Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Masina, Fabio (2019) Behavioral and neurophysiological modulation of error-related processes. [Ph.D. thesis]

Full text disponibile come:

PDF Document - Accepted Version

Abstract (italian or english)

The term brain modulation refers to a wide range of interventions that allow modifying the central nervous system. The general purpose of this dissertation will regard the investigation and modulation of error-related processes through the use of behavioral interventions and noninvasive brain stimulation (NIBS). In order to accomplish this aim, three studies were conducted.
Study 1 investigated the motivation-cognition interaction. In particular, this study aimed to increase error awareness by using rewards in a group of healthy older adults, compared to younger adults. Results showed a reduction of error awareness when participants were rewarded, both older and younger adults. This detrimental effect of rewards suggests more attention in planning motivational interventions with the aim to modulate error awareness.
Study 2 aimed to investigate the neural bases of error awareness and modulate error awareness by using on-line transcranial magnetic stimulation (TMS). Results revealed an implication of the dorsolateral prefrontal cortex (DLPFC) in error awareness. However, this modulation was specifically induced by a single-pulse TMS paradigm, compared to a paired-pulse TMS paradigm that did not produce a modulation of the process. These results highlight how subtle variations of the TMS paradigm can differently affect error awareness.
Study 3 investigated the behavioral and neurophysiological modulation of error-related processes induced by a low-frequency repetitive TMS paradigm. Results showed a reduction of the error positivity (Pe), an electrophysiological component associated with error awareness, only when the left DLPFC was stimulated, compared to the homologous right DLPFC and the Vertex. This result contributes to provide new knowledge about error-related processes, in particular about the neural bases of the Pe.
Finally, a critical review of these studies will provide general insights for the design of future modulatory interventions.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Mapelli, Daniela
Ph.D. course:Ciclo 31 > Corsi 31 > BRAIN, MIND AND COMPUTER SCIENCE
Data di deposito della tesi:07 March 2019
Anno di Pubblicazione:07 March 2019
Key Words:error-related processes; error awareness; post-error slowing; transcranial magnetic stimulation; event-related potential; modulation; error positivity; error-related negativity
Settori scientifico-disciplinari MIUR:Area 11 - Scienze storiche, filosofiche, pedagogiche e psicologiche > M-PSI/02 Psicobiologia e psicologia fisiologica
Struttura di riferimento:Dipartimenti > Dipartimento di Psicologia Generale
Codice ID:11842
Depositato il:08 Nov 2019 09:18
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Adrian, E. D., & Moruzzi, G. (1939). Impulses in the pyramidal tract. The Journal of Physiology, 97(2), 153–199. https://doi.org/10.1113/jphysiol.1939.sp003798 Vai! Cerca con Google

Altman, J. (1962). Are new neurons formed in the brains of adult mammals? Science, 135(3509), 1127–1128. https://doi.org/10.1126/science.135.3509.1127 Vai! Cerca con Google

Amengual, J. L., Vernet, M., Adam, C., & Valero-Cabré, A. (2017). Local entrainment of oscillatory activity induced by direct brain stimulation in humans. Scientific Reports, 7. https://doi.org/10.1038/srep41908 Vai! Cerca con Google

Anderson, V. (2005). Functional Plasticity or Vulnerability After Early Brain Injury? PEDIATRICS, 116(6), 1374–1382. https://doi.org/10.1542/peds.2004-1728 Vai! Cerca con Google

Anderson, V., Spencer-Smith, M., & Wood, A. (2011). Do children really recover better? Neurobehavioural plasticity after early brain insult. Brain. https://doi.org/10.1093/brain/awr103 Vai! Cerca con Google

Antal, A., Boros, K., Poreisz, C., Chaieb, L., Terney, D., & Paulus, W. (2008). Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimulation, 1(2), 97–105. https://doi.org/10.1016/j.brs.2007.10.001 Vai! Cerca con Google

Antal, A., & Herrmann, C. S. (2016). Transcranial Alternating Current and Random Noise Stimulation: Possible Mechanisms. Neural Plasticity. https://doi.org/10.1155/2016/3616807 Vai! Cerca con Google

Ariely, D., Gneezy, U., Loewenstein, G., & Mazar, N. (2009). Large stakes and big mistakes. Review of Economic Studies, 76(2), 451–469. https://doi.org/10.1111/j.1467-937X.2009.00534.x Vai! Cerca con Google

Balogh, L., & Czobor, P. (2016). Post-Error Slowing in Patients With ADHD: A Meta-Analysis. Journal of Attention Disorders, 20(12), 1004–1016. https://doi.org/10.1177/1087054714528043 Vai! Cerca con Google

Banasr, M., & Duman, R. S. (2008). Keeping “Trk” of Antidepressant Actions. Neuron. https://doi.org/10.1016/j.neuron.2008.07.028 Vai! Cerca con Google

Bardi, L., Kanai, R., Mapelli, D., & Walsh, V. (2012). TMS of the FEF interferes with spatial conflict. Journal of Cognitive Neuroscience, 24(6), 1305–1313. https://doi.org/10.1162/jocn_a_00223 Vai! Cerca con Google

Barker, A. T., Jalinous, R., & Freeston, I. L. (1985). Non-invasive magnetic stimulation of human motor cortex. The Lancet. https://doi.org/10.1016/S0140-6736(85)92413-4 Vai! Cerca con Google

Bateson, P. (1979). How do sensitive periods arise and what are they for? Animal Behaviour, 27(PART 2), 470–486. https://doi.org/10.1016/0003-3472(79)90184-2 Vai! Cerca con Google

Bateson, P. (2017). Robustness and plasticity in development. Wiley Interdisciplinary Reviews: Cognitive Science. https://doi.org/10.1002/wcs.1386 Vai! Cerca con Google

Bateson, P., & Gluckman, P. (2011). Plasticity, robustness, development and evolution. Cambridge University Press. Cerca con Google

Baumeister, R. F. (1984). Choking under pressure: Self-consciousness and paradoxical effects of incentives on skillful performance. Journal of Personality and Social Psychology, 46(3), 610–620. https://doi.org/10.1037/0022-3514.46.3.610 Vai! Cerca con Google

