Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Pagot, G (2018) Electrode and electrolyte materials for the development of high voltage lithium-ion batteries and secondary batteries based on alkali and alkaline-earth ions. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document (Tesi di Dottorato)

Abstract (italian or english)

The research activity described in this thesis has been focused on the development and study of novel electrolyte and electrode materials for application in Lithium and Magnesium secondary batteries. The proposed materials belong to the “beyond Li-ion” class of compounds, where systems exceeding the energy density values of classic Li-ion batteries or completely innovative chemistries are presented.
Three different classes of electrolytes have been prepared and studied. A solid polymer electrolyte has been obtained by a lithium functionalization of a poly(vinyl alcohol-co-vinyl acetate), forming lithium alkoxide functional groups. In this way, the counter anion of Li+ was the overall polymer chain, giving rise to a single lithium ion conductivity. However, the room-temperature conductivity value observed for this material was quite low (4.6·10-10 S·cm-1). By ionic liquid (IL) doping of the
solid polymer electrolyte, we have obtained a double effect: i) lithium cations have been exchanged by the cations of IL, enhancing the mobility of the active species; and ii) the flexibility of polymer chains has been increased by the plasticizing effect of the IL. Thus, a room temperature conductivity of 1.3·10-5 S·cm-1 has been reached, maintaining a high value of Li transference number (0.59). By reacting glycerol with different quantities of lithium hydride, a new family of lithium-ion conducting electrolytes has been synthetized. In these electrolytes the lithium glycerolate component acts as a large and flexible macro-anion which is able to provide a singleion conductivity to the material (2.0∙10-4 at 30 °C and 1.6∙10-2 S∙cm-1 at 150 °C). In the last class of electrolytes, ionic liquid-based materials for magnesium batteries, the cation and anion replacement effect on the structure, conductivity mechanism, and electrochemical performances has been studied. The proposed materials have exhibited a conductivity value between 10-3 and 10-4 S∙cm-1, an overpotential in the magnesium deposition lower than 50 mV vs. Mg/Mg2+, an anodic stability up to +2.35 V vs. Mg/Mg2+, and a coulombic efficiency up to 99.94 %.
In the second part of this Ph.D. project, the improvement of the electrochemical features of various cathode materials has been studied. In the first case, it has been found that, by adding CuCO3 to the precursors, segregated CuO particles have been formed. The presence of these particles has improved the charge-transfer kinetics during the charge/discharge processes of the cathode material. On the other hand, graphite addition to the precursors has been found to improve the
elasticity of the 3D structure of the cathode backbone. Thus, an increased structural flexibility that facilitates the percolation of lithium ions along the 1D channels of the cathode material has been observed. In the second approach, the improvement of the electron conductivity of a high-voltage cathode has been gauged by V, Nb, or Ta insertion within its olivine structure. This approach has allowed for an improved kinetic and reversibility of Li+ insertion reaction. The specific capacity reached by these cathodes was equal to 149 mAh∙g-1. The last cathode material has been implemented in a magnesium secondary battery device. A graphene oxide surface functionalization of vanadium-based nanoparticles has been obtained thanks to electrostatic interactions through ammonium bridges. This functionalization has allowed for the obtaining of a material able to: a) sustain extremely high current rates (1000 mA∙g-1, 1700 mW∙g-1 of specific power); and b) give reasonable specific capacity values (72 mAh∙g-1).

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Di Noto, V
Data di deposito della tesi:05 March 2019
Anno di Pubblicazione:30 November 2018
Key Words:Batteries; Beyond Li-ion; Electrolytes; Cathodes; Magnesium; Lithium.
Settori scientifico-disciplinari MIUR:Area 03 - Scienze chimiche > CHIM/07 Fondamenti chimici delle tecnologie
Struttura di riferimento:Centri > Centro Interdipartimentale di ricerca "Centro Studi di Economia e Tecnica dell'Energia Giorgio Levi Cases"
Dipartimenti > Dipartimento di Ingegneria Industriale
Codice ID:11831
Depositato il:08 Nov 2019 10:35
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] M. Sawicki, L.L. Shaw, Advances and challenges of sodium ion batteries as post lithium ion batteries, RSC Advances, 5 (2015) 53129-53154. Cerca con Google

[2] The European environment — state and outlook 2015: an integrated assessment of the European Environment. Global Megatrends. Increasing environmental pollution (GMT 10), http://www.eea.europa.eu/soer-2015/global/pollution. Vai! Cerca con Google

[3] J. Liu, J.G. Zhang, Z. Yang, J.P. Lemmon, C. Imhoff, G.L. Graff, L. Li, J. Hu, C. Wang, J. Xiao, G. Xia, V.V. Viswanathan, S. Baskaran, V. Sprenkle, X. Li, Y. Shao, B. Schwenzer, Materials science and materials chemistry for large scale electrochemical energy storage: From transportation to electrical grid, Adv. Funct. Mater., 23 (2013) 929-946. Cerca con Google

[4] Department of Energy - FY 2017 Congressional Budget Request - Volume 3, https://energy.gov/sites/prod/files/2016/02/f29/FY2017BudgetVolume3_2.pdf. Vai! Cerca con Google

[5] B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: A battery of choices, Science, 334 (2011) 928-935. Cerca con Google

[6] N.S. Pearre, L.G. Swan, Technoeconomic feasibility of grid storage: Mapping electrical services and energy storage technologies, Applied Energy, 137 (2015) 501-510. Cerca con Google

[7] M.S. Whittingham, Materials challenges facing electrical energy storage, MRS Bull., 33 (2008) 411-419. Cerca con Google

[8] P. Saha, M.K. Datta, O.I. Velikokhatnyi, A. Manivannan, D. Alman, P.N. Kumta, Rechargeable magnesium battery: Current status and key challenges for the future, Prog. Mater Sci., 66 (2014) 1-86. Cerca con Google

[9] B. Dunn, H. Kamath, J.-M. Tarascon, Electrical Energy Storage for the Grid: A Battery of Choices, Science, 334 (2011) 928-935. Cerca con Google

[10] History Of Batteries: A Timeline, https://www.upsbatterycenter.com/blog/history-batteries-timeline. Vai! Cerca con Google

[11] P. Nikolaidis, A. Poullikkas, Cost metrics of electrical energy storage technologies in potential power system operations, Sustainable Energy Technologies and Assessments, 25 (2018) 43-59. Cerca con Google

[12] K.E. Aifantis, S.A. Hackney, R.V. Kumar, High Energy Density Lithium Batteries: Materials, Engineering, Applications, Wiley 2010. Cerca con Google

[13] P. Verma, P. Maire, P. Novák, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries, Electrochim. Acta, 55 (2010) 6332-6341. Cerca con Google

[14] Y. Li, M. Gong, Y. Liang, J. Feng, J.E. Kim, H. Wang, G. Hong, B. Zhang, H. Dai, Advanced zinc-air batteries based on high-performance hybrid electrocatalysts, Nature Communications, 4 (2013) 1-7. Cerca con Google

[15] L. Cecchetto, M. Salomon, B. Scrosati, F. Croce, Study of a Li-air battery having an electrolyte solution formed by a mixture of an ether-based aprotic solvent and an ionic liquid, J. Power Sources, 213 (2012) 233-238. Cerca con Google

[16] M. Agostini, Y. Aihara, T. Yamada, B. Scrosati, J. Hassoun, A lithium-sulfur battery using a solid, glass-type P2S5-Li2S electrolyte, Solid State Ion., 244 (2013) 48-51. Cerca con Google

[17] V. Di Noto, S. Lavina, D. Longo, M. Vidali, A novel electrolytic complex based on δ-MgCl2 and poly(ethylene glycol) 400, Electrochim. Acta, 43 (1998) 1225-1237. Cerca con Google

[18] M.-C. Lin, M. Gong, B. Lu, Y. Wu, D.-Y. Wang, M. Guan, M. Angell, C. Chen, J. Yang, B.-J. Hwang, H. Dai, An ultrafast rechargeable aluminium-ion battery, Nature, 520 (2015) 324-328. Cerca con Google

[19] A. Manthiram, Materials Challenges and Opportunities of Lithium Ion Batteries, The Journal of Physical Chemistry Letters, 2 (2011) 176-184. Cerca con Google

[20] G. Pagot, F. Bertasi, K. Vezzù, G. Nawn, G. Pace, A. Nale, V. Di Noto, Correlation between Properties and Conductivity Mechanism in Poly(vinyl alcohol)-based Lithium Solid Electrolytes, Solid State Ion., 320 (2018) 177-185. Cerca con Google

[21] G. Pagot, S. Tonello, K. Vezzù, V. Di Noto, A New Glass-Forming Electrolyte Based on Lithium Glycerolate, Batteries, 4 (2018) 41. Cerca con Google

[22] G. Pagot, F. Bertasi, G. Nawn, E. Negro, A. Bach Delpeuch, K. Vezzù, D. Cristofori, V. Di Noto, Effect of Graphite and Copper Oxide on the Performance of High Potential Li[Fe1/3Ni1/3Co1/3]PO4 Olivine Cathodes for Lithium Batteries, Electrochim. Acta, 225 (2017) 533-542. Cerca con Google

[23] G. Pagot, F. Bertasi, K. Vezzù, F. Sepehr, X. Luo, G. Nawn, E. Negro, S.J. Paddison, V.D. Noto, Three-dimensional Catenated 1-ethyl-3-methylimidazolium Halotitanate Ionic Liquid Electrolytes for Electrochemical Applications, Electrochim. Acta, 246 (2017) 914-923. Cerca con Google

[24] C. Mikolajczak, M. Kahn, K. White, R.T. Long, Lithium-Ion Batteries Hazard and Use Assessment, 1 ed., Springer-Verlag, New York, 2011. Cerca con Google

[25] K. Xu, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries, Chem. Rev., 104 (2004) 4303-4418. Cerca con Google

[26] P. Knauth, Inorganic solid Li ion conductors: An overview, Solid State Ion., 180 (2009) 911-916. Cerca con Google

[27] J.Y. Seok, O.D. Yang, N.Y. Jin, P.K. Ho, Issues and Challenges for Bulk-Type All-Solid-State Rechargeable Lithium Batteries using Sulfide Solid Electrolytes, Isr. J. Chem., 55 (2015) 472-485. Cerca con Google

