Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Lechthaler, Silvia (2019) The hydraulic architecture of the plants: study of the allometric relations in stem and leaves. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document - Accepted Version
Thesis not accessible until 01 December 2021 for intellectual property related reasons.
Visibile to: nobody

5Mb

Abstract (italian or english)

The xylem in plants is formed by interconnected dead cells that allow the flow of water from the roots to the leaves. The ascent of sap is mainly passive and it is driven by water evaporation from the mesophyll cell walls in the leaf. The water evaporation generates capillary suction on the menisci at the micro-porous of cell walls, causing negative hydrostatic pressure that propagates down the water column in the xylem. Due to plants grow in height the length of the hydraulic path increases progressively posing the question whether the hydraulic resistance increases accordingly. There is evidence that plants have evolved xylem structures that compensate the possible increase of the hydraulic resistance imposed by path length, namely the tip-to-base conduits widening. Conduits widening has been reported in several species, both angiosperms and conifers, showing that the degree of widening from tip to the base of the stem is very similar among species, or in other words, that plants converge towards a universal xylem structure. Nevertheless, several points on the hydraulic architecture of plants remain to be elucidated.
A largely debated point is whether xylem anatomical traits (e.g. the absolute cell size) change with climatic conditions. Moreover, whether and how the conduits widening in the stem may affect the xylem anatomy of the leaf is still not fully understood. This PhD project aims to widen our understanding of the allometric relations of leaves and stem xylem, considering how the environmental conditions and the height of the plant affect the hydraulic architecture of the water transport system.
A methodological study (Study 1) has been performed on the xylem tissue of stems of Acacia trees grown in different water availability conditions. The main result was that, once the anatomical data were standardized for the tree height, the hydraulic architecture of the xylem did not change in relation to the environmental conditions.
Two studies have been performed on the hydraulic architecture of leaves. The main focus was on the anatomical traits of the xylem conduits in relation to the leaf dimensions and/or the position in the tree crown (height from the base of the stem). The main results were that the xylem traits scaled with the leaf area independently by the position in the crown (Study 2). A fine analysis of the leaf midrib (i.e. major leaf vein) has shown a rigid hydraulic architecture and tissues coordination (Study 3) that was well predicted by the distance from the leaf tip. Both studies showed that the dimensions of the terminal veins were conserved among leaves and within leaf suggesting that the hydraulic architecture of the xylem in the leaf evolved in a way to guarantee an equal distribution of the hydraulic resistances (and thus of the water) among leaves and within the leaf lamina.
Finally, we implemented the anatomical data of both stem and leaf into a hydraulic model to assess the distribution of resistances along the hydraulic path to evaluate how the anatomy of the transport system affects the physiology of the entire tree (Study 4).
This thesis has highlighted that the path length (i.e. the height of the plant and the dimensions of the leaf) is the main factor affecting the hydraulic architecture of the tree. The conduit dimension in both stem and leaf are determined by the distance from the terminal parts, stem apex or leaf tip respectively. Climatic conditions resulted to have marginal (non-significant) effect on the stem anatomical traits. In the leaf, the dimensions of the xylem conduits are statistically invariant with changes in plant size. This rigid hydraulic architecture of the tree, from the stem to the leaf, allows minimizing the effect of the path length on the hydraulic resistance, confining nearly the whole gradient of water potential within the leaves.

Abstract (a different language)