Bengoetxea, H., Ortuzar, N., Bulnes, S., Rico-Barrio, I., Lafuente, J. V., & Argandoña, E. G. (2012). Enriched and deprived sensory experience induces structural changes and rewires connectivity during the postnatal Development of the brain. Neural Plasticity. https://doi.org/10.1155/2012/305693 Vai! Cerca con Google

Berlucchi, G., & Buchtel, H. A. (2009). Neuronal plasticity: Historical roots and evolution of meaning. In Experimental Brain Research (Vol. 192, pp. 307–319). https://doi.org/10.1007/s00221-008-1611-6 Vai! Cerca con Google

Berridge, C. W., & Waterhouse, B. D. (2003). The locus coeruleus-noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Research Reviews. https://doi.org/10.1016/S0165-0173(03)00143-7 Vai! Cerca con Google

Bikson, M., Datta, A., Rahman, A., & Scaturro, J. (2010). Electrode montages for tDCS and weak transcranial electrical stimulation: Role of “ return” electrode’s position and size. Clinical Neurophysiology, 121(12), 1976–1978. https://doi.org/10.1016/j.clinph.2010.05.020 Vai! Cerca con Google

Billig, N. (1986). Agitated Behaviors in the Elderly: I. A Conceptual Review. Journal of the American Geriatrics Society, 34(10), 711–721. https://doi.org/10.1111/j.1532-5415.1986.tb04302.x Vai! Cerca con Google

Bindman, L. J., Lippold, O. C. J., & Redfearn, J. W. T. (1962). Long-lasting changes in the level of the electrical activity of the cerebral cortex produced by polarizing currents. Nature, 196(4854), 584–585. https://doi.org/10.1038/196584a0 Vai! Cerca con Google

Bliss, T. V. P., & Lømo, T. (1973). Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. The Journal of Physiology, 232(2), 331–356. https://doi.org/10.1113/jphysiol.1973.sp010273 Vai! Cerca con Google

Bolognini, N., & Ro, T. (2010). Transcranial Magnetic Stimulation: Disrupting Neural Activity to Alter and Assess Brain Function. Journal of Neuroscience, 30(29), 9647–9650. https://doi.org/10.1523/JNEUROSCI.1990-10.2010 Vai! Cerca con Google

Bonner, S. E., Hastie, R., Sprinkle, G. B., & Young, S. M. (2000). A Review of the Effects of Financial Incentives on Performance in Laboratory Tasks: Implications for. Journal of Management Accounting Research, 12(1), 19–64. https://doi.org/10.2308/jmar.2000.12.1.19 Vai! Cerca con Google

Bonner, S. E., & Sprinkle, G. B. (2002). The effects of monetary incentives on effort and task performance: theories, evidence, and a framework for research. Accounting, Organizations and Society, 27(4–5), 303–345. https://doi.org/Pii S0361-3682(01)00052-6Doi 10.1016/S0361-3682(01)00052-6 Vai! Cerca con Google

Bostrom, N., & Sandberg, A. (2009). Cognitive enhancement: Methods, ethics, regulatory challenges. Science and Engineering Ethics, 15(3), 311–341. https://doi.org/10.1007/s11948-009-9142-5 Vai! Cerca con Google

Bothwell, M. (2014). NGF, BDNF, NT3, and NT4. Handbook of Experimental Pharmacology, 220, 3–15. https://doi.org/10.1007/978-3-642-45106-5_1 Vai! Cerca con Google

Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624–652. https://doi.org/10.1037/0033-295X.108.3.624 Vai! Cerca con Google

Braver, T. S., Krug, M. K., Chiew, K. S., Kool, W., Andrew Westbrook, J., Clement, N. J., … Somerville, L. H. (2014). Mechanisms of motivation-cognition interaction: Challenges and opportunities. Cognitive, Affective and Behavioral Neuroscience. https://doi.org/10.3758/s13415-014-0300-0 Vai! Cerca con Google

Brázdil, M., Roman, R., Falkenstein, M., Daniel, P., Jurák, P., & Rektor, I. (2002). Error processing - Evidence from intracerebral ERP recordings. Experimental Brain Research, 146(4), 460–466. https://doi.org/10.1007/s00221-002-1201-y Vai! Cerca con Google

Brown, C. E., Li, P., Boyd, J. D., Delaney, K. R., & Murphy, T. H. (2007). Extensive Turnover of Dendritic Spines and Vascular Remodeling in Cortical Tissues Recovering from Stroke. Journal of Neuroscience, 27(15), 4101–4109. https://doi.org/10.1523/JNEUROSCI.4295-06.2007 Vai! Cerca con Google

Burke, S. N., & Barnes, C. A. (2006). Neural plasticity in the ageing brain. Nature Reviews Neuroscience. https://doi.org/10.1038/nrn1809 Vai! Cerca con Google

Cabeza, R., Nyberg, L., & Park, D. C. (2009). Cognitive Neuroscience of Aging: Linking cognitive and cerebral aging. Cognitive Neuroscience of Aging: Linking cognitive and cerebral aging. https://doi.org/10.1093/acprof:oso/9780195156744.001.0001 Vai! Cerca con Google

Camerer, C. F., & Hogarth, R. M. (1999). The effects of financial incentives in experiments: A review and capital labor production framework. Journal of Risk and Uncertainty, 19, 7–42. https://doi.org/10.1023/A:1007850605129 Vai! Cerca con Google

Campen, A. D. van, Keuken, M. C., Wildenberg, W. P. M. van den, & Ridderinkhof, K. R. (2013). TMS over M1 Reveals Expression and Selective Suppression of Conflicting Action Impulses. Journal of Cognitive Neuroscience, 26(1), 1–15. https://doi.org/10.1162/jocn Vai! Cerca con Google

Carstensen, L. L., & Mikels, J. A. (2005). At the Intersection of Emotion and Cognition. Current Directions in Psychological Science, 14(3), 117–121. https://doi.org/10.1111/j.0963-7214.2005.00348.x Vai! Cerca con Google

Carver, C. S., & Scheier, M. F. (1981). Attention and Self-Regulation: A Control-Theory Approach to Human Behavior. Springer Series in Social Psychology (Vol. 1). https://doi.org/10.1007/978-1-4612-5887-2 Vai! Cerca con Google