[28] A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes, Nature Reviews Materials, 2 (2017) 1-16. Cerca con Google

[29] M.D. Tikekar, S. Choudhury, Z. Tu, L.A. Archer, Design principles for electrolytes and interfaces for stable lithium-metal batteries, Nature Energy, 1 (2016) 1-7. Cerca con Google

[30] B. Scrosati, J. Hassoun, Y.K. Sun, Lithium-ion batteries. A look into the future, Energy Environ. Sci., 4 (2011) 3287-3295. Cerca con Google

[31] M. Uitz, V. Epp, P. Bottke, M. Wilkening, Ion dynamics in solid electrolytes for lithium batteries, J. Electroceram., 38 (2017) 142-156. Cerca con Google

[32] J.B. Goodenough, H.Y.P. Hong, J.A. Kafalas, Fast Na+-ion transport in skeleton structures, Mater. Res. Bull., 11 (1976) 203-220. Cerca con Google

[33] C.R. Mariappan, C. Yada, F. Rosciano, B. Roling, Correlation between micro-structural properties and ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 ceramics, J. Power Sources, 196 (2011) 6456-6464. Cerca con Google

[34] V. Thangadurai, S. Narayanan, D. Pinzaru, Garnet-type solid-state fast Li ion conductors for Li batteries: critical review, Chem. Soc. Rev., 43 (2014) 4714-4727. Cerca con Google

[35] V. Thangadurai, W. Weppner, Investigations on electrical conductivity and chemical compatibility between fast lithium ion conducting garnet-like Li6BaLa2Ta2O12 and lithium battery cathodes, J. Power Sources, 142 (2005) 339-344. Cerca con Google

[36] E.J. Cussen, Structure and ionic conductivity in lithium garnets, J. Mater. Chem., 20 (2010) 5167-5173. Cerca con Google

[37] Y.X. Gao, X.P. Wang, W.G. Wang, Z. Zhuang, D.M. Zhang, Q.F. Fang, Synthesis, ionic conductivity, and chemical compatibility of garnet-like lithium ionic conductor Li5La3Bi2O12, Solid State Ion., 181 (2010) 1415-1419. Cerca con Google

[38] S. Yu, R.D. Schmidt, R. Garcia-Mendez, E. Herbert, N.J. Dudney, J.B. Wolfenstine, J. Sakamoto, D.J. Siegel, Elastic Properties of the Solid Electrolyte Li7La3Zr2O12 (LLZO), Chem. Mater., 28 (2016) 197-206. Cerca con Google

[39] N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Mitsui, A lithium superionic conductor, Nat. Mater., 10 (2011) 682-686. Cerca con Google

[40] T. Takahashi, H. Iwahara, Ionic conduction in perovskite-type oxide solid solution and its application to the solid electrolyte fuel cell, Energy Conversion, 11 (1971) 105-111. Cerca con Google

[41] S. Stramare, V. Thangadurai, W. Weppner, Lithium Lanthanum Titanates:  A Review, Chem. Mater., 15 (2003) 3974-3990. Cerca con Google

[42] B. Huang, X. Yao, Z. Huang, Y. Guan, Y. Jin, X. Xu, Li3PO4-doped Li7P3S11 glass-ceramic electrolytes with enhanced lithium ion conductivities and application in all-solid-state batteries, J. Power Sources, 284 (2015) 206-211. Cerca con Google

[43] H. Muramatsu, A. Hayashi, T. Ohtomo, S. Hama, M. Tatsumisago, Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere, Solid State Ion., 182 (2011) 116-119. Cerca con Google

[44] Z. Deng, B. Radhakrishnan, S.P. Ong, Rational Composition Optimization of the Lithium-Rich Li3OCl1–xBrx Anti-Perovskite Superionic Conductors, Chem. Mater., 27 (2015) 3749-3755. Cerca con Google

[45] Y. Zhao, L.L. Daemen, Superionic Conductivity in Lithium-Rich Anti-Perovskites, J. Am. Chem. Soc., 134 (2012) 15042-15047. Cerca con Google

[46] Y. Zhang, Y. Zhao, C. Chen, Ab initio study of the stabilities of and mechanism of superionic transport in lithium-rich antiperovskites, Physical Review B, 87 (2013) 1343031-1343038. Cerca con Google

[47] V. Di Noto, S. Lavina, G.A. Giffin, E. Negro, B. Scrosati, Polymer electrolytes: Present, past and future, Electrochim. Acta, 57 (2011) 4-13. Cerca con Google

[48] V. Di Noto, E. Negro, S. Lavina, M. Vittadello, Hybrid inorganic-organic polymer electrolytes, Polymer Electrolytes: Fundamentals and Applications, Woodhead Publishing Limited 2010, pp. 219-273. Cerca con Google

[49] V. Di Noto, M. Vittadello, K. Yoshida, S. Lavina, E. Negro, T. Furukawa, Broadband dielectric and conductivity spectroscopy of Li-ion conducting three-dimensional hybrid inorganic–organic networks as polymer electrolytes based on poly(ethylene glycol) 400, Zr and Al nodes, Electrochim. Acta, 57 (2011) 192-200. Cerca con Google

[50] V. Di Noto, Zeolitic Inorganic−Organic Polymer Electrolyte Based on Oligo(ethylene glycol) 600 K2PdCl4 and K3Co(CN)6, The Journal of Physical Chemistry B, 104 (2000) 10116-10125. Cerca con Google

[51] M. Vittadello, S. Suarez, K. Fijimoto, V.D. Noto, S.G. Greenbaum, T. Furukawa, A lithium Z-IOPE ionomer based on PEG600, (CH3)2SnCl2, and Li3Fe(CN)6, J. Electrochem. Soc., 152 (2005) A956-A965. Cerca con Google

[52] V. Di Noto, M. Vittadello, S.G. Greenbaum, S. Suarez, K. Kano, T. Furukawa, A New Class of Lithium Hybrid Gel Electrolyte Systems, The Journal of Physical Chemistry B, 108 (2004) 18832-18844. Cerca con Google

[53] W.P. V., Electrical conductivity in ionic complexes of poly(ethylene oxide), British Polymer Journal, 7 (1975) 319-327. Cerca con Google

[54] V. Di Noto, D. Longo, V. Münchow, Ion-Oligomer Interactions in Poly(ethylene glycol)400/(LiCl)x Electrolyte Complexes, The Journal of Physical Chemistry B, 103 (1999) 2636-2646. Cerca con Google

[55] R. Meziane, J.-P. Bonnet, M. Courty, K. Djellab, M. Armand, Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries, Electrochim. Acta, 57 (2011) 14-19. Cerca con Google

[56] K. Vezzù, A.M. Maes, F. Bertasi, A.R. Motz, T.-H. Tsai, E.B. Coughlin, A.M. Herring, V. Di Noto, Interplay Between Hydroxyl Density and Relaxations in Poly(vinylbenzyltrimethylammonium)-b-poly(methylbutylene) Membranes for Electrochemical Applications, J. Am. Chem. Soc., 140 (2018) 1372-1384. Cerca con Google

[57] F. Bertasi, C. Hettige, F. Sepehr, X. Bogle, G. Pagot, K. Vezzù, E. Negro, S.J. Paddison, S.G. Greenbaum, M. Vittadello, V. Di Noto, A Key concept in Magnesium Secondary Battery Electrolytes, ChemSusChem, 8 (2015) 3069-3076. Cerca con Google

[58] H. Ohno, Electrochemical Aspects of Ionic Liquids, 2nd ed., John Wiley & Sons, Inc., Hoboken, New Jersey, 2011. Cerca con Google

[59] M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, B. Scrosati, Ionic-liquid materials for the electrochemical challenges of the future, Nat. Mater., 8 (2009) 621-629. Cerca con Google

[60] M. Yoshizawa, A. Narita, H. Ohno, Design of Ionic Liquids for Electrochemical Applications, Aust. J. Chem., 57 (2004) 139-144. Cerca con Google

[61] M.J. Park, I. Choi, J. Hong, O. Kim, Polymer electrolytes integrated with ionic liquids for future electrochemical devices, J. Appl. Polym. Sci., 129 (2013) 2363-2376. Cerca con Google

[62] M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, B. Scrosati, Ionic-liquid materials for the electrochemical challenges of the future, Nat. Mater., 8 (2009) 621-629. Cerca con Google

[63] M. Watanabe, M.L. Thomas, S. Zhang, K. Ueno, T. Yasuda, K. Dokko, Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices, Chem. Rev., 117 (2017) 7190-7239. Cerca con Google

[64] S. Seki, Y. Kobayashi, H. Miyashiro, Y. Ohno, Y. Mita, A. Usami, N. Terada, M. Watanabe, Reversibility of Lithium Secondary Batteries Using a Room-Temperature Ionic Liquid Mixture and Lithium Metal, Electrochem. Solid-State Lett., 8 (2005) A577-A578. Cerca con Google

[65] S. Seki, Y. Kobayashi, H. Miyashiro, Y. Ohno, Y. Mita, N. Terada, P. Charest, A. Guerfi, K. Zaghib, Compatibility of N-Methyl-N-propylpyrrolidinium Cation Room-Temperature Ionic Liquid Electrolytes and Graphite Electrodes, The Journal of Physical Chemistry C, 112 (2008) 16708-16713. Cerca con Google

[66] H. Nakagawa, S. Izuchi, K. Kuwana, T. Nukuda, Y. Aihara, Liquid and Polymer Gel Electrolytes for Lithium Batteries Composed of Room-Temperature Molten Salt Doped by Lithium Salt, J. Electrochem. Soc., 150 (2003) A695-A700. Cerca con Google

[67] H. Sakaebe, H. Matsumoto, N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13–TFSI) – novel electrolyte base for Li battery, Electrochem. Commun., 5 (2003) 594-598. Cerca con Google

[68] F.R. Gamble, J.H. Osiecki, M. Cais, R. Pisharody, F.J. DiSalvo, T.H. Geballe, Intercalation Complexes of Lewis Bases and Layered Sulfides: A Large Class of New Superconductors, Science, 174 (1971) 493-497. Cerca con Google