Lo xilema nelle piante è formato da cellule morte interconnesse che consentono il flusso di acqua dalle radici alle foglie. L'ascesa della linfa è principalmente passiva ed è guidata dall'evaporazione dell'acqua dalle pareti cellulari del mesofillo nella foglia. L'evaporazione dell'acqua genera un'aspirazione capillare sui menischi a livello dei micro-pori delle pareti cellulari, causando una pressione idrostatica negativa che si propaga lungo la colonna d'acqua nello xilema. A causa dell’aumento in altezza delle piante, la lunghezza del percorso idrico aumenta progressivamente ponendo la domanda se la resistenza idraulica aumenta di conseguenza. Vi è evidenza che le piante hanno evoluto strutture xilematiche che compensano il possibile aumento della resistenza idraulica imposta dall'aumento della lunghezza del percorso, come ad esempio l'allargamento dei condotti dalla punta alla base. L’allargamento dei condotti è stato osservato in diverse specie, sia angiosperme sia conifere, dimostrando che il grado di allargamento dalla punta alla base dello stelo è molto simile tra le specie, o in altre parole, che le piante convergono verso una struttura xilema universale. Tuttavia, restano da chiarire diversi punti sull'architettura idraulica delle piante.
Un punto largamente dibattuto è se tratti anatomici dello xilema (ad esempio la dimensione assoluta delle cellule) cambiano con le condizioni climatiche. Inoltre, se e come i condotti che si allargano nello stelo possano influenzare l'anatomia dello xilema della foglia non è ancora completamente compreso. Il progetto di questo dottorato mira ad ampliare la nostra comprensione delle relazioni allometriche nello xilema delle foglie e del fusto, considerando come le condizioni ambientali e l'altezza della pianta possano influenzare l'architettura idraulica del sistema di trasporto dell'acqua.
Uno studio metodologico (Studio 1) è stato eseguito sul tessuto xilematico di fusti di alberi di acacia cresciuti in diverse condizioni di disponibilità idrica. Il risultato principale è stato che, una volta che i dati anatomici sono stati standardizzati per l'altezza dell'albero, l'architettura idraulica dello xilema non è cambiata in relazione alle condizioni ambientali.
Sono stati eseguiti due studi sull'architettura idraulica delle foglie. L'obiettivo principale degli studi riguardava i tratti anatomici dei condotti dello xilema in relazione alle dimensioni della foglia e / o alla posizione nella chioma dell'albero (altezza dalla base del fusto). Dai risultati si evince che i tratti dello xilema si ridimensionano in base all'area fogliare indipendentemente dalla posizione nella chioma (Studio 2). Un'analisi fine della nervatura principale della foglia ha mostrato una rigida architettura idraulica e la coordinazione dei tessuti (Studio 3), ben predetta dalla distanza dalla punta della foglia. Entrambi gli studi hanno dimostrato che le dimensioni delle vene terminali sono conservate tra le foglie e all'interno della stessa foglia, suggerendo che l'architettura idraulica dello xilema si è evoluta in modo da garantire distribuzione omogenea delle resistenze idrauliche (e quindi dell'acqua) tra le foglie e lungo la lamina fogliare.
Infine, abbiamo implementato i dati anatomici di fusto e foglia in un modello idraulico per stimare la distribuzione delle resistenze lungo il percorso idraulico per valutare in che modo l'anatomia del sistema di trasporto influisca sulla fisiologia dell'intero albero (Studio 4).
Questa tesi ha evidenziato che la lunghezza del percorso (vale a dire l'altezza della pianta e le dimensioni della foglia) è il fattore principale che influenza l'architettura idraulica dell'albero. La dimensione del condotto sia nel fusto che nella foglia è determinata dalla distanza dalle parti terminali, rispettivamente l'apice del fusto o la punta della foglia. Le condizioni climatiche risultano avere un effetto marginale (non significativo) sui tratti anatomici del fusto e nella foglia, le dimensioni dei condotti dello xilema sono statisticamente indipendenti rispetto alle variazioni nelle dimensioni della pianta. Questa rigida architettura idraulica dell'albero, dal fusto alla foglia, consente di minimizzare l'effetto della lunghezza del percorso sulla resistenza idraulica, confinando quasi l'intero gradiente del potenziale idrico all'interno delle foglie.

EPrint type:Ph.D. thesis
Tutor:Anfodillo, Tommaso
Ph.D. course:Ciclo 31 > Corsi 31 > LAND, ENVIRONMENT, RESOURCES, HEALTH (LERH)
Data di deposito della tesi:25 February 2019
Anno di Pubblicazione:25 February 2019
Key Words:Hydraulic architecture, xylem, vessel diameter, vessel widening, leaf anatomy, hydraulic resistance.
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/05 Assestamento forestale e selvicoltura
Struttura di riferimento:Dipartimenti > Dipartimento Territorio e Sistemi Agro-Forestali
Codice ID:11820
Depositato il:06 Nov 2019 11:41
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Abramoff MD, Magalhães PJ, Ram SJ. 2004. Image processing with ImageJ. Laurin Pub. Co. Cerca con Google