Charles, L., Van Opstal, F., Marti, S., & Dehaene, S. (2013). Distinct brain mechanisms for conscious versus subliminal error detection. NeuroImage, 73, 80–94. https://doi.org/10.1016/j.neuroimage.2013.01.054 Vai! Cerca con Google

Chaumon, M., Bishop, D. V. M., & Busch, N. A. (2015). A practical guide to the selection of independent components of the electroencephalogram for artifact correction. Journal of Neuroscience Methods, 250, 47–63. https://doi.org/10.1016/j.jneumeth.2015.02.025 Vai! Cerca con Google

Chen, C.-C., Lu, J., & Zuo, Y. (2014). Spatiotemporal dynamics of dendritic spines in the living brain. Frontiers in Neuroanatomy, 8. https://doi.org/10.3389/fnana.2014.00028 Vai! Cerca con Google

Chen, R., Classen, J., Gerloff, C., Celnik, P., Wassermann, E. M., Hallett, M., & Cohen, L. G. (1997). Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology, 48(5), 1398–1403. https://doi.org/10.1212/WNL.48.5.1398 Vai! Cerca con Google

Cieslik, E. C., Zilles, K., Caspers, S., Roski, C., Kellermann, T. S., Jakobs, O., … Eickhoff, S. B. (2013). Is there one DLPFC in cognitive action control? Evidence for heterogeneity from Co-activation-based parcellation. Cerebral Cortex, 23(11), 2677–2689. https://doi.org/10.1093/cercor/bhs256 Vai! Cerca con Google

Coelho, L. F., Barbosa, D. L. F., Rizzutti, S., Muszkat, M., Amodeo Bueno, O. F., & Miranda, M. C. (2015). Use of cognitive behavioral therapy and token economy to alleviate dysfunctional behavior in children with attention-deficit hyperactivity disorder. Frontiers in Psychiatry, 6(NOV). https://doi.org/10.3389/fpsyt.2015.00167 Vai! Cerca con Google

Cohen-Cory, S., Dreyfus, C. F., & Black, I. B. (1991a). NGF and excitatory neurotransmitters regulate survival and morphogenesis of cultured cerebellar Purkinje cells. J Neurosci, 11(2), 462–471. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1671407 Vai! Cerca con Google

Cohen-Cory, S., Dreyfus, C. F., & Black, I. B. (1991b). NGF and excitatory neurotransmitters regulate survival and morphogenesis of cultured cerebellar Purkinje cells. J Neurosci, 11(2), 462–471. Cerca con Google

Cohen, M. X., Van Gaal, S., Ridderinkhof, K. R., & Lamme, V. (2009). Unconscious errors enhance prefrontal-occipital oscillatory synchrony. Frontiers in human neuroscience, 3, 54. Cerca con Google

Colino, F. L., Howse, H., Norton, A., Trska, R., Pluta, A., Luehr, S. J. C., … Krigolson, O. E. (2017). Older adults display diminished error processing and response in a continuous tracking task. Psychophysiology, 54(11), 1706–1713. https://doi.org/10.1111/psyp.12907 Vai! Cerca con Google

Collins, A. G. E., & Frank, M. J. (2015). Surprise! Dopamine signals mix action, value and error. Nature Neuroscience, 19(1), 3–5. https://doi.org/10.1038/nn.4207 Vai! Cerca con Google

Conti, S., Bonazzi, S., Laiacona, M., Masina, M., & Coralli, M. V. (2015). Montreal Cognitive Assessment (MoCA)-Italian version: regression based norms and equivalent scores. Neurological Sciences, 36(2), 209–214. https://doi.org/10.1007/s10072-014-1921-3 Vai! Cerca con Google

Corrigan, P. W., Yudofsky, S. C., & Silver, J. M. (1993). Pharmacological and behavioral treatments for aggressive psychiatric inpatients. Hospital & Community Psychiatry. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8432495 Vai! Cerca con Google

Couillard-Després, S. (2012). Hippocampal neurogenesis and ageing. Current Topics in Behavioral Neurosciences, 15, 343–355. https://doi.org/10.1007/7854_2012_232 Vai! Cerca con Google

Cramer, S. C. (2004). Functional imaging in stroke recovery. In Stroke (Vol. 35, pp. 2695–2698). https://doi.org/10.1161/01.STR.0000143326.36847.b0 Vai! Cerca con Google

Critchley, H. D., Tang, J., Glaser, D., Butterworth, B., & Dolan, R. J. (2005). Anterior cingulate activity during error and autonomic response. NeuroImage, 27(4), 885–895. https://doi.org/10.1016/j.neuroimage.2005.05.047 Vai! Cerca con Google

Danielmeier, C., Eichele, T., Forstmann, B. U., Tittgemeyer, M., & Ullsperger, M. (2011). Posterior Medial Frontal Cortex Activity Predicts Post-Error Adaptations in Task-Related Visual and Motor Areas. J Neurosci, 31(5), 1780–1789. https://doi.org/31/5/1780 [pii]\n10.1523/JNEUROSCI.4299-10.2011 Vai! Cerca con Google

Danielmeier, C., & Ullsperger, M. (2011). Post-error adjustments. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2011.00233 Vai! Cerca con Google

Datta, A., Bansal, V., Diaz, J., Patel, J., Reato, D., & Bikson, M. (2009). Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimulation, 2(4). https://doi.org/10.1016/j.brs.2009.03.005 Vai! Cerca con Google

David, A. S. (1992). Illness and insight. British Journal of Hospital Medicine, 48(10), 652–654. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1458274 Vai! Cerca con Google

De Graaf, T. A., & Sack, A. T. (2011). Null results in TMS: From absence of evidence to evidence of absence. Neuroscience and Biobehavioral Reviews. https://doi.org/10.1016/j.neubiorev.2010.10.006 Vai! Cerca con Google

Dehaene, S., Posner, M. I., Tucker, D. M., Dehaene, S., Posner, M. I., & Tucker, D. M. (1994). Localization of a Neural System for Error Detection and Compensation LOCALIZATION OF A NEURAL SYSTEM FOR ERROR. Psychological Science, 5(5), 303–305. https://doi.org/10.1111/j.1467-9280.1994.tb00630.x Vai! Cerca con Google

Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009 Vai! Cerca con Google

Deng, Z. De, Lisanby, S. H., & Peterchev, A. V. (2013). Electric field depth-focality tradeoff in transcranial magnetic stimulation: Simulation comparison of 50 coil designs. Brain Stimulation, 6(1), 1–13. https://doi.org/10.1016/j.brs.2012.02.005 Vai! Cerca con Google

Di Gregorio, F., Maier, M. E., & Steinhauser, M. (2018). Errors can elicit an error positivity in the absence of an error negativity: Evidence for independent systems of human error monitoring. NeuroImage, 172, 427–436. https://doi.org/10.1016/j.neuroimage.2018.01.081 Vai! Cerca con Google

Dockree, P. M., Tarleton, Y. M., Carton, S., & FitzGerald, M. C. C. (2015). Connecting Self-Awareness and Error-Awareness in Patients with Traumatic Brain Injury. Journal of the International Neuropsychological Society, 21(7), 473–482. https://doi.org/10.1017/S1355617715000594 Vai! Cerca con Google

Dräger, B., Breitenstein, C., Helmke, U., Kamping, S., & Knecht, S. (2004). Specific and nonspecific effects of transcranial magnetic stimulation on picture-word verification. The European Journal of Neuroscience, 20(6), 1681–1687. https://doi.org/10.1111/j.1460-9568.2004.03623.x Vai! Cerca con Google

Durstewitz, D., & Seamans, J. K. (2008). The Dual-State Theory of Prefrontal Cortex Dopamine Function with Relevance to Catechol-O-Methyltransferase Genotypes and Schizophrenia. Biological Psychiatry. https://doi.org/10.1016/j.biopsych.2008.05.015 Vai! Cerca con Google

Dutilh, G., Forstmann, B. U., Vandekerckhove, J., & Wagenmakers, E.-J. (2013). A diffusion model account of age differences in posterror slowing. Psychology and Aging, 28(1), 64–76. https://doi.org/10.1037/a0029875 Vai! Cerca con Google

Dutilh, G., Van Ravenzwaaij, D., Nieuwenhuis, S., Van der Maas, H. L. J., Forstmann, B. U., & Wagenmakers, E. J. (2012). How to measure post-error slowing: A confound and a simple solution. Journal of Mathematical Psychology, 56(3), 208–216. https://doi.org/10.1016/j.jmp.2012.04.001 Vai! Cerca con Google

Eder, M., Zieglgänsberger, W., & Dodt, H.-U. (2002). Neocortical long-term potentiation and long-term depression: site of expression investigated by infrared-guided laser stimulation. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 22(17), 7558–7568. https://doi.org/22/17/7558 [pii] Vai! Cerca con Google

Elliott, R., Sahakian, B. J., Michael, A., Paykel, E. S., & Dolan, R. J. (1998). Abnormal neural response to feedback on planning and guessing tasks in patients with unipolar depression. Psychological Medicine, 28(3), 559–571. https://doi.org/10.1017/S0033291798006709 Vai! Cerca con Google

Endrass, T., Franke, C., & Kathmann, N. (2005). Error awareness in a saccade countermanding task. Journal of Psychophysiology, 19(4), 275–280. https://doi.org/10.1027/0269-8803.19.4.275 Vai! Cerca con Google

Endrass, T., Reuter, B., & Kathmann, N. (2007). ERP correlates of conscious error recognition: Aware and unaware errors in an antisaccade task. European Journal of Neuroscience, 26(6), 1714–1720. https://doi.org/10.1111/j.1460-9568.2007.05785.x Vai! Cerca con Google

Endrass, T., Schuermann, B., Kaufmann, C., Spielberg, R., Kniesche, R., & Kathmann, N. (2010). Performance monitoring and error significance in patients with obsessive-compulsive disorder. Biological Psychology, 84(2), 257–263. https://doi.org/10.1016/j.biopsycho.2010.02.002 Vai! Cerca con Google

Eriksson, P. S., Perfilieva, E., Bjork-Eriksson, T., Alborn, A. M., Nordborg, C., Peterson, D. A., & Gage, F. H. (1998). Neurogenesis in the adult human hippocampus. Nat Med, 4(11), 1313–1317. https://doi.org/10.1038/3305 Vai! Cerca con Google

Esser, S. K., Huber, R., Massimini, M., Peterson, M. J., Ferrarelli, F., & Tononi, G. (2006). A direct demonstration of cortical LTP in humans: A combined TMS/EEG study. Brain Research Bulletin, 69(1), 86–94. https://doi.org/10.1016/j.brainresbull.2005.11.003 Vai! Cerca con Google

Falkenstein, M. (2004). ERP correlates of erroneous performance. Errors, conflicts, and the brain. Current opinions on performance monitoring, 1, 5-14. Cerca con Google

Falkenstein, M., Hohnsbein, J., Hoormann, J., & Blanke, L. (1991). Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks. Electroencephalography and Clinical Neurophysiology, 78(6), 447–455. https://doi.org/10.1016/0013-4694(91)90062-9 Vai! Cerca con Google

Falkenstein, M., Hoormann, J., Christ, S., & Hohnsbein, J. (2000). ERP components on reaction errors and their functional significance: A tutorial. Biological Psychology, 51(2–3), 87–107. https://doi.org/10.1016/S0301-0511(99)00031-9 Vai! Cerca con Google

Falkenstein, M., Hoormann, J., & Hohnsbein, J. (2001). Changes of error-related ERPs with age. Experimental Brain Research, 138(2), 258–262. https://doi.org/10.1007/s002210100712 Vai! Cerca con Google

Farah, M. J., Illes, J., Cook-Deegan, R., Gardner, H., Kandel, E., King, P., … Wolpe, P. R. (2004). Neurocognitive enhancement: What can we do and what should we do? Nature Reviews Neuroscience. https://doi.org/10.1038/nrn1390 Vai! Cerca con Google

Fauth, M., & Tetzlaff, C. (2016). Opposing Effects of Neuronal Activity on Structural Plasticity. Frontiers in Neuroanatomy, 10. https://doi.org/10.3389/fnana.2016.00075 Vai! Cerca con Google