[69] M.S. Whittingham, Electrical Energy Storage and Intercalation Chemistry, Science, 192 (1976) 1126-1127. Cerca con Google

[70] F.A. Trumbore, Niobium triselenide: A unique rechargeable positive electrode material, J. Power Sources, 26 (1989) 65-75. Cerca con Google

[71] C. Delmas, H. Cognac-Auradou, J.M. Cocciantelli, M. Ménétrier, J.P. Doumerc, The LixV2O5 system: An overview of the structure modifications induced by the lithium intercalation, Solid State Ion., 69 (1994) 257-264. Cerca con Google

[72] T.L. Kulova, New electrode materials for lithium-ion batteries (Review), Russ. J. Electrochem., 49 (2013) 1-25. Cerca con Google

[73] K. Le Van, H. Groult, A. Mantoux, L. Perrigaud, F. Lantelme, R. Lindström, R. Badour-Hadjean, S. Zanna, D. Lincot, Amorphous vanadium oxide films synthesised by ALCVD for lithium rechargeable batteries, J. Power Sources, 160 (2006) 592-601. Cerca con Google

[74] G. Pistoia, M. Pasquali, G. Wang, L. Li, Li/Li1+xV3O8 Secondary Batteries - Synthesis and Characterization of an Amorphous Form of the Cathode, J. Electrochem. Soc., 137 (1990) 2365-2370. Cerca con Google

[75] H. Huang, S.C. Yin, T. Kerr, N. Taylor, L.F. Nazar, Nanostructured Composites: A High Capacity, Fast Rate Li3V2(PO4)3/Carbon Cathode for Rechargeable Lithium Batteries, Adv. Mater., 14 (2002) 1525-1528. Cerca con Google

[76] M.S. Whittingham, Y. Song, S. Lutta, P.Y. Zavalij, N.A. Chernova, Some transition metal (oxy)phosphates and vanadium oxides for lithium batteries, J. Mater. Chem., 15 (2005) 3362-3379. Cerca con Google

[77] G.G. Amatucci, J.M. Tarascon, L.C. Klein, CoO2, The End Member of the LixCoO2 Solid Solution, J. Electrochem. Soc., 143 (1996) 1114-1123. Cerca con Google

[78] K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density, Mater. Res. Bull., 15 (1980) 783-789. Cerca con Google

[79] M.S. Islam, C.A.J. Fisher, Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties, Chem. Soc. Rev., 43 (2014) 185-204. Cerca con Google

[80] R. Koksbang, J. Barker, H. Shi, M.Y. Saïdi, Cathode materials for lithium rocking chair batteries, Solid State Ion., 84 (1996) 1-21. Cerca con Google

[81] K. Zaghib, A. Mauger, H. Groult, J.B. Goodenough, C.M. Julien, Advanced electrodes for high power Li-ion batteries, Mater., 6 (2013) 1028-1049. Cerca con Google

[82] T. Nohma, H. Kurokawa, M. Uehara, M. Takahashi, K. Nishio, T. Saito, Electrochemical characteristics of LiNiO2 and LiCoO2 as a positive material for lithium secondary batteries, J. Power Sources, 54 (1995) 522-524. Cerca con Google

[83] J. Cho, Y.J. Kim, B. Park, Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell, Chem. Mater., 12 (2000) 3788-3791. Cerca con Google

[84] M.S. Whittingham, Lithium Batteries and Cathode Materials, Chem. Rev., 104 (2004) 4271-4302. Cerca con Google

[85] K. Zaghib, J. Dubé, A. Dallaire, K. Galoustov, A. Guerfi, M. Ramanathan, A. Benmayza, J. Prakash, A. Mauger, C.M. Julien, Enhanced thermal safety and high power performance of carbon-coated LiFePO4 olivine cathode for Li-ion batteries, J. Power Sources, 219 (2012) 36-44. Cerca con Google

[86] J.R. Dahn, U. von Sacken, C.A. Michal, Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni(OH)2 structure, Solid State Ion., 44 (1990) 87-97. Cerca con Google

[87] K. Amine, J. Liu, S. Kang, I. Belharouak, Y. Hyung, D. Vissers, G. Henriksen, Improved lithium manganese oxide spinel/graphite Li-ion cells for high-power applications, J. Power Sources, 129 (2004) 14-19. Cerca con Google

[88] A.R. Armstrong, P.G. Bruce, Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries, Nature, 381 (1996) 499-500. Cerca con Google

[89] R. Chen, M.S. Whittingham, Cathodic Behavior of Alkali Manganese Oxides from Permanganate, J. Electrochem. Soc., 144 (1997) L64-L67. Cerca con Google

[90] R. Chen, P. Zavalij, M.S. Whittingham, Hydrothermal Synthesis and Characterization of KxMnO2·yH2O, Chem. Mater., 8 (1996) 1275-1280. Cerca con Google

[91] A.R. Armstrong, A.D. Robertson, R. Gitzendanner, P.G. Bruce, The Layered Intercalation Compounds Li(Mn1−yCoy)O2: Positive Electrode Materials for Lithium–Ion Batteries, J. Solid State Chem., 145 (1999) 549-556. Cerca con Google

[92] A. Robert Armstrong, R. Gitzendanner, The intercalation compound Li(Mn0.9Co0.1)O2 as a positive electrode for rechargeable lithium batteries, Chem. Commun., (1998) 1833-1834. Cerca con Google

[93] T. Kulova, A. Skundin, High-voltage materials for positive electrodes of lithium ion batteries, Russian Journal of Electrochemistry, 52 (2016) 501-524. Cerca con Google

[94] R. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Performance and cost of materials for lithium-based rechargeable automotive batteries, Nature Energy, 3 (2018) 267. Cerca con Google

[95] G. Zubi, R. Dufo-López, M. Carvalho, G. Pasaoglu, The lithium-ion battery: State of the art and future perspectives, Renewable and Sustainable Energy Reviews, 89 (2018) 292-308. Cerca con Google

[96] J. Wolfenstine, J. Allen, Ni3+/Ni2+ redox potential in LiNiPO4, J. Power Sources, 142 (2005) 389-390. Cerca con Google

[97] M. Minakshi, P. Singh, D. Appadoo, D.E. Martin, Synthesis and characterization of olivine LiNiPO4 for aqueous rechargeable battery, Electrochim. Acta, 56 (2011) 4356-4360. Cerca con Google

[98] C.M. Julien, A. Mauger, K. Zaghib, R. Veillette, H. Groult, Structural and electronic properties of the LiNiPO4 orthophosphate, Ionics, 18 (2012) 625-633. Cerca con Google

[99] M. Hu, X. Pang, Z. Zhou, Recent progress in high-voltage lithium ion batteries, J. Power Sources, 237 (2013) 229-242. Cerca con Google

[100] A.A. Salah, P. Jozwiak, J. Garbarczyk, K. Benkhouja, K. Zaghib, F. Gendron, C.M. Julien, Local structure and redox energies of lithium phosphates with olivine- and Nasicon-like structures, J. Power Sources, 140 (2005) 370-375. Cerca con Google

[101] N.N. Bramnik, K.G. Bramnik, T. Buhrmester, C. Baehtz, H. Ehrenberg, H. Fuess, Electrochemical and structural study of LiCoPO4-based electrodes, J. Solid State Electrochem., 8 (2004) 558-564. Cerca con Google

[102] J.L. Allen, T.R. Jow, J. Wolfenstine, Improved cycle life of Fe-substituted LiCoPO4, J. Power Sources, 196 (2011) 8656-8661. Cerca con Google

[103] Y. Zhang, Q.Y. Huo, P.P. Du, L.Z. Wang, A.Q. Zhang, Y.H. Song, Y. Lv, G.Y. Li, Advances in new cathode material LiFePO4 for lithium-ion batteries, Synth. Met., 162 (2012) 1315-1326. Cerca con Google

[104] Y. Wang, J. Wang, J. Yang, Y. Nuli, High‐Rate LiFePO4 Electrode Material Synthesized by a Novel Route from FePO4· 4H2O, Advanced Functional Materials, 16 (2006) 2135-2140. Cerca con Google

[105] V.A. Streltsov, E.L. Belokoneva, V.G. Tsirelson, N.K. Hansen, Multipole analysis of the electron-density in triphylite, LiFePO4, using X-Ray-Diffraction data, Acta Crystallogr., Sect. B: Struct. Sci., B49 (1993) 147-153. Cerca con Google

[106] D. Aurbach, Y. Gofer, Z. Lu, A. Schechter, O. Chusid, H. Gizbar, Y. Cohen, V. Ashkenazi, M. Moshkovich, R. Turgeman, E. Levi, A short review on the comparison between Li battery systems and rechargeable magnesium battery technology, J. Power Sources, 97-98 (2001) 28-32. Cerca con Google

[107] J. Heath, H. Chen, M.S. Islam, MgFeSiO4 as a potential cathode material for magnesium batteries: ion diffusion rates and voltage trends, Journal of Materials Chemistry A, 5 (2017) 13161-13167. Cerca con Google

[108] C. Liebenow, Z. Yang, P. Lobitz, The electrodeposition of magnesium using solutions of organomagnesium halides, amidomagnesium halides and magnesium organoborates, Electrochem. Commun., 2 (2000) 641-645. Cerca con Google

[109] J. P., Formula of the organomagnesium derivative and magnesium hydride, Comptes Rendus, 155 (1912) 353-355. Cerca con Google

[110] T.D. Gregory, R.J. Hoffman, R.C. Winterton, Nonaqueous electrochemistry of magnesium. Applications to energy storage, J. Electrochem. Soc., 137 (1990) 775-780. Cerca con Google

[111] K. Soeda, M. Yamagata, M. Ishikawa, Reversible Deposition and Dissolution of Mg Negative in Non-Ethereal Electrolyte, Meeting Abstracts, MA2015-01 (2015) 321. Cerca con Google

[112] M. Shiraga, F. Sagane, K. Miyazaki, T. Fukutsuka, T. Abe, K. Nishio, Y. Uchimoto, Electrochemical Behavior of Platinum Electrode in 2-Methyltetrahydrofuran Containing Magnesium Bromide, Meeting Abstracts, MA2010-02 (2010) 52. Cerca con Google

