Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Mirko, Magarotto (2018) Numerical and experimental investigation into the performance of plasma-based thruster for space propulsion. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document (Tesi di dottorato Mirko Magarotto) - Accepted Version
Thesis not accessible until 01 October 2021 for intellectual property related reasons.
Visibile to: nobody

26Mb

Abstract (italian or english)

A Helicon Plasma Thruster is an electric propulsion system in which the thrust is attained accelerating the plasma produced in a Helicon source with a magnetic nozzle. The main components of a Helicon Plasma Thruster are (i) a dielectric tube inside which the plasma is produced from a neutral gas propellant, (ii) a radio frequency antenna working in the MHz range which drives the discharge, and (iii) magnets which generate a magneto-static field (up to 0.2 T) for plasma confinement and acceleration. The principal features which make Helicon Plasma Thrusters appealing for space applications are the simple geometry and in turn the relatively low cost, the long life due to the absence of grids or electrodes in contact with the plasma, and no need for a neutraliser being the ejected beam globally neutral. The propulsive performances (e.g., thrust and specific impulse) of Helicon Plasma Thrusters are strictly related to both the plasma generation and the plasma acceleration mechanisms, therefore a numerical tool capable of resolving both the Helicon source and the plume has been implemented. Specifically, the 3D-VIRTUS code has been developed to solve self-consistently the plasma transport and the wave propagation inside the source, while an analytical model of the plume has been adopted to obtain preliminary estimations of the propulsive performances. In particular, 3D-VIRTUS can handle sources of arbitrary three-dimensional geometries, driven by an arbitrary-shaped conductive antenna, and magnetized by coils or permanent magnets. Moreover, 3D-VIRTUS has been verified against both numerical and experimental benchmarks. The new code has been exploited in a parametric analysis conducted on a simplified configuration of Helicon Plasma Thruster. The parameters of the system (e.g., initial neutral density, along with intensity and topology of the magneto-static field) and the geometry (e.g., discharge radius and length, along with antenna shape) have been varied in typical operational ranges in order to assess their influence on (i) the equilibrium plasma profiles (e.g., plasma density and electron temperature), (ii) the electrical response of the discharge (e.g., antenna impedance), and (iii) the preliminary estimations of the propulsive performances. Moreover, a counterbalanced pendulum thrust stand specifically conceived for testing Helicon Plasma Thrusters has been characterised and exploited. The stand can handle prototypes producing thrust from tens of microNewton up to tens of milliNewton, operated with an electrical power lower than 1 kW, and whose weight envelope (i.e., thruster integrated with other subsystems such as the PPU) is up to 10 kg. Tens of measurements per day can be accomplished with a 2-sigma uncertainty in the order of 15%. Preliminary tests have been conducted in order to characterise of the mechanical response of the stand (e.g., sensibility, linearity range and noise), and to develop a correction procedure for the zero-position drift. Subsequently the thrust stand has been exploited to test a medium power (200-300 W) Helicon Plasma Thruster operated with xenon and carbon dioxide propellants. Finally, a combined numerical-experimental campaign has been conducted on a low power (50 W) prototype operated with argon propellant in order to verify the reliability of the numerical model when handling a real-life thruster.

Abstract (a different language)