Fertonani, A., Pirulli, C., & Miniussi, C. (2011). Random Noise Stimulation Improves Neuroplasticity in Perceptual Learning. Journal of Neuroscience, 31(43), 15416–15423. https://doi.org/10.1523/JNEUROSCI.2002-11.2011 Vai! Cerca con Google

Fleming, J. M., Strong, J., & Ashton, R. (1996). Self-awareness of deficits in adults with traumatic brain injury: How best to measure? Brain Injury, 10(1), 1–15. https://doi.org/10.1080/026990596124674 Vai! Cerca con Google

Fleming, S. M., Huijgen, J., & Dolan, R. J. (2012). Prefrontal contributions to metacognition in perceptual decision making. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 32(18), 6117–6125. https://doi.org/10.1523/JNEUROSCI.6489-11.2012 Vai! Cerca con Google

Floel, A., & Cohen, L. G. (2010). Recovery of function in humans: Cortical stimulation and pharmacological treatments after stroke. Neurobiology of Disease, 37(2), 243–251. https://doi.org/http://dx.doi.org/10.1016/j.nbd.2009.05.027 Vai! Cerca con Google

Fox, S. E., Levitt, P., & Nelson, C. A. (2010). How the timing and quality of early experiences influence the development of brain architecture. Child Development. https://doi.org/10.1111/j.1467-8624.2009.01380.x Vai! Cerca con Google

Foy, M. R., Stanton, M. E., Levine, S., & Thompson, R. F. (1987). Behavioral stress impairs long-term potentiation in rodent hippocampus. Behavioral and Neural Biology, 48(1), 138–149. https://doi.org/10.1016/S0163-1047(87)90664-9 Vai! Cerca con Google

Gaser, C., & Schlaug, G. (2003). Brain structures differ between musicians and non-musicians. The Journal of Neuroscience, 23(27), 9240–9245. https://doi.org/23/27/9240 [pii] Vai! Cerca con Google

Gazzaniga, M. S. [Ed]. (2004). The cognitive neurosciences (3rd ed.). The cognitive neurosciences (3rd ed.). https://doi.org/10.1136/bmj.312.7024.193 Vai! Cerca con Google

Gehring, W. J., Coles, M. G. H., Meyer, D. E., & Donchin, E. (1990a). The error-related negativity: an event-related brain potential accompanying errors. Psychophysiology, 27(4A), 34. https://doi.org/10.1111/j.1469-8986.1990.tb02374.x Vai! Cerca con Google

Gehring, W. J., Coles, M. G. H., Meyer, D. E., & Donchin, E. (1990b). The error-related negativity: an event-related brain potential accompanying errors. Psychophysiology, 27(4A), 34. https://doi.org/10.1111/j.1469-8986.1990.tb02374.x Vai! Cerca con Google

Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin, E. (1993). A Neural System for Error Detection and Compensation. Psychological Science, 4(6), 385–390. https://doi.org/10.1111/j.1467-9280.1993.tb00586.x Vai! Cerca con Google

Gehring, W. J., Himle, J., & Nisenson, L. G. (2000). Action-monitoring dysfunction in obsessive-compulsive disorder. Psychological Science, 11(1), 1–6. https://doi.org/10.1111/1467-9280.00206 Vai! Cerca con Google

Gehring, W. J., Liu, Y., Orr, J. M., & Carp, J. (2012). The Error-Related Negativity (ERN/Ne). In The Oxford Handbook of Event-Related Potential Components. https://doi.org/10.1093/oxfordhb/9780195374148.013.0120 Vai! Cerca con Google

Gheusi, G., Lepousez, G., & Lledo, P. M. (2012). Adult-born neurons in the olfactory bulb: Integration and functional consequences. Current Topics in Behavioral Neurosciences, 15, 49–72. https://doi.org/10.1007/7854_2012_228 Vai! Cerca con Google

Gholipour, A., Abolghasemi, S. H., Gholinia, K., & Taheri, S. (2012). Token reinforcement therapeutic approach is more effective than exercise for controlling negative symptoms of schizophrenic patients: A randomized controlled trial. International Journal of Preventive Medicine, 3(7), 466–470. Cerca con Google

Gómez-Palacio-Schjetnan, A., & Escobar, M. L. (2013). Neurotrophins and synaptic plasticity. Current Topics in Behavioral Neurosciences, 15, 117–136. https://doi.org/10.1007/7854_2012_231 Vai! Cerca con Google

Grady, C. (2012). Brain Ageing: The Cognitive Neuroscience of Ageing. Nature Reviews Neuroscience, 13(7), 491–505. https://doi.org/Doi 10.1038/Nrn3256 Vai! Cerca con Google

Greenwood, P. M. (2007). Functional Plasticity in Cognitive Aging: Review and Hypothesis. Neuropsychology, 21(6), 657–673. https://doi.org/10.1037/0894-4105.21.6.657 Vai! Cerca con Google

Hajcak, G., McDonald, N., & Simons, R. F. (2003). To err is autonomic: Error-related brain potentials, ANS activity, and post-error compensatory behavior. In Psychophysiology (Vol. 40, pp. 895–903). https://doi.org/10.1111/1469-8986.00107 Vai! Cerca con Google

Hallett, M. (2007). Transcranial Magnetic Stimulation: A Primer. Neuron. https://doi.org/10.1016/j.neuron.2007.06.026 Vai! Cerca con Google

Han, L., Liu, Y., Zhang, D., Jin, Y., & Luo, Y. (2013). Low-Arousal Speech Noise Improves Performance in N-Back Task: An ERP Study. PLoS ONE, 8(10). https://doi.org/10.1371/journal.pone.0076261 Vai! Cerca con Google

Harsay, H. A., Spaan, M., Wijnen, J. G., & Ridderinkhof, K. R. (2012). Error Awareness and Salience Processing in the Oddball Task: Shared Neural Mechanisms. Frontiers in Human Neuroscience, 6. https://doi.org/10.3389/fnhum.2012.00246 Vai! Cerca con Google