[113] E. Sheha, Ion transport properties of magnesium bromide/dimethyl sulfoxide non-aqueous liquid electrolyte, Journal of Advanced Research, 7 (2016) 29-36. Cerca con Google

[114] J.H. Connor, W.E. Reid, G.B. Wood, Electrodeposition of Metals from Organic Solutions: V . Electrodeposition of Magnesium and Magnesium Alloys, J. Electrochem. Soc., 104 (1957) 38-41. Cerca con Google

[115] J. Muldoon, C.B. Bucur, A.G. Oliver, J. Zajicek, G.D. Allred, W.C. Boggess, Corrosion of magnesium electrolytes: chlorides – the culprit, Energy Environ. Sci., 6 (2013) 482-487. Cerca con Google

[116] J. Muldoon, C.B. Bucur, T. Gregory, Quest for Nonaqueous Multivalent Secondary Batteries: Magnesium and Beyond, Chem. Rev., 114 (2014) 11683-11720. Cerca con Google

[117] O. Mizrahi, N. Amir, E. Pollak, O. Chusid, V. Marks, H. Gottlieb, L. Larush, E. Zinigrad, D. Aurbach, Electrolyte Solutions with a Wide Electrochemical Window for Rechargeable Magnesium Batteries, J. Electrochem. Soc., 155 (2008) A103-A109. Cerca con Google

[118] R.E. Doe, R. Han, J. Hwang, A.J. Gmitter, I. Shterenberg, H.D. Yoo, N. Pour, D. Aurbach, Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries, Chem. Commun., 50 (2014) 243-245. Cerca con Google

[119] S. Higashi, K. Miwa, M. Aoki, K. Takechi, A novel inorganic solid state ion conductor for rechargeable Mg batteries, Chem. Commun., 50 (2014) 1320-1322. Cerca con Google

[120] J. Kawamura, K. Morota, N. Kuwata, Y. Nakamura, H. Maekawa, T. Hattori, N. Imanaka, Y. Okazaki, G.-y. Adachi, High temperature 31P NMR study on Mg2+ ion conductors, Solid State Commun., 120 (2001) 295-298. Cerca con Google

[121] M.L. Aubrey, R. Ameloot, B.M. Wiers, J.R. Long, Metal–organic frameworks as solid magnesium electrolytes, Energy Environ. Sci., 7 (2014) 667-671. Cerca con Google

[122] A. Patrick, M. Glasse, R. Latham, R. Linford, Novel solid state polymeric batteries, Solid State Ion., 18-19 (1986) 1063-1067. Cerca con Google

[123] L.L. Yang, A.R. McGhie, G.C. Farrington, Ionic Conductivity in Complexes of Poly(ethylene oxide) and MgCl2, J. Electrochem. Soc., 133 (1986) 1380-1385. Cerca con Google

[124] V. Di Noto, M. Fauri, G. De Luca, M. Vidali, A new magnesium ion polymer battery (poster), in: 9th, Edinburgh, Scotland, United Kingdom, (1998). Cerca con Google

[125] V. Di Noto, S. Bresadola, New synthesis of a highly active δ-MgCl2 for MgCl2/TiCl4/AlEt3 catalytic systems, Macromol. Chem. Phys., 197 (1996) 3827-3835. Cerca con Google

[126] S. Ikeda, Y. Mori, Y. Furuhashi, H. Masuda, O. Yamamoto, Quasi-solid polymer electrolytes using photo-cross-linked polymers. Lithium and divalent cation conductors and their applications, J. Power Sources, 81-82 (1999) 720-723. Cerca con Google

[127] G.G. Kumar, N. Munichandraiah, Reversibility of Mg/Mg2+ couple in a gel polymer electrolyte, Electrochim. Acta, 44 (1999) 2663-2666. Cerca con Google

[128] D. Aurbach, O. Chasid, Y. Gofer, C. Gizbar, High-energy, rechargeable electrochemical cells, 9/870707 (2004). Cerca con Google

[129] Y. NuLi, J. Yang, P. Wang, Electrodeposition of magnesium film from BMIMBF4 ionic liquid, Appl. Surf. Sci., 252 (2006) 8086-8090. Cerca con Google

[130] Y. NuLi, J. Yang, R. Wu, Reversible deposition and dissolution of magnesium from BMIMBF4 ionic liquid, Electrochem. Commun., 7 (2005) 1105-1110. Cerca con Google

[131] M. Morita, T. Shirai, N. Yoshimoto, M. Ishikawa, Ionic conductance behavior of polymeric gel electrolyte containing ionic liquid mixed with magnesium salt, J. Power Sources, 139 (2005) 351-355. Cerca con Google

[132] N. Yoshimoto, M. Matsumoto, M. Egashia, M. Morita, Mixed electrolyte consisting of ethylmagnesiumbromide with ionic liquid for rechargeable magnesium electrode, J. Power Sources, 195 (2010) 2096-2098. Cerca con Google

[133] F. Bertasi, F. Sepehr, G. Pagot, S.J. Paddison, V. Di Noto, Toward a Magnesium-Iodine Battery, Adv. Funct. Mater., 26 (2016) 4860-4865. Cerca con Google

[134] F. Bertasi, K. Vezzù, G. Nawn, G. Pagot, V. Di Noto, Interplay Between Structure and Conductivity in 1-Ethyl-3-methylimidazolium tetrafluoroborate/(δ-MgCl2)f Electrolytes for Magnesium Batteries, Electrochim. Acta, 219 (2016) 152-162. Cerca con Google

[135] M. Kar, Z. Ma, L.M. Azofra, K. Chen, M. Forsyth, D.R. MacFarlane, Ionic liquid electrolytes for reversible magnesium electrochemistry, Chem. Commun., 52 (2016) 4033-4036. Cerca con Google

[136] D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich, E. Levi, Prototype systems for rechargeable magnesium batteries, Nature, 407 (2000) 724-727. Cerca con Google

[137] L. Yanliang, F. Rujun, Y. Siqi, M. Hua, L. Jing, C. Jun, Rechargeable Mg Batteries with Graphene-like MoS2 Cathode and Ultrasmall Mg Nanoparticle Anode, Adv. Mater., 23 (2011) 640-643. Cerca con Google

[138] B. Liu, T. Luo, G. Mu, X. Wang, D. Chen, G. Shen, Rechargeable Mg-Ion Batteries Based on WSe2 Nanowire Cathodes, ACS Nano, 7 (2013) 8051-8058. Cerca con Google

[139] R. Zhang, X. Yu, K.-W. Nam, C. Ling, T.S. Arthur, W. Song, A.M. Knapp, S.N. Ehrlich, X.-Q. Yang, M. Matsui, α-MnO2 as a cathode material for rechargeable Mg batteries, Electrochemistry Communications, 23 (2012) 110-113. Cerca con Google

[140] P. Novák, J. Desilvestro, Electrochemical Insertion of Magnesium in Metal Oxides and Sulfides from Aprotic Electrolytes, J. Electrochem. Soc., 140 (1993) 140-144. Cerca con Google

[141] L. Jiao, H. Yuan, Y. Wang, J. Cao, Y. Wang, Mg intercalation properties into open-ended vanadium oxide nanotubes, Electrochem. Commun., 7 (2005) 431-436. Cerca con Google

[142] X. Du, G. Huang, Y. Qin, L. Wang, Solvothermal synthesis of GO/V2O5 composites as a cathode material for rechargeable magnesium batteries, RSC Advances, 5 (2015) 76352-76355. Cerca con Google

[143] T.E. Sutto, T.T. Duncan, Electrochemical and structural characterization of Mg ion intercalation into Co3O4 using ionic liquid electrolytes, Electrochim. Acta, 80 (2012) 413-417. Cerca con Google

[144] T.E. Sutto, T.T. Duncan, Electrochemical and structural characterization of Mg ion intercalation into RuO2 using an ionic liquid electrolyte, Electrochim. Acta, 79 (2012) 170-174. Cerca con Google

[145] Z. Feng, J. Yang, Y. NuLi, J. Wang, X. Wang, Z. Wang, Preparation and electrochemical study of a new magnesium intercalation material Mg1.03Mn0.97SiO4, Electrochem. Commun., 10 (2008) 1291-1294. Cerca con Google

[146] Y. Li, Y. Nuli, J. Yang, T. Yilinuer, J. Wang, MgFeSiO4 prepared via a molten salt method as a new cathode material for rechargeable magnesium batteries, Chin. Sci. Bull., 56 (2011) 386-390. Cerca con Google

[147] J.-z. Sun, Preparation and characterization of novel positive electrode material for magnesium cells, Monatshefte für Chemie - Chemical Monthly, 145 (2014) 103-106. Cerca con Google

[148] Y. NuLi, Y. Zheng, Y. Wang, J. Yang, J. Wang, Electrochemical intercalation of Mg2+ in 3D hierarchically porous magnesium cobalt silicate and its application as an advanced cathode material in rechargeable magnesium batteries, J. Mater. Chem., 21 (2011) 12437-12443. Cerca con Google

[149] H.S. Kim, T.S. Arthur, G.D. Allred, J. Zajicek, J.G. Newman, A.E. Rodnyansky, A.G. Oliver, W.C. Boggess, J. Muldoon, Structure and compatibility of a magnesium electrolyte with a sulphur cathode, Nature Communications, 2 (2011) 427. Cerca con Google

[150] X. Yu, A. Manthiram, Performance Enhancement and Mechanistic Studies of Magnesium–Sulfur Cells with an Advanced Cathode Structure, ACS Energy Letters, 1 (2016) 431-437. Cerca con Google

[151] Z. Zhang, Z. Cui, L. Qiao, J. Guan, H. Xu, X. Wang, P. Hu, H. Du, S. Li, X. Zhou, S. Dong, Z. Liu, G. Cui, L. Chen, Novel Design Concepts of Efficient Mg-Ion Electrolytes toward High-Performance Magnesium–Selenium and Magnesium–Sulfur Batteries, Advanced Energy Materials, 7 (2017) 1602055. Cerca con Google

[152] T. Shiga, Y. Hase, Y. Kato, M. Inoue, K. Takechi, A rechargeable non-aqueous Mg–O2 battery, Chem. Commun., 49 (2013) 9152-9154. Cerca con Google