Anderson G, Bancroft J. 2002. Tissue processing and microtomy including frozen. Theory and practice of histological techniques. London,. Cerca con Google

Anfodillo T, Carraro V, Carrer M, Fior C, Rossi S. 2006. Convergent tapering of xylem conduits in different woody species. New Phytologist 169: 279–290. Cerca con Google

Anfodillo T, Carrer M, Simini F, Popa I, Banavar JR, Maritan A. 2013a. An allometry-based approach for understanding forest structure, predicting tree-size distribution and assessing the degree of disturbance. Proceedings. Biological sciences / The Royal Society 280: 20122375. Cerca con Google

Anfodillo T, Deslauriers A, Menardi R, Tedoldi L, Petit G, Rossi S. 2012. Widening of xylem conduits in a conifer tree depends on the longer time of cell expansion downwards along the stem. Journal of Experimental Botany 63: 837–845. Cerca con Google

Anfodillo T, Petit G, Crivellaro A. 2013b. Axial conduit widening in woody species: A still neglected anatomical pattern. IAWA Journal 34: 352–364. Cerca con Google

Angeles G, Bond B, Boyer JS, Brodribb T, Brooks JR, Burns MJ, Cavender-Bares J, Clearwater M, Cochard H, Comstock J, et al. 2004. The Cohesion-Tension Theory. New Phytologist 163: 451–452. Cerca con Google

von Arx G, Carrer M. 2014. ROXAS – A new tool to build centuries-long tracheid-lumen chronologies in conifers. Cerca con Google

von Arx G, Dietz H. 2005. Automated Image Analysis of Annual Rings in the Roots of Perennial Forbs. International Journal of Plant Sciences 166: 723–732. Cerca con Google

Baddeley A, Rolf T. 2014. ‘Package “spatstat”.’The Comprehensive R Archive Network (). Cerca con Google

Becker P, Gribben RJ, Schulte PJ. 2003. Incorporation of transfer resistance between tracheary elements into hydraulic resistance models for tapered conduits. Tree Physiology 23: 1009–1019. Cerca con Google

Bettiati D, Petit G, Anfodillo T, Orians CM, Smith DD, Reich PB, von Allmen EI. 2012. Testing the equi-resistance principle of the xylem transport system in a small ash tree: empirical support from anatomical analyses. Tree Physiology 32: 171–177. Cerca con Google

Bourdier T, Cordonnier T, Kunstler G, Piedallu C, Lagarrigues G, Courbaud B. 2016. Tree Size Inequality Reduces Forest Productivity: An Analysis Combining Inventory Data for Ten European Species and a Light Competition Model (D Gomory, Ed.). PLOS ONE 11: e0151852. Cerca con Google

Brocious CA, Hacke UG. 2016. Stomatal conductance scales with petiole xylem traits in Populus genotypes. Functional Plant Biology 43: 553. Cerca con Google

Brodribb TJ, Bienaimé D, Marmottant P. 2016a. Revealing catastrophic failure of leaf networks under stress. Proceedings of the National Academy of Sciences 113: 4865–4869. Cerca con Google

Brodribb TJ, Feild TS. 2000. Stem hydraulic supply is linked to leaf photosynthetic capacity: evidence from New Caledonian and Tasmanian rainforests. Plant, Cell and Environment 23: 1381–1388. Cerca con Google

Brodribb TJ, Skelton RP, McAdam SAM, Bienaimé D, Lucani CJ, Marmottant P. 2016b. Visual quantification of embolism reveals leaf vulnerability to hydraulic failure. New Phytologist 209: 1403–1409. Cerca con Google

Brown HR. 2013. The Theory of the Rise of Sap in Trees: Some Historical and Conceptual Remarks. Physics in Perspective 15: 320–358. Cerca con Google

Brown RW, van Haveren BP. 1972. The properties and behavior of water in the soil-plant-atmosphere continuum. In: Psychrometry in water relations research. Logan: Utah State University. Cerca con Google

Carins Murphy MR, Jordan GJ, Brodribb TJ. 2016. Cell expansion not cell differentiation predominantly co-ordinates veins and stomata within and among herbs and woody angiosperms grown under sun and shade. Annals of Botany 118: 1127–1138. Cerca con Google