Harty, S., Murphy, P. R., Robertson, I. H., & O’Connell, R. G. (2017). Parsing the neural signatures of reduced error detection in older age. NeuroImage, 161, 43–55. https://doi.org/10.1016/j.neuroimage.2017.08.032 Vai! Cerca con Google

Harty, S., O’Connell, R. G., Hester, R., & Robertson, I. H. (2013). Older adults have diminished awareness of errors in the laboratory and daily life. Psychology and Aging, 28(4), 1032–1041. https://doi.org/10.1037/a0033567 Vai! Cerca con Google

Harty, S., Robertson, I. H., Miniussi, C., Sheehy, O. C., Devine, C. a, McCreery, S., & O’Connell, R. G. (2014). Transcranial direct current stimulation over right dorsolateral prefrontal cortex enhances error awareness in older age. Journal of Neuroscience, 34(10), 3646–3652. https://doi.org/10.1523/JNEUROSCI.5308-13.2014 Vai! Cerca con Google

Hebb, D. O. (1949). The Organization of Behavior. New York: JohnWiley & Sons. https://doi.org/10.1016/S0361-9230(99)00182-3 Vai! Cerca con Google

Henze, D. A., Gonzalez-Burgos, G. R., Urban, N. N., Lewis, D. A., & Barrionuevo, G. (2000). Dopamine increases excitability of pyramidal neurons in primate prefrontal cortex. Journal of Neurophysiology, 84(6), 2799–2809. https://doi.org/10.1152/jn.2000.84.6.2799 Vai! Cerca con Google

Herwig, U., Abler, B., Schönfeldt-Lecuona, C., Wunderlich, A., Grothe, J., Spitzer, M., & Walter, H. (2003). Verbal storage in a premotor-parietal network: Evidence from fMRI-guided magnetic stimulation. NeuroImage, 20(2), 1032–1041. https://doi.org/10.1016/S1053-8119(03)00368-9 Vai! Cerca con Google

Hester, R., Foxe, J. J., Molholm, S., Shpaner, M., & Garavan, H. (2005). Neural mechanisms involved in error processing: A comparison of errors made with and without awareness. NeuroImage, 27(3), 602–608. https://doi.org/10.1016/j.neuroimage.2005.04.035 Vai! Cerca con Google

Hester, R., Nestor, L., & Garavan, H. (2009). Impaired error awareness and anterior cingulate cortex hypoactivity in chronic cannabis users. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology, 34(11), 2450–2458. https://doi.org/10.1038/npp.2009.67 Vai! Cerca con Google

Hester, R., Simões-Franklin, C., & Garavan, H. (2007). Post-error behavior in active cocaine users: Poor awareness of errors in the presence of intact performance adjustments. Neuropsychopharmacology, 32(9), 1974–1984. https://doi.org/10.1038/sj.npp.1301326 Vai! Cerca con Google

Hodgkin, A. L., & Huxley, A. F. (1990). A quantitative description of membrane current and its application to conduction and excitation in nerve. Bulletin of Mathematical Biology, 52(1–2), 25–71. https://doi.org/10.1007/BF02459568 Vai! Cerca con Google

Hoerold, D., Pender, N. P., & Robertson, I. H. (2013). Metacognitive and online error awareness deficits after prefrontal cortex lesions. Neuropsychologia, 51(3), 385–391. https://doi.org/10.1016/j.neuropsychologia.2012.11.019 Vai! Cerca con Google

Hof, P. R., & Morrison, J. H. (2004). The aging brain: Morphomolecular senescence of cortical circuits. Trends in Neurosciences. https://doi.org/10.1016/j.tins.2004.07.013 Vai! Cerca con Google

Hoffmann, S., & Falkenstein, M. (2011). Aging and error processing: Age related increase in the variability of the error-negativity is not accompanied by increase in response variability. PLoS ONE, 6(2). https://doi.org/10.1371/journal.pone.0017482 Vai! Cerca con Google

Holmes, A. J., & Pizzagalli, D. A. (2008). Spatiotemporal dynamics of error processing dysfunctions in major depressive disorder. Archives of General Psychiatry, 65(2), 179–188. https://doi.org/10.1001/archgenpsychiatry.2007.19 Vai! Cerca con Google

Holtmaat, A., & Svoboda, K. (2009). Experience-dependent structural synaptic plasticity in the mammalian brain. Nature Reviews Neuroscience. https://doi.org/10.1038/nrn2699 Vai! Cerca con Google

Hoogendam, J. M., Ramakers, G. M. J., & Di Lazzaro, V. (2010). Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimulation, 3(2), 95–118. https://doi.org/10.1016/j.brs.2009.10.005 Vai! Cerca con Google

Hughes, B. L., & Zaki, J. (2015). The neuroscience of motivated cognition. Trends in Cognitive Sciences. https://doi.org/10.1016/j.tics.2014.12.006 Vai! Cerca con Google

Hummel, F. C., & Cohen, L. G. (2005). Drivers of brain plasticity. Current Opinion in Neurology. https://doi.org/10.1097/01.wco.0000189876.37475.42 Vai! Cerca con Google

Iannaccone, R., Hauser, T. U., Staempfli, P., Walitza, S., Brandeis, D., & Brem, S. (2015). Conflict monitoring and error processing: New insights from simultaneous EEG-fMRI. NeuroImage, 105, 395–407. https://doi.org/10.1016/j.neuroimage.2014.10.028 Vai! Cerca con Google

Ismail, F. Y., Fatemi, A., & Johnston, M. V. (2017). Cerebral plasticity: Windows of opportunity in the developing brain. European Journal of Paediatric Neurology. https://doi.org/10.1016/j.ejpn.2016.07.007 Vai! Cerca con Google

Ito, M. (1982). Experimental verification of Marr-Albus’ plasticity assumption for the cerebellum. Acta Biol Acad Sci Hung, 33(2–3), 189–199. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6129762 Vai! Cerca con Google

Ito, S., Stuphorn, V., Brown, J. W., & Schall, J. D. (2003). Performance monitoring by the anterior cingulate cortex during saccade countermanding. Science, 302(5642), 120–122. https://doi.org/10.1126/science.1087847 Vai! Cerca con Google