Un Helicon Plasma Thruster è un propulsore elettrico in cui la spinta è ottenuta accelerando, attraverso un ugello magnetico, il plasma prodotto in una sorgente Helicon. I componenti principali di un Helicon Plasma Thruster sono (i) un condotto in materiale dielettrico all'interno del quale il plasma viene prodotto a partire da un propellente gassoso, (ii) un'antenna eccitata in radio frequenza (alcuni MHz) che sostiene la scarica, e (iii) magneti che generano un campo magnetostatico, di intensità solitamente inferiore a 0.2 T, il quale viene impiegato sia per migliorare il confinamento del plasma che per favorirne l'accelerazione. La tecnologia Helicon risulta particolarmente adatta ad applicazioni spazio, infatti propulsori di questo tipo hanno una geometria molto semplice e quindi sono relativamente poco costosi, hanno una vita operativa molto lunga perché non ci sono griglie o elettrodi a contatto con il plasma, e non servono neutralizzatori perché il flusso di particelle eiettato è globalmente neutro. Dato che le prestazioni di un Helicon Plasma Thruster (spinta ed impulso specifico) sono intimamente legate a come il plasma è prodotto ed accelerato, si è ritenuto opportuno sviluppare un codice numerico in grado di simulare sia la sorgente Helicon che il fascio di plasma (chiamato plume). Nello specifico, il codice 3D-VIRTUS è stato sviluppato per risolvere l'accoppiamento fra la propagazione di onde elettromagnetiche ed il trasporto di plasma nella sorgente, mentre un modello analitico è stato adottato per simulare il plume e quindi ottenere una stima preliminare delle prestazioni. In particolare con 3D-VIRTUS si possono simulare sorgenti di forma generica, sostenute da antenne di geometria qualsiasi, e circondate da campi magnetostatici generati sia da elettromagneti che da magneti permanenti. Inoltre, 3D-VIRTUS è stato verificato sia contro altri modelli numerici che contro misure sperimentali. Il nuovo codice è stato quindi impiegato per l'analisi di una configurazione semplificata di Helicon Plasma Thruster. I parametri del sistema (cioè densità iniziale dei neutri, intensità e topologia del campo magnetostatico) e la geometria (cioè diametro e lunghezza della scarica, forma dell'antenna) sono stati analizzati in un intervallo tipico per un'applicazione spazio, in particolare si è valutato il loro impatto su (i) profili di plasma all'equilibrio all'interno della sorgente (cioè densità e temperatura), (ii) comportamento elettrico della scarica (cioè impedenza dell'antenna), e (iii) stime preliminari delle prestazioni del motore. In aggiunta, una bilancia di spinta di tipo counterbalanced pendulum, progettata per testare Helicon Plamsa Thruster, è stata caratterizzata ed utilizzata. La bilancia può lavorare con prototipi che producono una spinta fra le decine di uN e le decine di mN, alimentati da una potenza inferiore a 1 kW, ed il cui inviluppo di massa (cioè motore più eventuali sottosistemi come una PPU) sia inferiore a 10 kg. Si possono effettuare decine di misure al giorno con un'incertezza di 2-sigma nell'ordine del 15%. Alcuni test preliminari sono stati condotti per caratterizzare la risposta meccanica della bilancia (cioè sensibilità, intervallo di linearità, e rumore), e per elaborare una procedura per correggere lo zero-position drift. Successivamente la bilancia di spinta è stata utilizzata per valutare le prestazioni di un Helicon Plasma Thruster di media taglia (200-300 W) fatto lavorare con xeno ed anidride carbonica. In fine, una campagna numerico-sperimentale è stata condotta su di un prototipo di taglia piccola (50 W) alimentato ad argon per verificare l'attendibilità delle simulazioni effettuate su motori reali.

EPrint type:Ph.D. thesis
Tutor:Davide, Melazzi
Supervisor:Daniele, Pavarin
Ph.D. course:Ciclo 31 > Corsi 31 > SCIENZE TECNOLOGIE E MISURE SPAZIALI
Data di deposito della tesi:07 December 2018
Anno di Pubblicazione:December 2018
Key Words:Helicon Plasma Thruster, Self Consistent Helicon Simulation, Thrust Measurement, Experimental Validation
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/07 Propulsione aerospaziale
Struttura di riferimento:Centri > Centro Interdipartimentale di ricerca di Studi e attività  spaziali "G. Colombo" (CISAS)
Codice ID:11596
Depositato il:06 Nov 2019 13:56
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] R. G. Jahn, Physics of electric propulsion, Dover Publications, Inc., Mineola NY, USA, 2006. Cerca con Google

[2] R. W. Humble, G. N. Henry, W. J. Larson, et al., Space propulsion analysis and design, McGraw-Hill, New York NY, USA, 1995. Cerca con Google

[3] W. J. Larson, J. R. Wertz, Space Mission Analysis and Design, 3rd Edition, Microcosm, Inc., El Segundo CA, USA, 1999. Cerca con Google

[4] M. Martinez-Sanchez, J. E. Pollard, Spacecraft electric propulsion-an overview, Journal of propulsion and power 14 (5) (1998) 688–699. Cerca con Google

[5] R. G. Jahn, E. Y. Choueiri, Electric propulsion, http://alfven.princeton.edu/publications/ep-encyclopedia-2001, accessed: 2018-09-19. Vai! Cerca con Google

[6] List of spacecraft with electric propulsion, https://en.wikipedia.org/wiki/ Vai! Cerca con Google

List_of_spacecraft_with_electric_propulsion, accessed: 2018-09-19. Cerca con Google

[7] D. M. Goebel, I. Katz, Fundamentals of electric propulsion: Ion and Hall thrusters, JPL Space Science & Technology Series, 2008. Cerca con Google

[8] R. J. Cybulski, D. M. Shellhammer, R. R. Lovell, E. J. Domino, J. T. Kotnik, Cerca con Google