Carlquist S. 1984. Vessel grouping in dicotyledon wood: significance and relationship to imperforate tracheary elements. ALISO 10: 505–525. Cerca con Google

Carrer M, von Arx G, Castagneri D, Petit G. 2015. Distilling allometric and environmental information from time series of conduit size: the standardization issue and its relationship to tree hydraulic architecture. Tree Physiology 35: 27–33. Cerca con Google

Carvalho MR, Turgeon R, Owens T, Niklas KJ. 2017. The scaling of the hydraulic architecture in poplar leaves. New Phytologist 214: 145–157. Cerca con Google

Cho YY, Oh S, Oh MM, Son JE. 2007. Estimation of individual leaf area, fresh weight, and dry weight of hydroponically grown cucumbers (Cucumis sativus L.) using leaf length, width, and SPAD value. Scientia Horticulturae 111: 330–334. Cerca con Google

Clark PJ, Evans FC. 1954. Distance to Nearest Neighbor as a Measure of Spatial Relationships in Populations. Ecology 35: 445–453. Cerca con Google

Cochard H. 2006. Cavitation in trees. Comptes Rendus Physique 7: 1018–1026. Cerca con Google

Cochard H, Nardini A, Coll L. 2004. Hydraulic architecture of leaf blades: where is the main resistance? Plant, Cell and Environment 27: 1257–1267. Cerca con Google

Coomes DA, Heathcote S, Godfrey ER, Shepherd JJ, Sack L. 2008. Scaling of xylem vessels and veins within the leaves of oak species. Biol. Lett 4: 302–306. Cerca con Google

Dixon HH, Joly J. 1895. On the Ascent of Sap. Philosophical Transactions of the Royal Society of London 186: 563–576. Cerca con Google

Drake PL, Price CA, Poot P, Veneklaas EJ. 2015. Isometric partitioning of hydraulic conductance between leaves and stems: Balancing safety and efficiency in different growth forms and habitats. Plant, Cell and Environment 38: 1628–1636. Cerca con Google

Ellis B, Ash A, Hickey LJ, Kirk J, Wilf P, Wing S. 2009. Manual of Leaf Architecture. Cornell University Press. Cerca con Google

Enquist BJ. 2003. Cope’s rule and the evolution of long-distance transport in vascular plants: Allometric scaling, biomass partitioning and optimization. Plant, Cell and Environment 26: 151–161. Cerca con Google

Fan Z-X, Cao K-F, Becker P. 2009. Axial and Radial Variations in Xylem Anatomy of Angiosperm and Conifer Trees in Yunnan, China. IAWA Journal 30: 1–13. Cerca con Google

Fiorin L, Brodribb TJ, Anfodillo T. 2016. Transport efficiency through uniformity: Organization of veins and stomata in angiosperm leaves. New Phytologist 209: 216–227. Cerca con Google

Fonseca CR, Overton JM, Collins B, Westoby M. 2000. Shifts in trait-combinations along rainfall and phosphorus gradients. Journal of Ecology 88: 964–977. Cerca con Google

Fonti P, Arx G von, Kueffer C, Fonti P. 2013. Quantifying plasticity in vessel grouping – added value from the image analysis tool ROXAS. IAWA Journal 34: 433–445. Cerca con Google

Givnish TJ, Wong SC, Stuart-Williams H, Holloway-Phillips M, Farquhar GD. 2014. Determinants of maximum tree height in Eucalyptus species along a rainfall gradient in Victoria, Australia. Ecology 95: 2991–3007. Cerca con Google

Gleason SM, Blackman CJ, Gleason ST, McCulloh KA, Ocheltree TW, Westoby M. 2018. Vessel scaling in evergreen angiosperm leaves conforms with Murray’s law and area-filling assumptions: implications for plant size, leaf size and cold tolerance. New Phytologist 218: 1360–1370. Cerca con Google

Hacke UG, Sperry JS. 2001. Functional and ecological xylem anatomy. Perspectives in Plant Ecology, Evolution and Systematics 4: 97–115. Cerca con Google

Hacke UG, Sperry JS, Wheeler JK, Castro L. 2006. Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiology 26: 689–701. Cerca con Google

Hacke UG, Spicer R, Schreiber SG, Plavcová L. 2017. An ecophysiological and developmental perspective on variation in vessel diameter. Plant, Cell & Environment 40: 831–845. Cerca con Google