Iuculano, T., & Cohen Kadosh, R. (2013). The Mental Cost of Cognitive Enhancement. Journal of Neuroscience, 33(10), 4482–4486. https://doi.org/10.1523/JNEUROSCI.4927-12.2013 Vai! Cerca con Google

Iyer, M. B., Schleper, N., & Wassermann, E. M. (2003). Priming stimulation enhances the depressant effect of low-frequency repetitive transcranial magnetic stimulation. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 23(34), 10867–10872. https://doi.org/23/34/10867 [pii] Vai! Cerca con Google

Jacobson, L., Koslowsky, M., & Lavidor, M. (2012). TDCS polarity effects in motor and cognitive domains: A meta-analytical review. Experimental Brain Research. https://doi.org/10.1007/s00221-011-2891-9 Vai! Cerca con Google

James, W. (1890). The Principles of Psychology. The Principles of Psychology (Vol. 21). https://doi.org/10.1353/hph.1983.0040 Vai! Cerca con Google

Jentzsch, I., & Dudschig, C. (2009). Why do we slow down after an error? Mechanisms underlying the effects of posterror slowing. Quarterly Journal of Experimental Psychology, 62(2), 209–218. https://doi.org/10.1080/17470210802240655 Vai! Cerca con Google

Kaas, J. H. (2015). Neural Plasticity. In International Encyclopedia of the Social & Behavioral Sciences: Second Edition (pp. 619–622). https://doi.org/10.1016/B978-0-08-097086-8.55036-3 Vai! Cerca con Google

Kanai, R., Chaieb, L., Antal, A., Walsh, V., & Paulus, W. (2008). Frequency-Dependent Electrical Stimulation of the Visual Cortex. Current Biology, 18(23), 1839–1843. https://doi.org/10.1016/j.cub.2008.10.027 Vai! Cerca con Google

Kappenman, E. S., & Luck, S. J. (2012). The Oxford Handbook of Event-Related Potential Components. The Oxford Handbook of Event-Related Potential Components. https://doi.org/10.1093/oxfordhb/9780195374148.001.0001 Vai! Cerca con Google

Keenan, H. T., Hooper, S. R., Wetherington, C. E., Nocera, M., & Runyan, D. K. (2007). Neurodevelopmental consequences of early traumatic brain injury in 3-year-old children. Pediatrics, 119(3), e616-23. https://doi.org/10.1542/peds.2006-2313 Vai! Cerca con Google

Kemp, A., & Manahan-Vaughan, D. (2007). Hippocampal long-term depression: master or minion in declarative memory processes? Trends in Neurosciences. https://doi.org/10.1016/j.tins.2007.01.002 Vai! Cerca con Google

Kerns, J. G., Cohen, J. D., MacDonald, A. W., Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior Cingulate Conflict Monitoring and Adjustments in Control. Science, 303(5660), 1023–1026. https://doi.org/10.1126/science.1089910 Vai! Cerca con Google

Kim, E. J., Kim, W. R., Chi, S. E., Lee, K. H., Park, E. H., Chae, J. H., … Choi, J. S. (2006). Repetitive transcranial magnetic stimulation protects hippocampal plasticity in an animal model of depression. Neuroscience Letters, 405(1–2), 79–83. https://doi.org/10.1016/j.neulet.2006.06.023 Vai! Cerca con Google

King, J. A., Korb, F. M., von Cramon, D. Y., & Ullsperger, M. (2010). Post-Error Behavioral Adjustments Are Facilitated by Activation and Suppression of Task-Relevant and Task-Irrelevant Information Processing. Journal of Neuroscience, 30(38), 12759–12769. https://doi.org/10.1523/JNEUROSCI.3274-10.2010 Vai! Cerca con Google

Kinnison, J., Padmala, S., Choi, J.-M., & Pessoa, L. (2012). Network Analysis Reveals Increased Integration during Emotional and Motivational Processing. Journal of Neuroscience, 32(24), 8361–8372. https://doi.org/10.1523/JNEUROSCI.0821-12.2012 Vai! Cerca con Google

Klein, T. A., Endrass, T., Kathmann, N., Neumann, J., von Cramon, D. Y., & Ullsperger, M. (2007). Neural correlates of error awareness. NeuroImage, 34(4), 1774–1781. https://doi.org/10.1016/j.neuroimage.2006.11.014 Vai! Cerca con Google

Klein, T. a, Ullsperger, M., & Danielmeier, C. (2013). Error awareness and the insula: links to neurological and psychiatric diseases. Frontiers in Human Neuroscience, 7(February), 14. https://doi.org/10.3389/fnhum.2013.00014 Vai! Cerca con Google

Klomjai, W., Katz, R., & Lackmy-Vallée, A. (2015). Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Annals of Physical and Rehabilitation Medicine, 58(4), 208–213. https://doi.org/10.1016/j.rehab.2015.05.005 Vai! Cerca con Google

Korchounov, A., & Ziemann, U. (2011). Neuromodulatory neurotransmitters influence LTP-Like plasticity in human cortex: A pharmaco-TMS study. Neuropsychopharmacology, 36(9), 1894–1902. https://doi.org/10.1038/npp.2011.75 Vai! Cerca con Google

Kou, Z., & Iraji, A. (2014). Imaging brain plasticity after trauma. Neural Regeneration Research, 9(7), 693–700. https://doi.org/10.4103/1673-5374.131568 Vai! Cerca con Google

Kouneiher, F., Charron, S., & Koechlin, E. (2009). Motivation and cognitive control in the human prefrontal cortex. Nature Neuroscience, 12(7), 939–945. https://doi.org/10.1038/nn.2321 Vai! Cerca con Google

Krames, E. S., Hunter Peckham, P., Rezai, A., & Aboelsaad, F. (2009). What Is Neuromodulation? In Neuromodulation (pp. 3–8). https://doi.org/10.1016/B978-0-12-374248-3.00002-1 Vai! Cerca con Google

Kujirai, K., Kujirai, T., Sinkjaer, T., & Rothwell, J. C. (2006). Associative plasticity in human motor cortex during voluntary muscle contraction. Journal of Neurophysiology, 96(3), 1337–1346. https://doi.org/10.1152/jn.01140.2005 Vai! Cerca con Google