J. Cybulski, R. R. Loveli, Results from SERT I Ion Rocket Flight Test, Tech. Rep.D-2718, NASA (1965). Cerca con Google

[9] D. Pavarin, F. Ferri, M. Manente, D. Rondini, D. Curreli, Y. Guclu, M. Melazzi, S. Suman, G. Bianchini, Helicon Plasma Hydrazine: COmbined Micro project overview and development status, in: Proceedings of the 2 nd Space Propulsion Conference, no. SP2010-1842379, San Sebastian, ES, 2010. Cerca con Google

[10] F. F. Chen, Helicon discharges and sources: a review, Plasma Sources Science and Technology 24 (1) (2015) 014001. Cerca con Google

[11] E. Ahedo, M. Merino, Two-dimensional supersonic plasma acceleration in a magnetic nozzle, Physics of Plasmas 17 (7) (2010) 073501. Cerca con Google

[12] F. F. Chen, D. Arnush, Generalized theory of helicon waves. i. normal modes, Physics of Plasmas 4 (9) (1997) 3411–3421. Cerca con Google

[13] F. F. Chen, Helicon plasma sources, http://www.seas.ucla.edu/~ffchen/Publs/Chen155R.pdf, accessed: 2018-09-19. Vai! Cerca con Google

[14] F. Trezzolani, M. Manente, A. Selmo, D. Melazzi, M. Magarotto, D. Moretto, P. De Carlo, M. Pessana, D. Pavarin, Development and test of an high power RF plasma thruster in project SAPERE-STRONG, in: 35 th International Electric Propulsion Conference, no. IEPC-2017-462, Atlanta GA, USA, 2017. Cerca con Google

[15] F. Trezzolani, M. Manente, E. Toson, A. Selmo, M. Magarotto, D. Moretto, F. Bosi, P. De Carlo, D. Melazzi, D. Pavarin, Development and testing of a miniature helicon plasma thruster, in: 35 th International Electric Propulsion Conference, no. IEPC-2017-519, Atlanta GA, USA, 2017. Cerca con Google

[16] F. R. C. Diaz, The VASIMR rocket, Scientific American 283 (5) (2000) 90–97. Cerca con Google

[17] B. W. Longmier, J. P. Squire, L. D. Cassady, M. G. Ballenger, M. D. Carter, Cerca con Google

C. Olsen, A. V. Ilin, T. W. Glover, G. E. McCaskill, F. C. Dıaz, et al., Vasimr vx-200 performance measurements and helicon throttle tables using argon and krypton, in: 32 nd International Electric Propulsion Conference, no. IEPC-2011-156, Wiesbaden, DE, 2011. Cerca con Google

[18] R. W. Boswell, C. Charles, The helicon double layer thruster, in: 28 th International Electric Propulsion Conference, no. IEPC-2003-332, Toulouse, FR, 2003. Cerca con Google

[19] K. Takahashi, T. Lafleur, C. Charles, P. Alexander, R. Boswell, M. Perren, R. Laine, S. Pottinger, V. Lappas, T. Harle, et al., Direct thrust measurement of a permanent magnet helicon double layer thruster, Applied Physics Letters 98 (14) (2011) 141503. Cerca con Google

[20] S. Pottinger, V. Lappas, C. Charles, R. Boswell, Performance characterization of a helicon double layer thruster using direct thrust measurements, Journal of Physics D: Applied Physics 44 (23) (2011) 235201. Cerca con Google

[21] Technology for propulsion and innovation official web site, Cerca con Google

t4innovation.com/, accessed: 2018-09-19. http://www.t4innovation.com/, accessed: 2018-09-19. Vai! Cerca con Google

[22] M. Merino, J. Navarro, S. Casado, E. Ahedo, V. Gómez, M. Ruiz, E. Bosch, J. G. del Amo, Design and development of a 1 kw-class helicon antenna thruster, in: 34 th International Electric Propulsion Conference, no. IEPC-2015-297, Kobe, J, 2015. Cerca con Google

[23] S. Shinohara, H. Nishida, T. Tanikawa, T. Hada, I. Funaki, K. P. Shamrai, Development of electrodeless plasma thrusters with high-density helicon plasma sources, IEEE Transactions on Plasma Science 42 (5) (2014) 1245–1254. Cerca con Google

[24] D. Kuwahara, Y. Koyama, S. Otsuka, T. Ishii, H. Ishii, H. Fujitsuka, S. Waseda, S. Shinohara, Development of direct thrust measurement system for the completely electrodeless helicon plasma thruster, Plasma and Fusion Research 9 (2014) 3406025. Cerca con Google

[25] K. Takahashi, A. Komuro, A. Ando, Effect of source diameter on helicon plasma thruster performance and its high power operation, Plasma Sources Science and Technology 24 (5) (2015) 055004. Cerca con Google

[26] O. V. Batishchev, Minihelicon plasma thruster, IEEE Transactions on plasma science 37 (8) (2009) 1563–1571. Cerca con Google

