Distributions. Solid State Commun. 1997, 103, 541–543. Cerca con Google

Clarke, T. M.; Lungenschmied, C.; Peet, J.; Drolet, N.; Mozer, A. J. Tuning Non-Langevin Recombination in an Organic Photovoltaic Blend Using a Processing Additive. J. Phys. Chem. C 2015, 119, 7016–7021. Cerca con Google

Privikas, A.; Sariciftci, N. S.; Juska, G.; Osterbacka, R. A Review of Charge Transport and Recombination in Polymer/Fullerene Organic Solar Cells. Prog. Photovoltaics Res. Appl. 2007, 15, 677–696. Cerca con Google

Tait, C. E.; Neuhaus, P.; Anderson, H. L.; Timmel, C. R. Triplet State Delocalization in a Conjugated Porphyrin Dimer Probed by Transient Electron Paramagnetic Resonance Techniques. J. Am. Chem. Soc. 2015, 137, 6670–6679. Cerca con Google

Franco, L.; Toffoletti, A.; Ruzzi, M.; Montanari, L.; Carati, C.; Bonoldi, L.; Po’, R. Time-Resolved EPR of Photoinduced Excited States in a Semiconducting polymer/PCBM Blend. J. Phys. Chem. C 2013, 117, 1554–1560. Cerca con Google

Righetto, M.; Privitera, A.; Carraro, F.; Bolzonello, L.; Ferrante, C.; Franco, L.; Bozio, R. Engeneering Interactions in QDs-PCBM Blends: A Surface Chemistry Approach. Nanoscale 2018, 10, 11913–11922. Cerca con Google

Schlenker, C. W.; Li, C.; Yip, H.; Jen, A. K.; Rao, A.; Chow, P. C. Y.; Ge, S.; Ginger, D. S.; Friend, R. H. The Role of Spin in the Kinetic Control of Recombination in Organic Photovoltaics. Nature 2013, 500, 435–440. Cerca con Google

Kraffert, F.; Steyrleuthner, R.; Albrecht, S.; Neher, D.; Scharber, M. C.; Bittl, R.; Behrends, J. Charge Separation in PCPDTBT:PCBM Blends from an EPR Perspective. J. Phys. Chem. C 2014, 118, 28482–28493. Cerca con Google

Janssen, R. A. J.; Veldman, D.; Meskers, S. C. J. The Energy of Charge-Transfer States in Electron Donor – Acceptor Blends : Insight into the Energy Losses in Organic Solar Cells. Adv. Funct. Mater. 2009, 19, 1939–1948. Cerca con Google

Ohkita, H.; Cook, S.; Astuti, Y.; Duffy, W.; Heeney, M.; Tierney, S.; Mcculloch, I.; Bradley, D. C.; Durrant, J. R. Radical Ion Pair Mediated Triplet Formation in Polymer – Fullerene Blend Films. 2006, 100, 3939–3941. Cerca con Google

Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, a. J. H.; Janssen, R. a. J.; Meijer, E. W.; Herwig, P.; et al. Two-Dimensional Charge Transport in Self-Organized, High-Mobility Conjugated Polymers. Nature 1999, 401, 685–688. Cerca con Google

Steyrleuthner, R.; Pietro, R. Di; Collins, B. A.; Polzer, F.; Himmelberger, S.; Schubert, M.; Chen, Z.; Zhang, S.; Salleo, A.; Ade, H.; et al. The Role of Regioregularity, Crystallinity, and Chain Orientation on Electron Transport in a High-Mobility N-Type Copolymer. JACS 2014, 136, 4245–4256. Cerca con Google

Vohra, V.; Kawashima, K.; Kakara, T.; Koganezawa, T.; Osaka, I.; Takimiya, K.; Murata, H. Efficient Inverted Polymer Solar Cells Employing Favourable Molecular Orientation. Nat. Photonics 2015, 9, 1–5. Cerca con Google