[153] H. Tian, T. Gao, X. Li, X. Wang, C. Luo, X. Fan, C. Yang, L. Suo, Z. Ma, W. Han, C. Wang, High power rechargeable magnesium/iodine battery chemistry, Nature Communications, 8 (2017) 1408301-1408310. Cerca con Google

[154] X. Yao, J. Luo, Q. Dong, D. Wang, A Rechargeable Non-aqueous Mg-Br2 Battery, Nano Energy, 28 (2016) 440-446. Cerca con Google

[155] G. Pagot, F. Bertasi, K. Vezzù, E. Negro, G. Nawn, A. Nale, C. Sun, Y. Bang, A. Zlotorowicz, V. Di Noto, Poly(vinyl alcohol)-based Electrolytes for Lithium Batteries, 21st International Conference on Solid State Ionics, Padova, Italy, 18-23 June 2017. Cerca con Google

[156] G. Pagot, E. Donà, F. Bertasi, K. Vezzù, A. Nale, E. Negro, V. Di Noto, Structure and Conductivity Mechanism of a Boron-based Ionic Liquid Electrolyte for Magnesium Batteries, XVI International Symposium on Polymer Electrolytes - ISPE-16, Yokohama, Japan, 24-29 June 2018. Cerca con Google

[157] G. Pagot, K. Vezzù, A. Nale, E. Negro, V. Di Noto, A Boron-based Ionic Liquid Electrolyte for Magnesium Batteries: Structure and Conductivity Mechanism, 6th International Conference on Ionic Liquids for Electrochemical Devices - ILED-6, Roma, Italy, 9-11 September 2018. Cerca con Google

[158] G. Pagot, F. Bertasi, E. Negro, F. Sepehr, S.J. Paddison, V. Di Noto, 3D-Catenated EMImCl/(TiCl4)1.4/(δ-MgCl2)x Ionic Liquid Electrolyte for Mg Secondary Batteries, PRiME 2016 - 230th ECS, Honolulu, USA, 2-7 October 2016. Cerca con Google

[159] G. Pagot, F. Bertasi, K. Vezzù, G. Nawn, C. Sun, A. Nale, E. Negro, V. Di Noto, [EMImCl/(TiCl4)1.4]/(δ-MgCl2)x Ionic Liquid Electrolyte for Mg-ion Batteries, XXVI Congresso Nazionale della Società Chimica Italiana, Paestum, Italy, 10-14 September 2017. Cerca con Google

[160] G. Pagot, F. Bertasi, G. Pace, K. Vezzù, E. Negro, A. Bach Delpeuch, G. Nawn, V. Di Noto, Hydrothermal Synthesis of Vanadium Sulfate supported on Graphene Oxide as Novel Cathode for Magnesium Ion Batteries, 6th edition of International Graphene Conference - Graphene 2016, Genova, Italy, 19-22 April 2016. Cerca con Google

[161] D.F. Shriver, D.F.S. Mark A. Drezdzon, M.A. Drezdzon, The Manipulation of Air-Sensitive Compounds, Wiley 1986. Cerca con Google

[162] V. Di Noto, G.A. Giffin, K. Vezzù, M. Piga, S. Lavina, Broadband Dielectric Spectroscopy: A Powerful Tool for the Determination of Charge Transfer Mechanisms in Ion Conductors, Solid State Proton Conductors: Properties and Applications in Fuel Cells, John Wiley & Sons, Chichester, U.K., 2012, pp. 109-183. Cerca con Google

[163] M.S. Peresin, Y. Habibi, J.O. Zoppe, J.J. Pawlak, O.J. Rojas, Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: Manufacture and characterization, Biomacromolecules, 11 (2010) 674-681. Cerca con Google

[164] J.W. Gilman, D.L. VanderHart, T. Kashiwagi, Thermal Decomposition Chemistry of Poly(vinyl alcohol), Fire and Polymers II, American Chemical Society 1995, pp. 161-185. Cerca con Google

[165] W. Dong, Y. Wang, C. Huang, S. Xiang, P. Ma, Z. Ni, M. Chen, Enhanced thermal stability of poly(vinyl alcohol) in presence of melanin, J. Therm. Anal. Calorim., 115 (2014) 1661-1668. Cerca con Google

[166] S. Krimm, C.Y. Liang, G.B.B.M. Sutherland, Infrared spectra of high polymers. V. Polyvinyl alcohol, Journal of Polymer Science, 22 (1956) 227-247. Cerca con Google

[167] K.B. Renuka Devi, R. Madivanane, Normal Coordinate Analysis of Poly Vinyl Acetate, Engineering Science and Technology: An International Journal, 2 (2012) 795-799. Cerca con Google

[168] H. Huang, L. Gu, Y. Ozaki, Non-isothermal crystallization and thermal transitions of a biodegradable, partially hydrolyzed poly(vinyl alcohol), Polymer, 47 (2006) 3935-3945. Cerca con Google

[169] C. Bergeron, E. Perrier, A. Potier, G. Delmas, A Study of the Deformation, Network, and Aging of Polyethylene Oxide Films by Infrared Spectroscopy and Calorimetric Measurements, International Journal of Spectroscopy, 2012 (2012) 1-13. Cerca con Google

[170] A. Ait-Salah, J. Dodd, A. Mauger, R. Yazami, F. Gendron, C.M. Julien, Structural and magnetic properties of LiFePO4 and lithium extraction effects, Z. Anorg. Allg. Chem., 632 (2006) 1598-1605. Cerca con Google

[171] V. Di Noto, D. Longo, V. Münchow, Ion-Oligomer Interactions in Poly(ethylene glycol)400/(LiCl) Electrolyte Complexes, J. Phys. Chem. B, 103 (1999) 2636-2646. Cerca con Google

[172] M. Jeyapandian, S. Lavina, S. Thayumanasundaram, H. Ohno, E. Negro, V. Di Noto, New hybrid inorganic-organic polymer electrolytes based on Zr(O(CH2)3CH3)4, glycerol and EMIm-TFSI ionic liquid, J. Power Sources, 195 (2010) 341-353. Cerca con Google

[173] I. Rey, P. Johansson, J. Lindgren, J.C. Lassègues, J. Grondin, L. Servant, Spectroscopic and theoretical study of (CF3SO2)2N- (TFSI-) and (CF3SO2)2NH (HTFSI), J. Phys. Chem. A, 102 (1998) 3249-3258. Cerca con Google

[174] S.J. Lue, J.Y. Chen, J.M. Yang, Crystallinity and stability of poly(vinyl alcohol)-fumed silica mixed matrix membranes, Journal of Macromolecular Science, Part B: Physics, 47 (2008) 39-51. Cerca con Google

[175] N.A. Peppas, Infrared spectroscopy of semicrystalline poly(vinyl alcohol) networks, Die Makromolekulare Chemie, 178 (1977) 595-601. Cerca con Google

[176] J.C. Lassègues, J. Grondin, C. Aupetit, P. Johansson, Spectroscopic identification of the lithium ion transporting species in LiTFSI-doped ionic liquids, J. Phys. Chem. A, 113 (2009) 305-314. Cerca con Google

[177] V. Di Noto, D. Longo, V. Münchow, Ion−Oligomer Interactions in Poly(ethylene glycol)400/(LiCl)x Electrolyte Complexes, The Journal of Physical Chemistry B, 103 (1999) 2636-2646. Cerca con Google

[178] V. Di Noto, M. Bettinelli, M. Furlani, S. Lavina, M. Vidali, Conductivity, luminescence and vibrational studies of the poly(ethylene glycol) 400 electrolyte based on europium trichloride, Macromol. Chem. Phys., 197 (1996) 375-388. Cerca con Google

[179] J. Evans, C.A. Vincent, P.G. Bruce, Electrochemical measurement of transference numbers in polymer electrolytes, Polymer, 28 (1987) 2324-2328. Cerca con Google

[180] D. Bansal, F. Cassel, F. Croce, M. Hendrickson, E. Plichta, M. Salomon, Conductivities and transport properties of gelled electrolytes with and without an ionic liquid for Li and Li-Ion batteries, J. Phys. Chem. B, 109 (2005) 4492-4496. Cerca con Google

[181] H. Cheng, C. Zhu, B. Huang, M. Lu, Y. Yang, Synthesis and electrochemical characterization of PEO-based polymer electrolytes with room temperature ionic liquids, Electrochim. Acta, 52 (2007) 5789-5794. Cerca con Google

[182] S. Kitajima, F. Bertasi, K. Vezzù, E. Negro, Y. Tominaga, V. Di Noto, Dielectric relaxations and conduction mechanisms in polyether-clay composite polymer electrolytes under high carbon dioxide pressure, PCCP, 15 (2013) 16626-16633. Cerca con Google

[183] G. Tammann, W. Hesse, Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten, Z. Anorg. Allg. Chem., 156 (1926) 245-257. Cerca con Google

[184] R. Yu, J.-J. Bao, T.-T. Chen, B.-K. Zou, Z.-Y. Wen, X.-X. Guo, C.-H. Chen, Solid polymer electrolyte based on thermoplastic polyurethane and its application in all-solid-state lithium ion batteries, Solid State Ion., 309 (2017) 15-21. Cerca con Google

[185] E. Ikada, K. Shounaka, M. Ashida, Dielectric properties of oligomers. VIII. The dielectric properties of model molecules for poly(vinyl acetate), Polym. J., 13 (1981) 413-419. Cerca con Google

[186] S. Bhavani, M. Ravi, Y. Pavani, V. Raja, R.S. Karthikeya, V.V.R.N. Rao, Studies on structural, electrical and dielectric properties of nickel ion conducting polyvinyl alcohol based polymer electrolyte films, Journal of Materials Science: Materials in Electronics, (2017) 1-6. Cerca con Google

[187] K.P. Singh, P.N. Gupta, Study of dielectric relaxation in polymer electrolytes, Eur. Polym. J., 34 (1998) 1023-1029. Cerca con Google

[188] A. De La Rosa, L. Heux, J.Y. Cavaillé, Secondary relaxations in poly(allyl alcohol), PAA, and poly(vinyl alcohol), PVA. II. Dielectric relaxations compared with dielectric behaviour of amorphous dried and hydrated cellulose and dextran, Polymer, 42 (2001) 5371-5379. Cerca con Google