[27] J. P. Sheehan, T. A. Collard, F. H. Ebersohn, B. W. Longmier, Initial operation of the cubesat ambipolar thruster, in: 34 th International Electric Propulsion Conference, no. IEPC-2015-243, Kobe, J, 2015. Cerca con Google

[28] T. Ziemba, J. Carscadden, J. Slough, J. Prager, R. Winglee, High power helicon thruster, in: 41 st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, no. AIAA 2005-4119, Tucson AZ, USA, 2005. Cerca con Google

[29] M. A. Lieberman, A. J. Lichtenberg, Principles of plasma discharges and materials processing, John Wiley & Sons, Inc., Hoboken NJ, USA, 2005. Cerca con Google

[30] D. Melazzi, D. Curreli, M. Manente, J. Carlsson, D. Pavarin, SPIREs: A Finite-Difference Frequency-Domain electromagnetic solver for inhomogeneous magnetized plasma cylinders, Computer Physics Communications 183 (6) (2012) 1182–1191. Cerca con Google

[31] J. A. Lehane, P. C. Thonemann, An experimental study of helicon wave propagation in a gaseous plasma, Proceedings of the Physical Society 85 (2) (1965) 301–316. Cerca con Google

[32] R. W. Boswell, Very efficient plasma generation by whistler waves near the lower hybrid frequency, Plasma Physics and Controlled Fusion 26 (10) (1984) 1147–1162. Cerca con Google

[33] F. F. Chen, R. W. Boswell, Helicons-the past decade, IEEE Transactions on Plasma Science 25 (6) (1997) 1245–1257. Cerca con Google

[34] I. Tepermeister, N. Blayo, F. Klemens, D. Ibbotson, R. Gottscho, J. Lee, H. Sawin, Comparison of advanced plasma sources for etching applications. I. Etching rate, uniformity, and profile control in a helicon and a multiple electron cyclotron resonance source, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 12 (4) (1994) 2310–2321. Cerca con Google

[35] R. H. Goulding, J. B. O. Caughman, J. Rapp, T. M. Biewer, T. S. Bigelow, I. H. Campbell, J. F. Caneses, D. Donovan, N. Kafle, E. H. Martin, H. B. Ray, G. C. Shaw, M. A. Showers, Progress in the development of a high power helicon plasma source for the materials plasma exposure experiment, Fusion Science and Technology 72 (4) (2017) 588–594. Cerca con Google

[36] A. J. Perry, D. Vender, R. W. Boswell, The application of the helicon source to plasma processing, Journal of Vacuum Science and Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 9 (2) (1991) 310–317. Cerca con Google

[37] F. F. Chen, Introduction to plasma physics and controlled fusion, 2nd Edition, Vol.1: Plasma Physics, Plenum Press, New York NY, USA, 1984. Cerca con Google

[38] M. D. Carter, F. W. Baity Jr., G. C. Barber, R. H. Goulding, Y. Mori, D. O. Sparks, K. F. White, E. F. Jaeger, F. R. Chang-Diaz, J. P. Squire, Comparing experiments with modeling for light ion helicon plasma sources, Physics of Plasmas 9 (12) (2002) 5097–5110. Cerca con Google

[39] A. Cardinali, D. Melazzi, M. Manente, D. Pavarin, Ray-tracing wkb analysis of whistler waves in non-uniform magnetic fields applied to space thrusters, Plasma Sources Science and Technology 23 (1) (2014) 015013. Cerca con Google

[40] F. Cichocki, A. Domı́nguez-Vázquez, M. Merino, E. Ahedo, Hybrid 3d model for the interaction of plasma thruster plumes with nearby objects, Plasma Sources Science and Technology 26 (12) (2017) 125008. Cerca con Google

[41] M. Merino, F. Cichocki, E. Ahedo, A collisionless plasma thruster plume expansion model, Plasma Sources Science and Technology 24 (3) (2015) 035006. Cerca con Google

[42] T. Lafleur, Helicon plasma thruster discharge model, Physics of Plasmas 21 (4) (2014) 043507. Cerca con Google

[43] E. Ahedo, J. Navarro-Cavallé, Helicon thruster plasma modeling: Two-dimensional fluid-dynamics and propulsive performances, Physics of Plasmas 20 (4) (2013) 043512. Cerca con Google

[44] A. Fruchtman, K. Takahashi, C. Charles, R. Boswell, A magnetic nozzle calculation of the force on a plasma, Physics of Plasmas 19 (3) (2012) 033507. Cerca con Google

[45] A. R. Choudhuri, The physics of fluids and plasmas: an introduction for astrophysicists, Cambridge University Press, Cambridge, UK, 1998. Cerca con Google