Nelson, J.; Kwiatkowski, J. O. E. J.; Kirkpatrick, J.; Frost, J. M. Modeling Charge Transport in Organic Photovoltaic Materials Introduction. Acc. Chem. Res. 2009, 42, 1768–1778. Cerca con Google

Visser, J.; Groenen, E. J. J. The Fine-Structure in the Lowest Triplet State of C60 and C70. Chem. Phys. Lett. 2002, 356, 43–48. Cerca con Google

National Renewable energy Laboratory - Efficiency Chart 2018 - https://www.nrel.gov/pv/. Vai! Cerca con Google

Gong, J.; Sumathy, K.; Qiao, Q.; Zhou, Z. Review on Dye-Sensitized Solar Cells (DSSCs): Advanced Techniques and Research Trends. Renew. Sustain. Energy Rev. 2017, 68, 234–246. Cerca con Google

Wang, J.; Liu, K.; Ma, L.; Zhan, X. Triarylamine: Versatile Platform for Organic, Dye-Sensitized, and Perovskite Solar Cells. Chem. Rev. 2016, 116, 14675–14725. Cerca con Google

O’Regan, B.; Gratzel, M. A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sesitized Colloidal TiO2 Films. Nature 1991, 353, 737–739. Cerca con Google

Kim, S.; Lee, J. K.; Kang, S. O.; Ko, J.; Yum, J.; Fantacci, S.; Angelis, F. De; Censo, D. Di; Nazeeruddin, K.; Gra, M.; et al. Molecular Engineering of Organic Sensitizers for Solar Cell Applications. J. Am. Chem. Soc. 2006, 128, 16701–16707. Cerca con Google

Hagberg, D. P.; Marinado, T.; Karlsson, K. M.; Nonomura, K.; Qin, P.; Boschloo, G.; Brinck, T.; Hagfeldt, A.; Sun, L. Tuning the HOMO and LUMO Energy Levels of Organic Chromophores for Dye Sensitized Solar Cells. J. Org. Chem. 2007, 72, 9550–9556. Cerca con Google

Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater. 2007, 6, 183–191. Cerca con Google

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. Cerca con Google

Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308. Cerca con Google

Singh, V.; Joung, D.; Zhai, L.; Das, S. Graphene Based Materials: Past, Present and Future. Prog. Mater. Sci. 2011, 56, 1178–1271. Cerca con Google

Abdolhosseinzadeh, S.; Asgharzadeh, H.; Kim, H. S. Fast and Fully-Scalable Synthesis of Reduced Graphene Oxide. Sci. Rep. 2015, 5, 10160. Cerca con Google

Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, a C.; Ruoff, R. S.; Pellegrini, V. Graphene, Related Two-Dimensional Crystals, and Hybrid Systems for Energy Conversion and Storage. Science 2015, 347, 1246501–1246501. Cerca con Google

Tang, Y.; Lee, C.-S.; Xu, J.; Liu, Z.; Chen, Z.-H.; He, Z.; Cao, Y.; Yuan, G.; Song, H.; Chen, L.; et al. Incorporation of Graphenes in Nanostructured TiO2 Films via Molecular Grafting for Dye-Sensitized Solar Cell Application. ACS Nano 2010, 4, 3482–3488. Cerca con Google

Liu, Z.; Liu, Q.; Huang, Y.; Ma, Y.; Yin, S.; Zhang, X.; Sun, W.; Chen, Y. Organic Photovoltaic Devices Based on a Novel Acceptor Material: Graphene. Adv. Mater. 2008, 20 , 3924–3930. Cerca con Google

Wang, Y.; Kurunthu, D.; Scott, G. W.; Bardeen, C. J. Fluorescence Quenching in Conjugated Polymers Blended with Reduced Graphitic Oxide. J. Phys. Chem. C 2010, 114, 4153–4159. Cerca con Google