Helama S, Lindholm M, Timonen M, Eronen M. 2004. Detection of climate signal in dendrochronological data analysis: a comparison of tree-ring standardization methods. Theoretical and Applied Climatology 79: 239–254. Cerca con Google

Hickey LJ. 1973. Classification of the architecture of dicotyledonous leaves. American Journal of Botany 60: 17–33. Cerca con Google

Jucker T, Bouriaud O, Coomes DA. 2015. Crown plasticity enables trees to optimize canopy packing in mixed-species forests (J Baltzer, Ed.). Functional Ecology 29: 1078–1086. Cerca con Google

Kandiannan K, Parthasarathy U, Krishnamurthy KS, Thankamani CK, Srinivasan V. 2009. Modeling individual leaf area of ginger (Zingiber officinale Roscoe) using leaf length and width. Scientia Horticulturae 120: 532–537. Cerca con Google

Kiorapostolou N, Galiano-Pérez L, von Arx G, Gessler A, Petit G. 2018. Structural and anatomical responses of Pinus sylvestris and Tilia platyphyllos seedlings exposed to water shortage. Trees: 1–8. Cerca con Google

Kolb KJ, Sperry JS. 1999. Differences in drought adaptation between subspecies of sagebrush ( Artemisia tridentata ). Ecology 80: 2373–2384. Cerca con Google

Kunstler G, Coomes DA, Canham CD. 2009. Size-dependence of growth and mortality influence the shade tolerance of trees in a lowland temperate rain forest. Journal of Ecology 97: 685–695. Cerca con Google

Larter M, Pfautsch S, Domec J, Trueba S, Nagalingum N, Delzon S. 2017. Aridity drove the evolution of extreme embolism resistance and the radiation of conifer genus Callitris. New Phytologist 215: 97–112. Cerca con Google

Lazzarin M, Crivellaro A, Williams CB, Dawson TE, Mozzi G, Anfodillo T. 2016. Tracheid and pit anatomy vary in tandem in a tall Sequoiadendron giganteum tree. IAWA Journal 37: 172–185. Cerca con Google

Lens F, Sperry JS, Christman MA, Choat B, Rabaey D, Jansen S. 2011. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytologist 190: 709–723. Cerca con Google

Lintunen A, Kalliokoski T, Niinemets Ü. 2010. The effect of tree architecture on conduit diameter and frequency from small distal roots to branch tips in Betula pendula, Picea abies and Pinus sylvestris. Tree Physiology 30: 1433–1447. Cerca con Google

Loepfe L, Martinez-Vilalta J, Piñol J, Mencuccini M. 2007. The relevance of xylem network structure for plant hydraulic efficiency and safety. Journal of Theoretical Biology 247: 788–803. Cerca con Google

Mäkelä A, Valentine HT. 2006. The quarter-power scaling model does not imply size-invariant hydraulic resistance in plants. Journal of Theoretical Biology. 243: 283-285. 243. Cerca con Google

Martin-StPaul N, Delzon S, Cochard H. 2017. Plant resistance to drought depends on timely stomatal closure (H Maherali, Ed.). Ecology Letters 20: 1437–1447. Cerca con Google

McCulloh KA, Johnson DM, Petitmermet J, McNellis B, Meinzer FC, Lachenbruch B. 2015. A comparison of hydraulic architecture in three similarly sized woody species differing in their maximum potential height (N Phillips, Ed.). Tree Physiology 35: 723–731. Cerca con Google

McCulloh KA, Sperry JS, Adler FR. 2003. Water transport in plants obeys Murray’s law. Nature 421: 939–942. Cerca con Google

McCulloh KA, Sperry JS, Adler FR. 2004. Murray’s law and the hydraulic vs mechanical functioning of wood. Functional Ecology 18: 931–938. Cerca con Google

Meinzer FC, Grantz DA. 1990. Stomatal and hydraulic conductance in growing sugarcane: stomatal adjustment to water transport capacity. Plant, Cell and Environment 13: 383–388. Cerca con Google

Mencuccini M, Hölttä T, Petit G, Magnani F. 2007. Sanio’s laws revisited. Size-dependent changes in the xylem architecture of trees. Ecology Letters 10: 1084–1093. Cerca con Google