[46] J. Van Dijk, G. Kroesen, A. Bogaerts, Plasma modelling and numerical simulation, Journal of Physics D: Applied Physics 42 (19) (2009) 190301. Cerca con Google

[47] G. Hagelaar, L. Pitchford, Solving the boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models, Plasma Sources Science and Technology 14 (4) (2005) 722–733. Cerca con Google

[48] M. Martinez-Sanchez, J. Navarro-Cavallé, E. Ahedo, Electron cooling and finite potential drop in a magnetized plasma expansion, Physics of Plasmas 22 (5) (2015) 053501. Cerca con Google

[49] C. K. Birdsall, A. B. Langdon, Plasma physics via computer simulation, Tylor & Francis Group, New York NY, USA, 2005. Cerca con Google

[50] G. Chen, A self-consistent model of helicon discharge, PhD thesis, The University of Texas at Austin (2008). Cerca con Google

[51] Y. Mouzouris, J. E. Scharer, Modeling of profile effects for inductive helicon plasma sources, IEEE Transactions on Plasma Science 24 (1) (1996) 152–160. Cerca con Google

[52] D. Melazzi, D. Curreli, M. Manente, J. Carlsson, D. Pavarin, SPIREs: A finite-difference frequency-domain electromagnetic solver for inhomogeneous magnetized plasma cylinders, Computer Physics Communication 183 (6) (2012) 1182–1191.99 Cerca con Google

[53] D. Melazzi, V. Lancellotti, ADAMANT: A surface and volume integral-equation solver for the analysis and design of helicon plasma sources, Computer Physics Communications 185 (7) (2014) 1914–1925. Cerca con Google

[54] D. Arnush, The role of Trivelpiece - Gould waves in antenna coupling to helicon waves, Physics of Plasmas 7 (7) (2000) 3042–3050. Cerca con Google

[55] A. Cardinali, F. Santini, Lower hybrid penetration across a steep density gradient, Plasma Physics and Controlled Fusion 53 (12) (2011) 125001. Cerca con Google

[56] S. Cho, M. Lieberman, Self-consistent discharge characteristics of collisional helicon plasmas, Physics of Plasmas 10 (3) (2003) 882–890. Cerca con Google

[57] R. L. Kinder, M. J. Kushner, Wave propagation and power deposition in magnetically enhanced inductively coupled and helicon plasma sources, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 19 (1) (2001) 76–86. Cerca con Google

[58] R. L. Kinder, M. J. Kushner, Noncollisional heating and electron energy distributions in magnetically enhanced inductively coupled and helicon plasma sources, Journal of Applied Physics 90 (8) (2001) 3699–3712. Cerca con Google

[59] D. Bose, T. Govindan, M. Meyyappan, Modeling of a helicon plasma source, IEEE transactions on plasma science 31 (4) (2003) 464–470. Cerca con Google

[60] M. Manente, J. Carlsson, I. Musso, C. Bramanti, D. Pavarin, F. Angrilli, Cerca con Google

Numerical simulation of the helicon double layer thruster concept, in: 43 rd Cerca con Google

AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, no. AIAA 2007- Cerca con Google

5312, Cincinnati, OH, 2007. Cerca con Google

[61] J. Carlsson, M. Manente, D. Pavarin, Implicitly charge-conserving solver for Boltzmann electrons, Physics of Plasmas 16 (6) (2009) 062310. Cerca con Google

[62] M. Merino, E. Ahedo, Two-dimensional quasi-double-layers in two-electron-temperature, current-free plasmas, Physics of Plasmas 20 (2) (2013) 023502. Cerca con Google

[63] N. Singh, Current-free double layers: A review, Physics of plasmas 18 (12) (2011) 122105. Cerca con Google

[64] K. L. Brown, G. W. Tautfest, Faraday-Cup monitors for high-energy electron beams, Review of Scientific Instruments 27 (9) (1956) 696–702. Cerca con Google

[65] C. Enloe, High-resolution retarding potential analyzer, Review of scientific instruments 65 (2) (1994) 507–508. Cerca con Google

[66] F. Trezzolani, Optimization and automatic control of radio-frequency plasma thrusters for space applications, PhD thesis, Università degli studi di Padova (2015). Cerca con Google

[67] F. F. Chen, Langmuir probe diagnostics, http://www.seas.ucla.edu/~ffchen/Publs/Chen210R.pdf, accessed: 2018-09-19.100 Vai! Cerca con Google

[68] K. D. Diamant, J. E. Pollard, M. W. Crofton, M. J. Patterson, G. C. Soulas, Thrust stand characterization of the NASA evolutionary xenon thruster, Journal of Propulsion and Power 27 (4) (2011) 777–785. Cerca con Google