Fang, Z.; Ito, A.; Stuart, A. C.; Luo, H.; Chen, Z.; Vinodgopal, K.; You, W.; Meyer, T. J.; Taylor, D. K. Soluble Reduced Graphene Oxide Sheets Grafted with Polystyrene Brushes as Light Harvesting Antenna for Photovoltaic Applications. ACS Nano 2013, 7 , 7992–8002. Cerca con Google

Wang, H. X.; Wang, Q.; Zhou, K. G.; Zhang, H. L. Graphene in Light: Design, Synthesis and Applications of Photo-Active Graphene and Graphene-like Materials. Small 2013, 9, 1266–1283. Cerca con Google

Xu, Y.; Liu, Z.; Zhang, X.; Wang, Y.; Tian, J.; Huang, Y.; Ma, Y.; Zhang, X.; Chen, Y. A Graphene Hybrid Material Covalently Functionalized with Porphyrin: Synthesis and Optical Limiting Property. Adv. Mater. 2009, 21, 1275–1279. Cerca con Google

Kitamura, T.; Ikeda, M.; Shigaki, K.; Inoue, T.; Anderson, N. A.; Ai, X.; Lian, T.; Yanagida, S. Phenyl-Conjugated Oligoene Sensitizers for TiO2 Solar Cells. Chem. Mater. 2004, 16, 1806–1812. Cerca con Google

Wirth, T. Hypervalent Iodine Chemistry: Modern Developments in Organic Synthesis Springer, 2003. Cerca con Google

Hermosilla, L.; Calle, P.; García de la Vega, J. M. Modeling EPR Parameters of Nitrogen Containing Conjugated Radical Cations. RSC Adv. 2015, 5, 62551–62562. Cerca con Google

Gatti, T.; Manfredi, N.; Boldrini, C.; Lamberti, F.; Abbotto, A.; Menna, E. A D-π-A Organic Dye – Reduced Graphene Oxide Covalent Dyad as a New Concept Photosensitizer for Light Harvesting Applications. Carbon N. Y. 2017, 115, 746–753. Cerca con Google

Salice, P.; Sartorio, C.; Burlini, A.; Improta, R.; Pignataro, B.; Menna, E. On the Trade-off between Processability and Opto-Electronic Properties of Single Wall Carbon Nanotube Derivatives in Thin Film Heterojunctions. J. Mater. Chem. C 2015, 3, 303–312. Cerca con Google

Bruning, W. H.; Nelson, R. F.; Marcoux, L. S.; Adams, R. N. The Structure of the Iodine-Triphenylamine Charge-Transfer Complex. J. Phys. Chem. 1967, 71, 3055–3057. Cerca con Google

Tachikawa, T.; Cui, S.-C.; Fujitsuka, M.; Majima, T. Interfacial Electron Transfer Dynamics in Dye-Modified Graphene Oxide Nanosheets Studied by Single-Molecule Fluorescence Spectroscopy. Phys. Chem. Chem. Phys. 2012, 14, 4244. Cerca con Google

Guarracino, P.; Gatti, T.; Canever, N.; Abdu-aguye, M.; Loi, M. A.; Menna, E.; Franco, L. Probing Photoinduced Electron-Transfer in Graphene – Dye Hybrid Materials for DSSC. Phys. Chem. Chem. Phys. 2017, 19, 27716–27724. Cerca con Google

Ma, T.; Akiyama, M.; Abe, E.; Imai, I. High-Efficiency Dye-Sensitized Solar Cell Based on a Nitrogen-Doped Nanostructured Titania Electrode. Nano Lett. 2005, 5, 2543–2547. Cerca con Google

Livraghi, S.; Paganini, M. C.; Giamello, E.; Selloni, A.; Di Valentin, C.; Pacchioni, G. Origin of Photoactivity of Nitrogen-Doped Titanium Dioxide under Visible Light. J. Am. Chem. Soc. 2006, 128 , 15666–15671. Cerca con Google