Michaletz ST, Cheng D, Kerkhoff AJ, Enquist BJ. 2014. Convergence of terrestrial plant production across global climate gradients. Nature 512: 39–43. Cerca con Google

Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R 2 from generalized linear mixed-effects models (RB O’Hara, Ed.). Methods in Ecology and Evolution 4: 133–142. Cerca con Google

Nardini A, Savi T, Losso A, Petit G, Pacilè S, Tromba G, Mayr S, Trifilò P, Lo Gullo MA, Salleo S. 2017. X-ray microtomography observations of xylem embolism in stems of Laurus nobilis are consistent with hydraulic measurements of percentage loss of conductance. New Phytologist 213: 1068–1075. Cerca con Google

Niinemets Ü. 2010. A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecological Research 25: 693–714. Cerca con Google

Niklas KJ, Cobb ED, Niinemets Ü, Reich PB, Sellin A, Shipley B, Wright IJ. 2007. ‘Diminishing returns’ in the scaling of functional leaf traits across and within species groups. Proceedings of the National Academy of Sciences of the United States of America 104: 8891–8896. Cerca con Google

Nobel PS. 2012. Physicochemical and Environmental Plant Physiology. Academic Press. Cerca con Google

Olson ME, Anfodillo T, Rosell J a., Petit G, Crivellaro A, Isnard S, León-Gómez C, Alvarado-Cárdenas LO, Castorena M. 2014. Universal hydraulics of the flowering plants: vessel diameter scales with stem length across angiosperm lineages, habits and climates. Ecology Letters 17: 988–997. Cerca con Google

Olson ME, Rosell JA. 2012. Vessel diameter – stem diameter scaling across woody angiosperms and the ecological causes of xylem vessel diameter variation. New Phytologist 197: 1204–1213. Cerca con Google

Olson ME, Soriano D, Rosell JA, Anfodillo T, Donoghue MJ, Edwards EJ, León-Gómez C, Dawson T, Camarero Martínez JJ, Castorena M, et al. 2018. Plant height and hydraulic vulnerability to drought and cold. Proceedings of the National Academy of Sciences 115: 7551–7556. Cerca con Google

Petit G, Anfodillo T. 2009. Plant physiology in theory and practice: An analysis of the WBE model for vascular plants. Journal of Theoretical Biology 259: 1–4. Cerca con Google

Petit G, Anfodillo T. 2013. Widening of xylem conduits and its effect on the diurnal course of water potential gradients along leaf venations. Acta Horticulturae 991: 239–244. Cerca con Google

Petit G, Anfodillo T, Carraro V, Grani F, Carrer M. 2011. Hydraulic constraints limit height growth in trees at high altitude. New Phytologist 189: 241–252. Cerca con Google

Petit G, Anfodillo T, Mencuccini M. 2008. Tapering of xylem conduits and hydraulic limitations in sycamore ( Acer pseudoplatanus ) trees. New Phytologist 177: 653–664. Cerca con Google

Petit G, Declerck FAJ, Carrer M, Anfodillo T. 2014. Axial vessel widening in arborescent monocots. Tree Physiology 34: 137–145. Cerca con Google

Petit G, Pfautsch S, Anfodillo T, Adams MA. 2010. The challenge of tree height in Eucalyptus regnans: when xylem tapering overcomes hydraulic resistance. New Phytologist 187: 1146–1153. Cerca con Google

Petit G, Savi T, Consolini M, Anfodillo T, Nardini A. 2016. Interplay of growth rate and xylem plasticity for optimal coordination of carbon and hydraulic economies in Fraxinus ornus trees (M Mencuccini, Ed.). Tree Physiology: 1–10. Cerca con Google

Pfautsch S, Harbusch M, Wesolowski A, Smith R, Macfarlane C, Tjoelker MG, Reich PB, Adams MA. 2016. Climate determines vascular traits in the ecologically diverse genus Eucalyptus. Ecology Letters 19: 240–248. Cerca con Google

Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. 2014. nlme: Linear and Nonlinear Mixed Effects Models_. R package version 3.1-117. Cerca con Google

Prendin AL, Petit G, Fonti P, Rixen C, Dawes MA, von Arx G. 2018. Axial xylem architecture of Larix decidua exposed to CO 2 enrichment and soil warming at the tree line (M Larjavaara, Ed.). Functional Ecology 32: 273–287. Cerca con Google