[69] A. Wang, H. Wu, H. Tang, Y. Liu, X. Liang, Development and testing of a new thrust stand for micro-thrust measurement in vacuum conditions, Vacuum 91 (2013) 35–40. Cerca con Google

[70] A. V. Loyan, T. A. Maksymenko, Performance investigation of SPT-20M low power hall effect thruster, in: 30 th International Electric Propulsion Conference, no. IEPC-2007-100, Firenze, IT, 2007. Cerca con Google

[71] K. A. Polzin, T. E. Markusic, B. J. Stanojev, A. DeHoyos, B. Spaun, Thrust stand for electric propulsion performance evaluation, Review of Scientific Instruments 77 (10) (2006) 105108. Cerca con Google

[72] N. Nagao, S. Yokota, K. Komurasaki, Y. Arakawa, Development of a two- Cerca con Google

dimensional dual pendulum thrust stand for hall thrusters, Review of Scientific Instruments 78 (11) (2007) 115108. Cerca con Google

[73] K. G. Xu, M. L. Walker, High-power, null-type, inverted pendulum thrust stand, Review of Scientific Instruments 80 (5) (2009) 055103. Cerca con Google

[74] A. Knoll, D. Lamprou, V. Lappas, M. Pollard, P. Bianco, Thrust balance characterization of a 200 w quad confinement thruster for high thrust regimes, IEEE Transactions on Plasma Science 43 (1) (2015) 185–189. Cerca con Google

[75] A. D. Kodys, R. Murray, L. Cassady, E. Y. Choueiri, An inverted-pendulum thrust stand for high-power electric thrusters, in: 42 nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exibit, no. AIAA 2016-4821, Sacramento CA, USA, 2006. Cerca con Google

[76] Z. He, J. Wu, D. Zhang, G. Lu, Z. Liu, R. Zhang, Precision electromagnetic calibration technique for micro-newton thrust stands, Review of Scientific Instruments 84 (5) (2013) 055107. Cerca con Google

[77] T. W. Haag, Thrust stand for pulsed plasma thrusters, Review of Scientific Instruments 68 (5) (1997) 2060–2067. Cerca con Google

[78] H. Koizumi, K. Komurasaki, Y. Arakawa, Development of thrust stand for low impulse measurement from microthrusters, Review of scientific instruments 75 (10) (2004) 3185–3190. Cerca con Google

[79] J. K. Ziemer, Performance measurements using a sub-micronewton resolution thrust stand, in: 27 th International Electric Propulsion Conference, no. IEPC-2001-238, Pasadena CA, USA, 2001. Cerca con Google

[80] S. Rocca, Onera micronewton thrust balance: Analytical modelling and parametric analysis, Aerospace Science and Technology 15 (2) (2011) 148–154. Cerca con Google

[81] E. Canuto, A. Rolino, Nanobalance: An automated interferometric balance for micro-thrust measurement, ISA transactions 43 (2) (2004) 169–187. Cerca con Google

[82] A. J. Jamison, A. D. Ketsdever, E. Muntz, Gas dynamic calibration of a nano-newton thrust stand, Review of Scientific Instruments 73 (10) (2002) 3629–3637. Cerca con Google

[83] A. Acosta-Zamora, J. R. Flores, A. Choudhuri, Torsional thrust balance measurement system development for testing reaction control thrusters, Measurement 46 (9) (2013) 3414–3428. Cerca con Google

[84] S. Banetta, R. Falorni, L. Biagioni, G. Saccoccia, Development of a two-axes thrust stand for electric thrusters, in: 4 th International Spacecraft Propulsion Conference, Cagliari, IT, 2004. Cerca con Google

[85] A. Grubisic, S. Gabriel, Development of an indirect measurement Micro-to-Milli-Newton thrust balance, in: 2 nd International Symposium on Propulsion for Space Transportation, Heraklion, GR, 2008. Cerca con Google

[86] S. Ciaralli, M. Coletti, S. Gabriel, An impulsive thrust balance for applications of micro-pulsed plasma thrusters, Measurement Science and Technology 24 (11) (2013) 115003. Cerca con Google

[87] J. G. del Amo, G. Saccoccia, P. E. Frigot, ESA propulsion lab at ESTEC, in: 31 st International Electric Propulsion Conference, no. IEPC-2009-236, Ann Arbor MI, USA, 2009. Cerca con Google

[88] M. Magarotto, M. Manente, P. de Carlo, F. Trezzolani, D. Pavarin, D. Melazzi, Numerical model of the plasma source of an helicon plasma thruster, in: 6 th Space Propulsion Conference, no. SP2018-424, Seville, ES, 2018. Cerca con Google