Di Valentin, C.; Finazzi, E.; Pacchioni, G.; Selloni, A.; Livraghi, S.; Paganini, M. C.; Giamello, E. N-Doped TiO2: Theory and Experiment. Chem. Phys. 2007, 339 , 44–56. Cerca con Google

Livraghi, S.; Chierotti, M. R.; Giamello, E.; Magnacca, G.; Paganini, M. C.; Cappelletti, G.; Bianchi, C. L. Nitrogen-Doped Titanium Dioxide Active in Photocatalytic Reactions with Visible Light: A Multi-Technique Characterization of Differently Prepared Materials. J. Phys. Chem. C 2008, 112 , 17244–17252. Cerca con Google

Aida, T.; Meijer, E. W.; Stupp, S. I. Functional Supramolecular Polymers. Science 2012, 335, 813–817. Cerca con Google

Schenning, A. P. H. J.; Meijer, E. W. Supramolecular Electronics ; Nanowires from Self-Assembled p-Conjugated Systems. Chem. Commun. 2005, 0, 3245–3258. Cerca con Google

Das, A.; Ghosh, S. H-Bonding Directed Programmed Supramolecular Assembly of Naphthalene-Diimide (NDI) Derivatives. Chem. Commun. 2016, 52, 6860–6872. Cerca con Google

Zhang, J.; Xu, W.; Sheng, P.; Zhao, G.; Zhu, D. Organic Donor − Acceptor Complexes as Novel Organic Semiconductors. Acc. Chem. Res. 2017, 50, 1654–1662. Cerca con Google

Schenning, A. P. H. J.; Herrikhuyzen, J.; Jonkheijm, P.; Chen, Z.; Wu, F.; Meijer, E. W. Photoinduced Electron Transfer in Hydrogen-Bonded Oligo(P-Phenylene Vinylene) - Perylene Bisimide Chiral Assemblies. JACS 2002, 124, 10252–10253. Cerca con Google

Tsutsumi, J.; Toshikazu, Y.; Hiroyuki, M.; Haas, S.; Hasegawa, T. Competition between Charge-Transfer Exciton Dissociation and Direct Photocarrier Generation in Molecular Donor-Acceptor Compounds. Phys. Rev. Lett. 2010, 105, 226601. Cerca con Google

Tsutsumi, J.; Matsui, H.; Yamada, T.; Kumai, R.; Hasegawa, T. Generation and Diffusion of Photocarriers in Molecular Donor−Acceptor Systems: Dependence on Charge-Transfer Gap Energy. J. Phys. Chem. C 2012, 116, 23957–23964. Cerca con Google

Yamamoto, Y.; Fukushima, T.; Suna, Y.; Ishii, N.; Saeki, A.; Seki, S.; Tagawa, S.; Taniguchi, M.; Kawai, T.; Aida, T. Photoconductive Coaxial Nanotubes of Molecularly Connected Electron Donor and Acceptor Layers. Science 2006, 314, 1761–1765. Cerca con Google

Zhang, W.; Jin, W.; Fukushima, T.; Saeki, A.; Seki, S.; Aida, T. Supramolecular Linear Heterojunction Composed of Graphite-Like Semiconducting Nanotubular Segments. Science 2011, 334, 340–343. Cerca con Google

Puigmartí-luis, J.; Laukhin, V.; Vidal-gancedo, J.; Rovira, C.; Laukhina, E.; Amabilino, D. B. Supramolecular Conducting Nanowires from Organogels. Angew. Chemie 2007, 119, 242–245. Cerca con Google

Ajayaghosh, A.; Praveen, V. K.; Vijayakumar, C. Organogels as Scaffolds for Excitation Energy Transfer and Light Harvesting. Chem. Soc. Rev. 2008, 37, 109–122. Cerca con Google

