Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Cappellaro, Alberto (2018) Ultracold Quantum Gases: Beyond-Mean-Field Effects. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document - Accepted Version
13Mb

Abstract (italian or english)

In this thesis we present a detailed investigation of the role played by quantum and thermal fluctuations in ultracold Bose gases. We begin with a review of several important concepts and analytical tools within a functional integration formalism. We first focus on the so-called zero-range approximation for the interaction potential, by recovering the Bogoliubov results and the Landau two-fluid model from a field-theory perspective. In deriving the beyond-mean-field equation of state, we are going to show that a crucial point concerns the proper regularization of the divergent zero-point energy. Among the alternative approaches to investigate finite-temperatures Bose gases, we apply the kinetic theory to explain some recent results on the sound propagation in two-dimensional Bose gases.

We then move to consider the eventual corrections to the thermodynamics of Bose gases due to the finite-range character of the interaction potential. The coupling constants of the finite-range model are related to measurable scattering parameters through an effective-field-theory approach. The role of finite-range corrections is considered not only in three spatial dimensions but also in systems with lower dimensionalities. Our analytical predictions are in good agreement with available Monte Carlo simulations and consistent with other theoretical frames, as the Lieb-Lininger theory for one-dimensional systems.

In the third chapter, the relevance of fluctuations is investigated from an alternative point of view. Indeed, for a single-component Bose gas we have actually considered their effect as deviations of thermodynamic quantities from the mean-field and zero-range picture. In the case of collapsing Bose mixtures, we are going to show that zero-temperature fluctuations play a crucial stabilizing role against the collapse instability. Because of this peculiar mechanism, ultracold mixtures can display finite-density configurations also in free space. Inspired by recent experiments, we characterize this novel self-bound state by comparison with bright solitons, following a variational scheme. We also consider the case of binary mixtures where a coherent internal coupling is turned on.

In the last chapter, we move to deal with dipolar condensates. In particular, we are interested in beyond-mean-field effects leading to the formation of inhomogeneous ground states. In order to provide a reliable answer to the open issue of superfluid properties of these structures, we present our recent numerical investigation on the phase diagram of dipolar bosons.

Abstract (a different language)

In this thesis we present a detailed investigation of the role played by quantum and thermal fluctuations in ultracold Bose gases. We begin with a review of several important concepts and analytical tools within a functional integration formalism. We first focus on the so-called zero-range approximation for the interaction potential, by recovering the Bogoliubov results and the Landau two-fluid model from a field-theory perspective. In deriving the beyond-mean-field equation of state, we are going to show that a crucial point concerns the proper regularization of the divergent zero-point energy. Among the alternative approaches to investigate finite-temperatures Bose gases, we apply the kinetic theory to explain some recent results on the sound propagation in two-dimensional Bose gases.

We then move to consider the eventual corrections to the thermodynamics of Bose gases due to the finite-range character of the interaction potential. The coupling constants of the finite-range model are related to measurable scattering parameters through an effective-field-theory approach. The role of finite-range corrections is considered not only in three spatial dimensions but also in systems with lower dimensionalities. Our analytical predictions are in good agreement with available Monte Carlo simulations and consistent with other theoretical frames, as the Lieb-Lininger theory for one-dimensional systems.

In the third chapter, the relevance of fluctuations is investigated from an alternative point of view. Indeed, for a single-component Bose gas we have actually considered their effect as deviations of thermodynamic quantities from the mean-field and zero-range picture. In the case of collapsing Bose mixtures, we are going to show that zero-temperature fluctuations play a crucial stabilizing role against the collapse instability. Because of this peculiar mechanism, ultracold mixtures can display finite-density configurations also in free space. Inspired by recent experiments, we characterize this novel self-bound state by comparison with bright solitons, following a variational scheme. We also consider the case of binary mixtures where a coherent internal coupling is turned on.

In the last chapter, we move to deal with dipolar condensates. In particular, we are interested in beyond-mean-field effects leading to the formation of inhomogeneous ground states. In order to provide a reliable answer to the open issue of superfluid properties of these structures, we present our recent numerical investigation on the phase diagram of dipolar bosons.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Salasnich, Luca
Ph.D. course:Ciclo 31 > Corsi 31 > FISICA
Data di deposito della tesi:30 November 2018
Anno di Pubblicazione:16 November 2018
Key Words:quantum field theory, bose-einstein condensation, quantum fluctuations, bose mixtures, quantum droplets, dipolar atoms
Settori scientifico-disciplinari MIUR:Area 02 - Scienze fisiche > FIS/03 Fisica della materia
Area 02 - Scienze fisiche > FIS/02 Fisica teorica, modelli e metodi matematici
Struttura di riferimento:Dipartimenti > Dipartimento di Fisica e Astronomia "Galileo Galilei"
Codice ID:11558
Depositato il:07 Nov 2019 12:05
Simple Metadata
Full Metadata
EndNote Format

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record