Price CA, Enquist BJ. 2007. Scaling mass and morphology in leaves: an extension of the WBE model. Ecology 88: 1132–41. Cerca con Google

Price CA, Knox S-JC, Brodribb TJ. 2013. The Influence of Branch Order on Optimal Leaf Vein Geometries: Murray’s Law and Area Preserving Branching (RMH Merks, Ed.). PLoS ONE 8: e85420. Cerca con Google

Price CA, Ogle K, White EP, Weitz JS. 2009. Evaluating scaling models in biology using hierarchical Bayesian approaches. Ecology Letters 12: 641–651. Cerca con Google

Price CA, Wright IJ, Ackerly DD, Niinemets Ü, Reich PB, Veneklaas EJ. 2014. Are leaf functional traits ‘invariant’ with plant size and what is ‘invariance’ anyway? (J Baltzer, Ed.). Functional Ecology 28: 1330–1343. Cerca con Google

Rasband WS. ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/. Vai! Cerca con Google

Reid DEB, Silins U, Mendoza C, Lieffers VJ. 2005. A unified nomenclature for quantification and description of water conducting properties of sapwood xylem based on Darcy’s law. Tree Physiology 25: 993–1000. Cerca con Google

Robert EMR, Koedam N, Beeckman H, Schmitz N. 2009. A safe hydraulic architecture as wood anatomical explanation for the difference in distribution of the mangroves Avicennia and Rhizophora. Functional Ecology 23: 649–657. Cerca con Google

Rosell JA, Olson ME. 2014. Do lianas really have wide vessels? Vessel diameter-stem length scaling in non-self-supporting plants. Perspectives in Plant Ecology, Evolution and Systematics 16: 288–295. Cerca con Google

Rosell JA, Olson ME, Anfodillo T. 2017. Scaling of xylem vessel diameter with plant size: causes, predictions, and outstanding questions. Current Forestry Reports 3: 46–59. Cerca con Google

Rouphael Y, Mouneimne AH, Ismail A, Mendoza-De Gyves E, Rivera CM, Colla G. 2010. Modeling individual leaf area of rose (Rosa hybrida L.) based on leaf length and width measurement. Photosynthetica 48: 9–15. Cerca con Google

Sack L, Holbrook NM. 2006. Leaf Hydraulics. Annual Review of Plant Biology 57: 361–381. Cerca con Google

Sack L, Scoffoni C, McKown AD, Frole K, Rawls M, Havran JC, Tran H, Tran T. 2012. Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nature Communications 3: 837. Cerca con Google

Sanio K. 1872. Uber die grosse der holzzellen bei der gemeinen der kiefer (Pinus sylvestris). Bot. 8: 401–420. Cerca con Google

Savage VM, Bentley LP, Enquist BJ, Sperry JS, Smith DD, Reich PB, von Allmen EI, Framework T. 2010. Hydraulic trade-offs and space filling enable better predictions of vascular structure and function in plants. Proceedings of the National Academy of Sciences of the United States of America 107: 22722–22727. Cerca con Google

Scholander PF, Hammel HT, Hemmingsen E a., Bradstreet ED. 1964. Hydrostatic Pressure and Osmotic Potential in Leaves of Mangroves and Some Other Plants. Proceedings of the National Academy of Sciences of the United States of America 52: 119–125. Cerca con Google

Scholz A, Klepsch M, Karimi Z, Jansen S. 2013a. How to quantify conduits in wood? Frontiers in Plant Science 4: 56. Cerca con Google

Scholz A, Rabaey D, Stein A, Cochard H, Smets E, Jansen S, DA C, P R-D, H C. 2013b. The evolution and function of vessel and pit characters with respect to cavitation resistance across 10 Prunus species. Tree Physiology 33: 684–694. Cerca con Google

Scoffoni C, Albuquerque C, Brodersen CR, Townes S V., John GP, Bartlett MK, Buckley TN, McElrone AJ, Sack L. 2017a. Outside-Xylem Vulnerability, Not Xylem Embolism, Controls Leaf Hydraulic Decline during Dehydration. Plant Physiology 173: 1197–1210. Cerca con Google