Babu, S. S.; Prasanthkumar, S.; Ajayaghosh, A. Self-Assembled Gelators for Organic Electronics. Angew. Chemie Int. Ed. 2012, 51, 1766–1776. Cerca con Google

Babu, S. S.; Praveen, V. K.; Ajayaghosh, A. Functional π Gelators and Their Applications. Chem. Rev. 2014, 114, 1973-2129. Cerca con Google

Johnson, E. K.; Adams, J.; Cameron, P. J. Peptide Based Low Molecular Weight Gelators. J. Mater. Chem. 2011, 21, 2024–2027. Cerca con Google

Yang, X.; Zhang, G.; Zhang, D. A New Ex-TTF-Based Organogelator: Formation of Organogels and Tuning with Fullerene. Langmuir 2010, 26, 11720–11725. Cerca con Google

Xue, P.; Lu, R.; Zhao, L.; Xu, D.; Zhang, X.; Li, K.; Song, Z.; Yang, X.; Takafuji, M.; Ihara, H. Hybrid Self-Assembly of a π Gelator and Fullerene Derivative with Photoinduced Electron Transfer for Photocurrent Generation. Langmuir 2010, 26, 6669–6675. Cerca con Google

Sugiyasu, K.; Kawano, S.; Fujita, N.; Shinkai, S. Self-Sorting Organogels with P-N Heterojunction Points. Chem. Mater. 2008, 20, 2863–2865. Cerca con Google

Sikder, A.; Ghosh, B.; Chakraborty, S.; Paul, A.; Ghosh, S. Rational Design for Complementary Donor–Acceptor Recognition Pairs Using Self-Complementary Hydrogen Bonds. Chem. - A Eur. J. 2016, 22, 1908–1913. Cerca con Google

Marchesan, S.; Styan, K. E.; Easton, C. D.; Waddington, L.; Vargiu, A. V. Higher and Lower Supramolecular Orders for the Design of Self-Assembled Heterochiral Tripeptide Hydrogel Biomaterials. J. Mater. Chem. B 2015, 3, 8123–8132. Cerca con Google

Keijzers, C. P.; Haarer, D. EPR Spectroscopy of Delocalized and Localized Charge-Transfer Excitons in Phenanthrene-PMDA Single Crystals. J. Chem. Phys. 1977, 67, 925–932. Cerca con Google

Gundel, D.; Frick, J.; Krzystek, J.; Sixl, H.; Von Schutz, J. U.; Wolf, H. C. A quasi-neutral triplet state of TCNQ in phenazine/TCNQ and fluorene/TCNQ CT crystals. Chem. Phys. 1989, 132, 363–372. Cerca con Google

Pasimeni, L.; Guella, G.; Corvaja, C.; Clemente, D. A.; Pasimeni, L.; Guella, G.; Corvaja, C.; Clemente, D. A.; Vicentini, M. Crystal Structure of Biphenyl-Tetracyanobenzene 1:1 CT Complex and EPR Investigation of Photoexcited Triplet Excitons. Mol. Cryst. Liq. Cryst. 1983, 91, 25–38. Cerca con Google

Agostini, G.; Corvaja, C.; Giacqmetti, G.; Pasimeni, L. ESR and DF ODMR Studies of Photoexcited Triplets in Single Crystals of T-Stilbene-1,2,4,5-Tetracyanobenzene 1:2 Complex. Chem. Phys. 1984, 85, 421–429. Cerca con Google

Mohwald, H.; Sackman, E. Mobile Charge-Transfer Triplet Excitons in Biphenyl-Tetracyanobenzene Single Crystals. Chem. Phys. Lett. 1973, 21, 43–48. Cerca con Google

Gijzeman, L. J.; Kaufman, F.; Porter, G. Oxygen Quenching of Aromatic Triplet States in Solution. J. Chem. Soc. Faraday Trans. 2 1973, 69, 708–720. Cerca con Google