[189] K. Nakamura, T. Shikata, Systematic dielectric and NMR study of the ionic liquid 1-alkyl-3-methyl imidazolium, ChemPhysChem, 11 (2010) 285-294. Cerca con Google

[190] F.S. Howell, C.T. Moynihan, P.B. Macedo, Electrical Relaxations In Mixtures Of Lithium Chloride And Glycerol, Bull. Chem. Soc. Jpn., 57 (1984) 652-661. Cerca con Google

[191] O. Bastiansen, Intra-Molecular Hydrogen Bonds in Ethylene Glycol, Glycerol, and Ethylene Chlorohydrin, Acta Chem. Scand., 3 (1949) 415-421. Cerca con Google

[192] R. Chelli, P. Procacci, G. Cardini, R.G. Della Valle, S. Califano, Glycerol condensed phases part I. A molecular dynamics study, PCCP, 1 (1999) 871-877. Cerca con Google

[193] R. Chelli, P. Procacci, G. Cardini, S. Califano, Glycerol condensed phases Part II.A molecular dynamics study of the conformational structure and hydrogen bonding, PCCP, 1 (1999) 879-885. Cerca con Google

[194] R. Chelli, F.L. Gervasio, C. Gellini, P. Procacci, G. Cardini, V. Schettino, Density Functional Calculation of Structural and Vibrational Properties of Glycerol, The Journal of Physical Chemistry A, 104 (2000) 5351-5357. Cerca con Google

[195] Y.P. Zhao, J.W. Zhang, C.C. Zhao, Z.Y. Du, Tetrahedrally coordinated lithium(I) and zinc(II) carboxylate-phosphinates based on tetradentate 2-carboxyethyl(phenyl)phosphinate ligand, Inorg. Chim. Acta, 414 (2014) 121-126. Cerca con Google

[196] U. Liddel, E.D. Becker, Infra-red spectroscopic studies of hydrogen bonding in methanol, ethanol, and t-butanol, Spectrochim. Acta, 10 (1957) 70-84. Cerca con Google

[197] D. Lin-Vien, N.B. Colthup, W.G. Fateley, J.G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Academic Press 1991. Cerca con Google

[198] E. Mendelovici, R.L. Frost, T. Kloprogge, Cryogenic Raman spectroscopy of glycerol, Journal of Raman Spectroscopy, 31 (2000) 1121-1126. Cerca con Google

[199] T.S. Perova, D.H. Christensen, U. Rasmussen, J.K. Vij, O.F. Nielsen, Far-infrared spectra of highly viscous liquids: glycerol and triacetin (glycerol triacetate), Vib. Spectrosc, 18 (1998) 149-156. Cerca con Google

[200] J.P. Zietlow, F.F. Cleveland, A.G. Meister, Substituted methanes. III. Raman spectra, assignments, and force constants for some trichloromethanes, J. Chem. Phys., 18 (1950) 1076-1080. Cerca con Google

[201] B. Dou, V. Dupont, P.T. Williams, H. Chen, Y. Ding, Thermogravimetric kinetics of crude glycerol, Bioresour. Technol., 100 (2009) 2613-2620. Cerca con Google

[202] J.L. Hong, X.H. Zhang, R.J. Wei, Q. Wang, Z.Q. Fan, G.R. Qi, Inhibitory effect of hydrogen bonding on thermal decomposition of the nanocrystalline cellulose/poly(propylene carbonate) nanocomposite, J. Appl. Polym. Sci., 131 (2014) 39847. Cerca con Google

[203] C.A. Angell, Entropy and fragility in supercooling liquids, Journal of Research of the National Institute of Standards and Technology, 102 (1997) 171-181. Cerca con Google

[204] P. Claudy, S. Jabrane, J.M. Létoffé, Annealing of a glycerol glass: Enthalpy, fictive temperature and glass transition temperature change with annealing parameters, Thermochim. Acta, 293 (1997) 1-11. Cerca con Google

[205] F. Bertasi, K. Vezzù, G.A. Giffin, T. Nosach, P. Sideris, S. Greenbaum, M. Vittadello, V. Di Noto, Single-ion-conducting nanocomposite polymer electrolytes based on PEG400 and anionic nanoparticles: Part 2. Electrical characterization, Int. J. Hydrogen Energy, 39 (2014) 2884-2895. Cerca con Google

[206] P. Dhatarwal, S. Choudhary, R.J. Sengwa, Electrochemical performance of Li+-ion conducting solid polymer electrolytes based on PEO–PMMA blend matrix incorporated with various inorganic nanoparticles for the lithium ion batteries, Composites Communications, 10 (2018) 11-17. Cerca con Google

[207] V. Di Noto, M. Piga, G.A. Giffin, S. Lavina, E.S. Smotkin, J.Y. Sanchez, C. Iojoiu, Influence of anions on proton-conducting membranes based on neutralized nafion 117, triethylammonium methanesulfonate, and triethylammonium perfluorobutanesulfonate. 2. electrical properties, Journal of Physical Chemistry C, 116 (2012) 1370-1379. Cerca con Google

[208] P. Lunkenheimer, U. Schneider, R. Brand, A. Loid, Glassy dynamics, Contemporary Physics, 41 (2000) 15-36. Cerca con Google

[209] A. Kudlik, S. Benkhof, T. Blochowicz, C. Tschirwitz, E. Rössler, The dielectric response of simple organic glass formers, J. Mol. Struct., 479 (1999) 201-218. Cerca con Google

[210] C.A.C. Sequeira, D. Santos, Polymer Electrolytes: Fundamentals and Applications, Woodhead Publishing Limited 2010. Cerca con Google

[211] N.-S. Cheng, Formula for the Viscosity of a Glycerol−Water Mixture, Industrial & Engineering Chemistry Research, 47 (2008) 3285-3288. Cerca con Google

[212] V. Di Noto, M. Piga, G.A. Giffin, K. Vezzù, T.A. Zawodzinski, Interplay between mechanical, electrical, and thermal relaxations in nanocomposite proton conducting membranes based on nafion and a [(ZrO2)·(Ta2O5)0.119] core-shell nanofiller, J. Am. Chem. Soc., 134 (2012) 19099-19107. Cerca con Google

[213] C.F. Smura, D.R. Parker, M. Zbiri, M.R. Johnson, Z.A. Gál, S.J. Clarke, High-Spin Cobalt(II) Ions in Square Planar Coordination: Structures and Magnetism of the Oxysulfides Sr2CoO2Cu2S2 and Ba2CoO2Cu2S2 and Their Solid Solution, J. Am. Chem. Soc., 133 (2011) 2691-2705. Cerca con Google

[214] G. Pagot, F. Bertasi, G. Nawn, E. Negro, G. Carraro, D. Barreca, C. Maccato, S. Polizzi, V. Di Noto, High-Performance Olivine for Lithium Batteries: Effects of Ni/Co Doping on the Properties of LiFeαNiβCoγPO4 Cathodes, Adv. Funct. Mater., 25 (2015) 4032-4037. Cerca con Google

[215] J.F. Moulder, J. Chastain, Handbook of x-ray photoelectron spectroscopy : a reference book of standard spectra for identification and interpretation of XPS data, Physical Electronics Division, Perkin-Elmer Corp., Eden Prairie, Minn., 1992. Cerca con Google

[216] J. Ma, B. Li, H. Du, C. Xu, F. Kang, The Effect of Vanadium on Physicochemical and Electrochemical Performances of LiFePO4 Cathode for Lithium Battery, J. Electrochem. Soc., 158 (2011) A26-A32. Cerca con Google

[217] C. Sun, Z. Zhou, Z. Xu, D. Wang, J. Wei, X. Bian, J. Yan, Improved high-rate charge/discharge performances of LiFePO4/C via V-doping, J. Power Sources, 193 (2009) 841-845. Cerca con Google

[218] T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials, Appl. Surf. Sci., 254 (2008) 2441-2449. Cerca con Google

[219] A. Mansour, R.A. Brizzolara, Characterization of the surface of FeO powder by XPS, Surf. Sci. Spectra, 4 (1996) 345-350. Cerca con Google

[220] L. Tan, Z. Luo, H. Liu, Y. Yu, Synthesis of novel high-voltage cathode material LiCoPO4 via rheological phase method, J. Alloys Compd., 502 (2010) 407-410. Cerca con Google

[221] M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W. Lau, A.R. Gerson, R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni, Appl. Surf. Sci., 257 (2011) 2717-2730. Cerca con Google

[222] S. Nordlinder, A. Augustsson, T. Schmitt, J. Guo, L.C. Duda, J. Nordgren, T. Gustafsson, K. Edström, Redox behavior of vanadium oxide nanotubes as studied by X-ray photoelectron spectroscopy and soft X-ray absorption spectroscopy, Chem. Mater., 15 (2003) 3227-3232. Cerca con Google

[223] G. Silversmit, D. Depla, H. Poelman, G.B. Marin, R. De Gryse, Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+), J. Electron. Spectrosc. Relat. Phenom., 135 (2004) 167-175. Cerca con Google

[224] P. Zhang, Y. Wang, M. Lin, D. Zhang, X. Ren, Q. Yuan, Doping Effect of Nb5+ on the Microstructure and Defects of LiFePO4, J. Electrochem. Soc., 159 (2012) A402-A409. Cerca con Google

[225] E. Atanassova, T. Dimitrova, J. Koprinarova, AES and XPS study of thin RF-sputtered Ta2O5 layers, Appl. Surf. Sci., 84 (1995) 193-202. Cerca con Google

[226] MATCH!, Crystal Impact, 2012, 2.0.7. Cerca con Google

[227] L. Lutterotti, Maud, 2018, 2.8. Cerca con Google

[228] T. Kimura, C.K. Chang, F. Kimura, M. Maeyama, The pseudo-single-crystal method: a third approach to crystal structure determination, J. Appl. Crystallogr., 42 (2009) 535-537. Cerca con Google