[89] F. Trezzolani, M. Magarotto, M. Manente, D. Pavarin, Development of a counter-balanced pendulum thrust stand for electric propulsion, Measurement 122 (2018) 494–501. Cerca con Google

[90] H. G. Weller, G. Tabor, H. Jasak, C. Fureby, A tensorial approach to computational continuum mechanics using object-oriented techniques, Computers in physics 12 (6) (1998) 620–631. Cerca con Google

[91] D. Pavarin, F. Ferri, M. Manente, A. Lucca Fabris, F. Trezzolani, M. Faenza, L. Tasinato, O. Tudisco, A. Loyan, Y. Protsan, et al., Thruster development set-up for the Helicon Plasma Hydrazine COmbined Micro research project, in: 32 nd International Electric Propulsion Conference, no. IEPC-2011-241, Wiesbaden, DE, 2011. Cerca con Google

[92] F. Trezzolani, F. J. Bosi, D. Melazzi, P. de Carlo, A. Selmo, M. Manente, S. Ferraris, M. Pessana, D. Pavarin, Experimental characterization of a kW-level radio-frequency plasma thruster for project SAPERE-STRONG, in: 5 th Space Propulsion Conference, no. SP2016-3125244, Roma, IT, 2016. Cerca con Google

[93] T. Lafleur, C. Charles, R. W. Boswell, Characterization of a helicon plasma source in low diverging magnetic fields, Journal of Physics D: Applied Physics 44 (5) (2011) 055202. Cerca con Google

[94] F. F. Chen, D. D. Blackwell, Upper limit to landau damping in helicon discharges, Physical review letters 82 (13) (1999) 2677–2680. Cerca con Google

[95] M. M. Balkey, R. Boivin, J. L. Kline, E. E. Scime, Ion heating and density production in helicon sources near the lower hybrid frequency, Plasma Sources Science and Technology 10 (2) (2001) 284–294. Cerca con Google

[96] J. Kline, E. Scime, Parametric decay instabilities in the helix helicon plasma source, Physics of Plasmas 10 (1) (2003) 135–144. Cerca con Google

[97] I. D. Sudit, F. F. Chen, Discharge equilibrium of a helicon plasma, Plasma Sources Science and Technology 5 (1) (1996) 43–53. Cerca con Google

[98] A. Fiala, L. C. Pitchford, J. P. Boeuf, Two-dimensional, hybrid model of low-pressure glow discharges, Physical Review E 49 (6) (1994) 5607–5622. Cerca con Google

[99] G. Chen, L. L. Raja, Fluid modeling of electron heating in low-pressure, high-frequency capacitively coupled plasma discharges, Journal of Applied Physics 96 (11) (2004) 6073–6081. Cerca con Google

[100] I. G. Mikellides, I. Katz, D. M. Goebel, J. E. Polk, Hollow cathode theory and experiment. ii. a two-dimensional theoretical model of the emitter region, Journal of Applied Physics 98 (11) (2005) 113303. Cerca con Google

[101] J. Bukowski, D. Graves, P. Vitello, Two-dimensional fluid model of an inductively coupled plasma with comparison to experimental spatial profiles, Journal of Applied Physics 80 (5) (1996) 2614–2623. Cerca con Google

[102] J. T. Gudmundsson, Notes on the electron excitation rate coefficients for argon and oxigen discharge, Tech. Rep. RH-21-2002, Science Institute Univesity of Iceland (2002). Cerca con Google

[103] M. J. Kushner, Modeling of magnetically enhanced capacitively coupled plasma sources: Ar discharges, Journal of applied physics 94 (3) (2003) 1436–1447. Cerca con Google

[104] R. S. Brokaw, Predicting transport properties of dilute gases, Industrial & Engineering Chemistry Process Design and Development 8 (2) (1969) 240–253. Cerca con Google

[105] P. D. Neufeld, A. Janzen, R. Aziz, Empirical equations to calculate 16 of the transport collision integrals ω (l, s)* for the Lennard-Jones (12–6) potential, The Journal of Chemical Physics 57 (3) (1972) 1100–1102. Cerca con Google

[106] G. Hagelaar, F. De Hoog, G. Kroesen, Boundary conditions in fluid models of gas discharges, Physical Review E 62 (1) (2000) 1452–1454. Cerca con Google

[107] G. Hagelaar, G. Kroesen, Speeding up fluid models for gas discharges by implicit treatment of the electron energy source term, Journal of Computational Physics 159 (1) (2000) 1–12.103 Cerca con Google

[108] M. Abdollahzadeh, J. C. Pascoa, P. J. Oliveira, Implementation of the classical plasma–fluid model for simulation of dielectric barrier discharge (DBD) actuators in OpenFOAM, Computers & Fluids 128 (2016) 77–90. Cerca con Google