Scoffoni C, Albuquerque C, Brodersen CR, Townes S V., John GP, Cochard H, Buckley TN, McElrone AJ, Sack L. 2017b. Leaf vein xylem conduit diameter influences susceptibility to embolism and hydraulic decline. New Phytologist 213: 1076–1092. Cerca con Google

Scoffoni C, Kunkle J, Pasquet-Kok J, Vuong C, Patel AJ, Montgomery RA, Givnish TJ, Sack L. 2015. Light-induced plasticity in leaf hydraulics, venation, anatomy, and gas exchange in ecologically diverse Hawaiian lobeliads. New Phytologist 207: 43–58. Cerca con Google

Scoffoni C, McKown a. D, Rawls M, Sack L. 2012. Dynamics of leaf hydraulic conductance with water status: quantification and analysis of species differences under steady state. Journal of Experimental Botany 63: 643–658. Cerca con Google

Sellin A, Õunapuu E, Kupper P. 2008. Effects of light intensity and duration on leaf hydraulic conductance and distribution of resistance in shoots of silver birch ( Betula pendula ). Physiologia Plantarum 134: 412–420. Cerca con Google

Sperry JS. 2000. Hydraulic constraints on plant gas exchange. Agricultural and Forest Meteorology 104: 13–23. Cerca con Google

Sperry JS, Hacke UG, Pittermann J. 2006. Size and function in conifer tracheids and angiosperm vessels. American Journal of Botany 93: 1490–1500. Cerca con Google

Stephenson NL, Das AJ, Condit R, Russo SE, Baker PJ, Beckman NG, Coomes DA, Lines ER, Morris WK, Rüger N, et al. 2014. Rate of tree carbon accumulation increases continuously with tree size. Nature 507: 90–93. Cerca con Google

Trifilò P, Barbera PM, Raimondo F, Nardini A, Gullo MA Lo, Meinzer F. 2014. Coping with drought-induced xylem cavitation: Coordination of embolism repair and ionic effects in three Mediterranean evergreens. Tree Physiology 34: 109–122. Cerca con Google

Trifiló P, Raimondo F, Savi T, Lo Gullo MA, Nardini A. 2016. The contribution of vascular and extra-vascular water pathways to drought-induced decline of leaf hydraulic conductance. Journal of Experimental Botany 67: 5029–5039. Cerca con Google

Tyree MT. 1997. The Cohesion-Tension theory of sap ascent: current controversies. J. Exp. Bot. 48: 1753–1765. Cerca con Google

Tyree M, Ewers F. 1991. The hydraulic architecture of trees and other woody plants. New Phytologist 119: 345–360. Cerca con Google

Tyree MT, Snyderman DA, Wilmot TR, Machado J-L. 1991. Water relations and hydraulic architecture of a tropical tree <i>(Schefflera morototoni). Plant Physiology 96: 1105–1113. Cerca con Google

Tyree MT, Zimmermann MH. 2002. Xylem Structure and the Ascent of Sap. Berlin, Heidelberg: Springer Berlin Heidelberg. Cerca con Google

Venturas MD, Sperry JS, Hacke UG. 2017. Plant xylem hydraulics: What we understand, current research, and future challenges. Journal of Integrative Plant Biology 59: 356–389. Cerca con Google

Vogel S. 2013. Comparative biomechanics : life’s physical world. Princeton University Press. Cerca con Google

Warwick NWM, Hailey L, Clarke KL, Gasson PE. 2017. Climate trends in the wood anatomy of Acacia sensu stricto ( Leguminosae : Mimosoideae ). Annals of Botany 119: 1249–1266. Cerca con Google

West GB, Brown JH. 2005. The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. The Journal of experimental biology 208: 1575–92. Cerca con Google

West GB, Brown JH, Enquist BJ. 1999. A general model for the structure, and algometry of plant vascular systems. Nature 400: 122–126. Cerca con Google

Zanne AE, Sweeney K, Sharma M, Orians CM. 2006. Patterns and consequences of differential vascular sectoriality in 18 temperate tree and shrub species. Functional Ecology 20: 200–206. Cerca con Google

Zhao X. 2016. Spatial variation of vessel grouping in the xylem of Betula platyphylla Roth. Journal of Plant Research 129: 29–37. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record