[229] G. Liang, R.E. Benson, J.Y. Li, D. Vaknin, L.M. Daniels, LiNi0.66Fe0.34PO4, Acta Crystallographica Section E-Structure Reports Online, 63 (2007) i73-i74. Cerca con Google

[230] D. Riou, N. Nguyen, R. Benloucif, B. Raveau, LiFeP2O7 : Structure and magnetic properties, Mater. Res. Bull., 25 (1990) 1363-1369. Cerca con Google

[231] Ģ. Vītiņš, Z. Kaņepe, A. Vītiņš, J. Ronis, A. Dindūne, A. Lūsis, Structural and conductivity studies in LiFeP2O7, LiScP2O7, and NaScP2O7, J. Solid State Electrochem., 4 (2000) 146-152. Cerca con Google

[232] L. Pauling, S.B. Hendricks, The Crystal Structures of Hematite And Corundum, J. Am. Chem. Soc., 47 (1925) 781-790. Cerca con Google

[233] R.W.G. Wyckoff, The Structure of Crystals: Supplement for 1930-1934 to the Second Edition, Reinhold Publishing Corporation 1935. Cerca con Google

[234] L.A. Aleshina, S.V. Loginova, Rietveld analysis of X-ray diffraction pattern from β-Ta2O5 oxide, Crystallography Reports, 47 (2002) 415-419. Cerca con Google

[235] B.H. Toby, R factors in Rietveld analysis: How good is good enough?, Powder diffraction, 21 (2006) 67-70. Cerca con Google

[236] C.M. Julien, P. Jozwiak, J. Garbarczyk, Vibrational spectroscopy of electrode materials for rechargeable lithium batteries - IV. Lithium metal phosphates, Advanced Techniques for Energy Sources Investigation and Testing, Sofia, Bulgaria, Cerca con Google

[237] M.T. Paques-Ledent, P. Tarte, Vibrational studies of olivine-type compounds—II Orthophosphates, -arsenates and -vanadates AIBIIXVO4, Spectrochim. Acta, Part A, 30 (1974) 673-689. Cerca con Google

[238] W. Paraguassu, P.T.C. Freire, V. Lemos, S.M. Lala, L.A. Montoro, J.M. Rosolen, Phonon calculation on olivine-like LiMPO4 (M = Ni, Co, Fe) and Raman scattering of the iron-containing compound, Journal of Raman Spectroscopy, 36 (2005) 213-220. Cerca con Google

[239] W.M. Haynes, CRC Handbook of Chemistry and Physics, 93rd Edition, Taylor & Francis 2012. Cerca con Google

[240] R.J.H. Clark, D. Brown, J.C. Bailar, H.J. Emeléus, R. Nyholm, The Chemistry of Vanadium, Niobium and Tantalum: Pergamon Texts in Inorganic Chemistry, Elsevier Science 2013. Cerca con Google

[241] N. Ravet, M. Gauthier, K. Zaghib, Goodenough, A. Mauger, F. Gendron, Julien, Mechanism of the Fe3+ Reduction at Low Temperature for LiFePO4 Synthesis from a Polymeric Additive, Chem. Mater., 19 (2007) 2595-2602. Cerca con Google

[242] J. Liu, M.N. Banis, Q. Sun, A. Lushington, R. Li, T.K. Sham, X. Sun, Rational design of atomic-layer-deposited LiFePO4 as a high-performance cathode for lithium-ion batteries, Adv. Mater., 26 (2014) 6472-6477. Cerca con Google

[243] M. Ren, Z. Zhou, Y. Li, X.P. Gao, J. Yan, Preparation and electrochemical studies of Fe-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries, J. Power Sources, 162 (2006) 1357-1362. Cerca con Google

[244] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd Edition, 2nd ed., John Wiley & Sons 2000. Cerca con Google

[245] Z.P. Cai, Y. Liang, W.S. Li, L.D. Xing, Y.H. Liao, Preparation and performances of LiFePO4 cathode in aqueous solvent with polyacrylic acid as a binder, J. Power Sources, 189 (2009) 547-551. Cerca con Google

[246] K. Dokko, M. Mohamedi, M. Umeda, I. Uchida, Kinetic Study of Li-Ion Extraction and Insertion at LiMn2 O 4 Single Particle Electrodes Using Potential Step and Impedance Methods, J. Electrochem. Soc., 150 (2003) A425-A429. Cerca con Google

[247] J. Xie, K. Kohno, T. Matsumura, N. Imanishi, A. Hirano, Y. Takeda, O. Yamamoto, Li-ion diffusion kinetics in LiMn2O4 thin films prepared by pulsed laser deposition, Electrochim. Acta, 54 (2008) 376-381. Cerca con Google

[248] J. Xie, T. Tanaka, N. Imanishi, T. Matsumura, A. Hirano, Y. Takeda, O. Yamamoto, Li-ion transport kinetics in LiMn2O4 thin films prepared by radio frequency magnetron sputtering, J. Power Sources, 180 (2008) 576-581. Cerca con Google

[249] C. Ho, I.D. Raistrick, R.A. Huggins, Application of A‐C Techniques to the Study of Lithium Diffusion in Tungsten Trioxide Thin Films, J. Electrochem. Soc., 127 (1980) 343-350. Cerca con Google

[250] I.D. Johnson, E. Blagovidova, P.A. Dingwall, D.J. Brett, P.R. Shearing, J.A. Darr, High power Nb-doped LiFePO4 Li-ion battery cathodes; pilot-scale synthesis and electrochemical properties, J. Power Sources, 326 (2016) 476-481. Cerca con Google

[251] F. Omenya, N.A. Chernova, S. Upreti, P.Y. Zavalij, K.-W. Nam, X.-Q. Yang, M.S. Whittingham, Can vanadium be substituted into LiFePO4?, Chem. Mater., 23 (2011) 4733-4740. Cerca con Google

[252] C. Stefan, D. Lemordant, P. Biensan, C. Siret, B. Claude-Montigny, Thermal stability and crystallization of N-alkyl-N-alkyl′-pyrrolidinium imides, J. Therm. Anal. Calorim., 102 (2010) 685-693. Cerca con Google

[253] W.A. Henderson, V.G. Young, S. Passerini, P.C. Trulove, H.C. De Long, Plastic Phase Transitions in N-Ethyl-N-methylpyrrolidinium Bis(trifluoromethanesulfonyl)imide, Chem. Mater., 18 (2006) 934-938. Cerca con Google

[254] D.R. MacFarlane, P. Meakin, J. Sun, N. Amini, M. Forsyth, Pyrrolidinium Imides:  A New Family of Molten Salts and Conductive Plastic Crystal Phases, The Journal of Physical Chemistry B, 103 (1999) 4164-4170. Cerca con Google

[255] W.A. Henderson, S. Passerini, Phase Behavior of Ionic Liquid−LiX Mixtures:  Pyrrolidinium Cations and TFSI- Anions, Chem. Mater., 16 (2004) 2881-2885. Cerca con Google

[256] B. Babushkina Olga, Phase Behaviour and FTIR Spectra of Ionic Liquids: The Mixtures of 1-Butyl-1-methylpyrrolidinium Chloride and TaCl5, Zeitschrift für Naturforschung A, 63 (2008) 66-72. Cerca con Google

[257] B. Bednarska-Bolek, R. Jakubas, G. Bator, J. Baran, Vibrational study of the structural phase transition in bis(pyrrolidinium)-chloride-hexachloroantimonate(V) by infrared spectroscopy, J. Mol. Struct., 614 (2002) 151-157. Cerca con Google

[258] J. Evans, W. J., Thermodynamic and Spectroscopic Study of Pyrrolidine. II. Vibrational Spectra and Configuration, J. Chem. Phys., 31 (1959) 655-662. Cerca con Google

[259] J. Adebahr, P. Johansson, P. Jacobsson, D.R. MacFarlane, M. Forsyth, Ab initio calculations, Raman and NMR investigation of the plastic crystal di-methyl pyrrolidinium iodide, Electrochim. Acta, 48 (2003) 2283-2289. Cerca con Google

[260] G. Ramis, G. Busca, FTIR spectra of adsorbed n-butylamine, J. Mol. Struct., 193 (1989) 93-100. Cerca con Google

[261] T.C. Waddington, F. Klanberg, The infrared spectra of some new compounds of boron trifluoride, boron trichloride, and sulphur trioxide, J. Chem. Soc., 1 (1960) 2339-2343. Cerca con Google

[262] J.I. Bullock, N.J. Taylor, F.W. Parrett, Some metal halide–phosphorus halide–alkyl halide complexes. Part I. Reactions with boron, aluminium, silicon, germanium, and tin halides, J. Chem. Soc., Dalton Trans., 17 (1972) 1843-1846. Cerca con Google

[263] W. Kynaston, B.E. Larcombe, H.S. Turner, Preparation and infrared spectra of some tetrachloroborates, Journal of the Chemical Society (Resumed), 1 (1960) 1772-1778. Cerca con Google

[264] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds - Part A: Theory and Applications in Inorganic Chemistry, Sixth ed., John Wiley & Sons, INC., Hoboken, New Jersey, 2009. Cerca con Google

[265] S.D. Williams, J.P. Schoebrechts, J.C. Selkirk, G. Mamantov, A new room temperature molten salt solvent system: Organic cation tetrachloroborates, J. Am. Chem. Soc., 109 (1987) 2218-2219. Cerca con Google

[266] C.J. Dymek, D.A. Grossie, A.V. Fratini, W. Wade Adams, Evidence for the presence of hydrogen-bonded ion-ion interactions in the molten salt precursor, 1-methyl-3-ethylimidazolium chloride, J. Mol. Struct., 213 (1989) 25-34. Cerca con Google

[267] K. Matsumoto, R. Hagiwara, Z. Mazej, P. Benkič, B. Žemva, Crystal structures of frozen room temperature ionic liquids, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4), hexafluoroniobate (EMImNbF6) and hexafluorotantalate (EMImTaF6), determined by low-temperature X-ray diffraction, Solid State Sci., 8 (2006) 1250-1257. Cerca con Google

[268] L. Gao, L. Wang, T. Qi, J. Chu, J. Qu, Preparation and characterization of titanium tetrachloride-based ionic liquids, J. Electrochem. Soc., 156 (2009) P49-P55. Cerca con Google