[109] F. Moukalled, L. Mangani, M. Darwish, et al., The finite volume method in computational fluid dynamics, Springer, Cham, DE, 2016. Cerca con Google

[110] OpenFOAM official website, https://www.openfoam.com/, accessed: 2018-09-19. Vai! Cerca con Google

[111] Official COMSOL website, https://www.comsol.it/, accessed: 2018-09-19. Vai! Cerca con Google

[112] Y. Coudière, C. Pierre, Stability and convergence of a finite volume method for two systems of reaction-diffusion equations in electro-cardiology, Nonlinear analysis: real world applications 7 (4) (2006) 916–935. Cerca con Google

[113] T. H. Stix, The theory of plasma waves, McGraw-Hill, New York NY, USA, 1962. Cerca con Google

[114] C. Charles, R. Boswell, M. Lieberman, Energy balance in a low pressure capacitive discharge driven by a double-saddle antenna, physics of plasmas 10 (3) (2003) 891–899. Cerca con Google

[115] D. J. Griffiths, Introduction to electrodynamics, 4th Edition, Pearson Education, Ltd., Harlow, UK, 2005. Cerca con Google

[116] D. G. Miljak, F. F. Chen, Helicon wave excitation with rotating antenna fields, Plasma Sources Science and Technology 7 (1) (1998) 61–74. Cerca con Google

[117] D. Melazzi, V. Lancellotti, A comparative study of radiofrequency antennas for helicon plasma sources, Plasma Sources Science and Technology 24 (2015) 025024. Cerca con Google

[118] S. M. Tysk, C. M. Denning, J. E. Scharer, K. Akhtar, Optical, wave measurements, and modeling of helicon plasmas for a wide range of magnetic fields, Physics of Plasmas 11 (3) (2004) 878–887. Cerca con Google

[119] D. G. Miljak, F. F. Chen, Density limit in helicon discharges, Plasma Sources Science and Technology 7 (4) (1998) 537–549. Cerca con Google

[120] M. Krämer, B. Lorenz, B. Clarenbach, Helicon sources with m= 1 and m= 2 helical antenna coupling, Plasma Sources Science and Technology 11 (3A) (2002) A120–A130. Cerca con Google

[121] H. J. Leiter, R. Killinger, H. Bassner, J. Müller, R. Kukies, Development of the radio frequeny ion thruster RIT XT – A status report, in: 27 th International Electric Propulsion Conferce, no. IEPC-2001-104, Pasadena CA, USA, 2001. Cerca con Google

[122] F. Cannat, T. Lafleur, J. Jarrige, P. Chabert, P. Q. Elias, D. Packan, Optimization of a coaxial electron cyclotron resonance plasma thruster with an analytical model, Physics of Plasmas 22 (5) (2015) 053503. Cerca con Google

[123] ISO/IEC GUIDE 98-3:2008(E) (GUM,1995), https://www.iso.org/standard/50461.html, accessed: 2018-09-19.104 Vai! Cerca con Google

[124] J. Jarrige, P. Thobois, C. Blanchard, P.-Q. Elias, D. Packan, L. Fallerini, G. Noci, Thrust measurements of the gaia mission flight-model cold gas thrusters, Journal of Propulsion and Power 30 (4) (2014) 934–943. Cerca con Google

[125] S-helicon antenna, international PCT/IB2016/050199 15.01.2016, Italian patent number VR2015A000007 del 16.01.2015. Cerca con Google

[126] Peek material properties, https://www.curbellplastics.com/Research-Solutions/Materials/PEEK, accessed: 2018-09-19. Vai! Cerca con Google

[127] K. A. Polzin, J. F. Seixal, S. L. Mauro, A. O. Burt, A. Martinez, A. K. Matin, The iodine satellite (isat) propellant feed system - design and development, in: 35 th International Electric Propulsion Conference, no. IEPC-2017-11, Atlanta GA, USA, 2017. Cerca con Google

[128] D. Pavarin, F. Ferri, M. Manente, D. Curreli, D. Melazzi, D. Rondini, A. Cardinali, Development of plasma codes for the design of mini-helicon thrusters, in: 32 nd International Electric Propulsion Conference, no. IEPC-2011-240, Weisbaden, DE, 2011. Cerca con Google

[129] D. Melazzi, P. De Carlo, F. Trezzolani, V. Lancellotti, M. Manente, D. Pavarin, F. Rigobello, A.-D. Capobianco, First experimental characterization of a gaseous plasma antenna in the uhf band, in: Antennas and Propagation (EUCAP), 2017 11th European Conference on, IEEE, 2017, pp. 3213–3217. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record