Rogers, J. E.; Kelly, L. A. Nucleic Acid Oxidation Mediated by Naphthalene and Benzophenone Imide and Diimide Derivatives: Consequences for DNA Redox Chemistry. J. Am. Chem. Soc. 1999, 121, 3854–3861. Cerca con Google

Andric, G.; Boas, J. F.; Bond, A. M.; Fallon, G. D.; Ghiggino, K. P.; Hogan, C. F.; Hutchison, A. A.; Lee, M. A.-P.; Langford, S. J.; Pilbrow, J. R.; et al. Spectroscopy of Naphthalene Diimides and Their Anion Radicals. Aust. J. Chem. 2004, 57, 1011–1019. Cerca con Google

Howarth, O. W.; Fraenkel, G. K. Electron Spin Resonance Spectra of Monomeric and Dimeric Cation Radicals. J. Chem. Phys. 1970, 52, 6258–6267. Cerca con Google

Forsyth, D. A.; Olah, G. A. Oxidation of Polycyclic Arenes in SbF5/ SO2ClF . Formation of Arene Dications and Observation of Electron Exchange with Radical Cations Based on 13C Nuclear Magnetic Resonance Studies. J. Am. Chem. Soc. 1976, 98, 4086–4090. Cerca con Google

Niklas, J.; Poluektov, O. G. Charge Transfer Processes in OPV Materials as Revealed by EPR Spectroscopy. Adv. Energy Mater. 2017, 1602226. Cerca con Google

Shuttle, C. G.; Regan, B. O.; Ballantyne, A. M.; Nelson, J.; Bradley, D. D. C.; Durrant, J. R. Bimolecular Recombination Losses in Polythiophene:fullerene Solar Cells. Phys. Rev. B 2008, 78, 113201. Cerca con Google

Wong, W. S.; Salleo, A. Flexible Electronics: Materials and Applications; Springer: New York, 2009. Cerca con Google

Van Doorslaer, S. Hyperfine Sublevel Correlation Spectroscopy. EPR Newsl. 2008, 17, 9–12. Cerca con Google

Harmer, J.; Mitrikas, G.; Schweigher, A. Advanced Pulse EPR Methods for the Characterization of Metalloproteins. In High Resolution EPR; Springer Science: New York, 2009; pp 13–61. Cerca con Google

Stoll, S.; Calle, C.; Mitrikas, G.; Schweiger, A. Peak Suppression in ESEEM Spectra of Multinuclear Spin Systems. J. Magn. Reson. 2005, 177, 93–101. Cerca con Google

Bakulin, A. A.; Rao, A.; Pavelyev, V. . G.; van Loosdrecht, P. H. M.; Pshenichnikov, M. S.; Niedzialek, D.; Cornil, J.; Beljonne, D.; Friend, R. H. The Role of Driving Energy and Delocalized States for Charge Separation in Organic Semiconductors. Science 2012, 335, 1340–1344. Cerca con Google

Schlenker, C. W.; Li, C.; Yip, H.; Jen, A. K.; Rao, A.; Chow, P. C. Y.; Ge, S.; Ginger, D. S.; Friend, R. H. The Role of Spin in the Kinetic Control of Recombination in Organic Photovoltaics. Nature 2013, 500, 435–440. Cerca con Google

Bartocci, S.; Berrocal, J. A.; Guarracino, P.; Grillaud, M.; Franco, L.; Mba, M. Peptide-Driven Charge-Transfer Organogels Built from Synergetic Hydrogen Bonding and Pyrene – Naphthalenediimide Donor – Acceptor Interactions. Chem. - A Eur. J. 2018, 24, 2920–2928. Cerca con Google

Bartocci, S.; Morbioli, I.; Maggini, M.; Mba, M. Solvent-Tunable Morphology and Emission of Pyrene-Dipeptide Organogels. Pept. Sci. 2015, 2015, 871–878. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record