[269] M. Vittadello, P.E. Stallworth, F.M. Alamgir, S. Suarez, S. Abbrent, C.M. Drain, V. Di Noto, S.G. Greenbaum, Polymeric δ-MgCl2 nanoribbons, Inorganica Chimica Acta, 359 (2006) 2513-2518. Cerca con Google

[270] S.P. Webb, M.S. Gordon, Intermolecular self-interactions of the titanium tetrahalides TiX4 (X = F, Cl, Br), J. Am. Chem. Soc., 121 (1999) 2552-2560. Cerca con Google

[271] S.A. Katsyuba, P.J. Dyson, E.E. Vandyukova, A.V. Chernova, A. Vidiš, Molecular structure, vibrational spectra, and hydrogen bonding of the ionic liquid 1-ethyl-3-methyl-1H-imidazolium tetrafluoroborate, Helv. Chim. Acta, 87 (2004) 2556-2565. Cerca con Google

[272] N.E. Heimer, R.E. Del Sesto, Z. Meng, J.S. Wilkes, W.R. Carper, Vibrational spectra of imidazolium tetrafluoroborate ionic liquids, J. Mol. Liq., 124 (2006) 84-95. Cerca con Google

[273] K.M. Dieter, C.J. Dymek Jr, N.E. Heimer, J.W. Rovang, J.S. Wilkes, Ionic structure and interactions in 1-methyl-3-ethylimidazolium chloride-AlCl3 molten salts, J. Am. Chem. Soc., 110 (1988) 2722-2726. Cerca con Google

[274] S.A. Katsyuba, E.E. Zvereva, A. Vidiš, P.J. Dyson, Application of density functional theory and vibrational spectroscopy toward the rational design of ionic liquids, J. Phys. Chem. A, 111 (2007) 352-370. Cerca con Google

[275] J. Shamir, S. Schneider, A. Bino, S. Cohen, New double salt [PCl4]3[TiCl6][PCl6] and related compounds in the PCl5TiCl4 system. Synthesis and structural determination by Raman spectra and X-ray analysis, Inorg. Chim. Acta, 111 (1986) 141-147. Cerca con Google

[276] V. Di Noto, A. Marigo, M. Viviani, C. Marega, S. Bresadola, R. Zannetti, MgCl2-supported Ziegler-Natta catalysts: Synthesis and X-ray diffraction characterization of some MgCl2-Lewis base adducts, Die Makromolekulare Chemie, 193 (1992) 123-131. Cerca con Google

[277] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Theory and Applications in Inorganic Chemistry, Wiley 2008. Cerca con Google

[278] J.A. Creighton, J.H.S. Green, The vibrational spectra of some penta- and hexa-halogeno-complexes of tin, titanium, and tellurium, J. Chem. Soc. A, Inor. Phys. Theor., (1968) 808-813. Cerca con Google

[279] W. Van Bronswyk, R.J.H. Clark, L. Maresca, Infrared spectra, laser Raman spectra, and force constants of the metal-hexahalo species R2MIVX6, RMVX6 [R = (C2H5)4N or Cs; MIV = Ti, Zr, or Hf; MV = Nb or Ta; X = Cl or Br], and WCl6, Inorg. Chem., 8 (1969) 1395-1401. Cerca con Google

[280] V. Di Noto, M. Vittadello, Mechanism of ionic conductivity in poly(ethylene glycol 400)/(MgCl2)x polymer electrolytes: Studies based on electrical spectroscopy, Solid State Ion., 147 (2002) 309-316. Cerca con Google

[281] J.H. Cho, J.H. Ha, S.H. Lee, B.W. Cho, K.Y. Chung, B.K. Na, K.B. Kim, S.H. Oh, Effect of 1-allyl-1-methylpyrrolidinium chloride addition to ethylmagnesium bromide electrolyte on a rechargeable magnesium battery, Electrochim. Acta, 231 (2017) 379-385. Cerca con Google

[282] K.A. See, K.W. Chapman, L. Zhu, K.M. Wiaderek, O.J. Borkiewicz, C.J. Barile, P.J. Chupas, A.A. Gewirth, The Interplay of Al and Mg Speciation in Advanced Mg Battery Electrolyte Solutions, J. Am. Chem. Soc., 138 (2016) 328-337. Cerca con Google

[283] I. Shterenberg, M. Salama, H.D. Yoo, Y. Gofer, J.B. Park, Y.K. Sun, D. Aurbach, Evaluation of (CF3SO2)2N- (TFSI) based electrolyte solutions for Mg batteries, J. Electrochem. Soc., 162 (2015) A7118-A7128. Cerca con Google

[284] D. Aurbach, Y. Gofer, The Correlation Between Surface Chemistry, Surface Morphology, and Cycling Efficiency of Lithium Electrodes in a Few Polar Aprotic Systems, J. Electrochem. Soc., 136 (1989) 3198-3205. Cerca con Google

[285] S. Takahashi, L.A. Curtiss, D. Gosztola, N. Koura, M.L. Saboungi, Molecular Orbital Calculations and Raman Measurements for l-Ethyl-3-methylimidazolium Chloroaluminates, Inorg. Chem., 34 (1995) 2990-2993. Cerca con Google

[286] C.J. Barile, R.G. Nuzzo, A.A. Gewirth, Exploring salt and solvent effects in chloride-based electrolytes for magnesium electrodeposition and dissolution, Journal of Physical Chemistry C, 119 (2015) 13524-13534. Cerca con Google

[287] A. Mukherjee, N. Sa, P.J. Phillips, A. Burrell, J. Vaughey, R.F. Klie, Direct Investigation of Mg Intercalation into the Orthorhombic V2O5 Cathode Using Atomic-Resolution Transmission Electron Microscopy, Chem. Mater., 29 (2017) 2218-2226. Cerca con Google

[288] G. Zhao, J. Li, X. Ren, C. Chen, X. Wang, Few-Layered Graphene Oxide Nanosheets As Superior Sorbents for Heavy Metal Ion Pollution Management, Environmental Science & Technology, 45 (2011) 10454-10462. Cerca con Google

[289] J. Twu, C.-F. Shih, T.-H. Guo, K.-H. Chen, Raman spectroscopic studies of the thermal decomposition mechanism of ammonium metavanadate, J. Mater. Chem., 7 (1997) 2273-2277. Cerca con Google

[290] M. Acik, G. Lee, C. Mattevi, M. Chhowalla, K. Cho, Y.J. Chabal, Unusual infrared-absorption mechanism in thermally reduced graphene oxide, Nat. Mater., 9 (2010) 840-845. Cerca con Google

[291] T. Szabó, O. Berkesi, I. Dékány, DRIFT study of deuterium-exchanged graphite oxide, Carbon, 43 (2005) 3186-3189. Cerca con Google

[292] T. Szabó, O. Berkesi, P. Forgó, K. Josepovits, Y. Sanakis, D. Petridis, I. Dékány, Evolution of surface functional groups in a series of progressively oxidized graphite oxides, Chem. Mater., 18 (2006) 2740-2749. Cerca con Google

[293] M. Acik, G. Lee, C. Mattevi, A. Pirkle, R.M. Wallace, M. Chhowalla, K. Cho, Y. Chabal, The role of oxygen during thermal reduction of graphene oxide studied by infrared absorption spectroscopy, Journal of Physical Chemistry C, 115 (2011) 19761-19781. Cerca con Google

[294] D. Lin-Vien, N.B. Colthup, W.G. Fateley, J.G. Grasselli, CHAPTER 17 - Aromatic and Heteroaromatic Rings, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Academic Press, San Diego, 1991, pp. 277-306. Cerca con Google

[295] M.R. Todorović, U.B. Mioč, I. Holclajtner-Antunović, D. Šegan, Synthesis and characterization of ammonium decavanadate (V), Mater. Sci. Forum, 2005, pp. 351-356. Cerca con Google

[296] G.S. Zakharova, C. Täschner, T. Kolb, C. Jähne, A. Leonhardt, B. Büchner, R. Klingeler, Morphology controlled NH4V3O8 microcrystals by hydrothermal synthesis, Dalton Transactions, 42 (2013) 4897-4902. Cerca con Google

[297] H. Zhang, T. Kuila, N.H. Kim, D.S. Yu, J.H. Lee, Simultaneous reduction, exfoliation, and nitrogen doping of graphene oxide via a hydrothermal reaction for energy storage electrode materials, Carbon, 69 (2014) 66-78. Cerca con Google

[298] E. Fuente, J.A. Menéndez, M.A. Díez, D. Suárez, M.A. Montes-Morán, Infrared spectroscopy of carbon materials: A quantum chemical study of model compounds, J. Phys. Chem. B, 107 (2003) 6350-6359. Cerca con Google

[299] M. Kang, D.H. Lee, J. Yang, Y.M. Kang, H. Jung, Simultaneous reduction and nitrogen doping of graphite oxide by using electron beam irradiation, RSC Advances, 5 (2015) 104502-104508. Cerca con Google

[300] R. Bariseviciute, J. Ceponkus, V. Sablinskas, Matrix isolation FTIR spectroscopical study of ethene secondary ozonide, Central European Journal of Chemistry, 5 (2006) 71-86. Cerca con Google

[301] N. Kausar, R. Howe, M. Skyllas-Kazacos, Raman spectroscopy studies of concentrated vanadium redox battery positive electrolytes, J. Appl. Electrochem., 31 (2001) 1327-1332. Cerca con Google

[302] L. Mai, C. Han, Reaction-crystallization growth and electrical property of ammonium decavanadate nanorods, Mater. Lett., 62 (2008) 1458-1461. Cerca con Google

[303] S. Mohan, S. Gunasekaran, K. Kumar, Vibrational spectra of vanadium chloride and its normal coordinate analysis, Proc. Indian Natl. Sci. Acad., 3 (1986) 641-646. Cerca con Google

[304] D. Imamura, M. Miyayama, Characterization of magnesium-intercalated V2O5/carbon composites, Solid State Ion., 161 (2003) 173-180. Cerca con Google

[305] L. Yu, X. Zhang, Electrochemical insertion of magnesium ions into V2O5 from aprotic electrolytes with varied water content, J. Colloid Interface Sci., 278 (2004) 160-165. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record