Kuo, M. F., Paulus, W., & Nitsche, M. A. (2014). Therapeutic effects of non-invasive brain stimulation with direct currents (tDCS) in neuropsychiatric diseases. NeuroImage. https://doi.org/10.1016/j.neuroimage.2013.05.117 Vai! Cerca con Google

Lambourne, K., & Tomporowski, P. (2010). The effect of exercise-induced arousal on cognitive task performance: A meta-regression analysis. Brain Research. https://doi.org/10.1016/j.brainres.2010.03.091 Vai! Cerca con Google

Laming, D. R. J. (1968). Information theory of choice-reaction times. Information Theory of Choicereaction Times, 14, 172. https://doi.org/10.1002/bs.3830140408 Vai! Cerca con Google

Laming, D. R. J. (1968). Information theory of choice-reaction times. Information Theory of Choice-Reaction Times, 14, 172. https://doi.org/10.1080/1461670X.2011.557559 Vai! Cerca con Google

Lang, N., Siebner, H. R., Ward, N. S., Lee, L., Nitsche, M. A., Paulus, W., … Frackowiak, R. S. (2005). How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? European Journal of Neuroscience, 22(2), 495–504. https://doi.org/10.1111/j.1460-9568.2005.04233.x Vai! Cerca con Google

Larson, M. J., & Perlstein, W. M. (2009). Awareness of deficits and error processing after traumatic brain injury. NeuroReport, 20(16), 1486–1490. https://doi.org/10.1097/WNR.0b013e32833283fe Vai! Cerca con Google

Larson, M. J., Perlstein, W. M., Demery, J. A., & Stigge-Kaufman, D. A. (2006). Cognitive Control Impairments in Traumatic Brain Injury. Journal of Clinical and Experimental Neuropsychology, 28(6), 968–986. https://doi.org/10.1080/13803390600646860 Vai! Cerca con Google

Lazarov, O., & Hollands, C. (2016). Hippocampal neurogenesis: Learning to remember. Progress in Neurobiology. https://doi.org/10.1016/j.pneurobio.2015.12.006 Vai! Cerca con Google

Lim, D. A., & Alvarez-Buylla, A. (2016). The adult ventricular–subventricular zone (V-SVZ) and olfactory bulb (OB) neurogenesis. Cold Spring Harbor Perspectives in Biology, 8(5). https://doi.org/10.1101/cshperspect.a018820 Vai! Cerca con Google

Lisman, J. E. (2001). Three Ca2+ levels affect plasticity differently: The LTP zone, the LTD zone and no man’s land. Journal of Physiology, 532(2), 285. https://doi.org/10.1111/j.1469-7793.2001.0285f.x Vai! Cerca con Google

Lisman, J., Grace, A. A., & Duzel, E. (2011). A neoHebbian framework for episodic memory; role of dopamine-dependent late LTP. Trends in Neurosciences. https://doi.org/10.1016/j.tins.2011.07.006 Vai! Cerca con Google

Locke, H. S., & Braver, T. S. (2010). Motivational Influences on Cognitive Control: A Cognitive Neuroscience Perspective. In Self Control in Society, Mind, and Brain. https://doi.org/10.1093/acprof:oso/9780195391381.003.0007 Vai! Cerca con Google

Lois, C., & Alvarez-Buylla, A. (1994). Long-distance neuronal migration in the adult mammalian brain. Science, 264(5162), 1145–1148. https://doi.org/10.1126/science.8178174 Vai! Cerca con Google

Longo, F. M., & Massa, S. M. (2013). Small-molecule modulation of neurotrophin receptors: a strategy for the treatment of neurological disease. Nat Rev Drug Discov, 12(7), 507–525. https://doi.org/10.1038/nrd4024 Vai! Cerca con Google

Lövdén, M., Bodammer, N. C., Kühn, S., Kaufmann, J., Schütze, H., Tempelmann, C., … Lindenberger, U. (2010). Experience-dependent plasticity of white-matter microstructure extends into old age. Neuropsychologia, 48(13), 3878–3883. https://doi.org/10.1016/j.neuropsychologia.2010.08.026 Vai! Cerca con Google

Lövdén, M., Wenger, E., Mårtensson, J., Lindenberger, U., & Bäckman, L. (2013). Structural brain plasticity in adult learning and development. Neuroscience and Biobehavioral Reviews. https://doi.org/10.1016/j.neubiorev.2013.02.014 Vai! Cerca con Google

Lu, B., Nagappan, G., & Lu, Y. (2015). BDNF and synaptic plasticity, cognitive function, and dysfunction. Handbook of Experimental Pharmacology, 220, 223–250. https://doi.org/10.1007/978-3-642-45106-5_9 Vai! Cerca con Google

Luck, S. (2005). An introduction to the event related potential technique. An introduction to the event related potential technique. https://doi.org/10.1111/mono.12122 Vai! Cerca con Google

Łukowska, M., Sznajder, M., & Wierzchoń, M. (2018). Error-related cardiac response as information for visibility judgements. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-19144-0 Vai! Cerca con Google

Lüscher, C., & Malenka, R. C. (2012). NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harbor Perspectives in Biology, 4(6), 1–15. https://doi.org/10.1101/cshperspect.a005710 Vai! Cerca con Google

Maddox, W. T., & Markman, A. B. (2010). The motivation-cognition interface in learning and decision making. Current Directions in Psychological Science, 19(2), 106–110. https://doi.org/10.1177/0963721410364008 Vai! Cerca con Google

Maeda, F., Keenan, J. P., Tormos, J. M., Topka, H., & Pascual-Leone, A. (2000). Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation. Clinical Neurophysiology, 111, 800–805. https://doi.org/10.1016/s1388-2457(99)00323-5 Vai! Cerca con Google

Magno, E. (2006). The Anterior Cingulate and Error Avoidance. Journal of Neuroscience, 26(18), 4769–4773. https://doi.org/10.1523/JNEUROSCI.0369-06.2006 Vai! Cerca con Google

Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S. J., & Frith, C. D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences, 97(8), 4398–4403. https://doi.org/10.1073/pnas.070039597 Vai! Cerca con Google

Maier, M. E., Di Gregorio, F., Muricchio, T., & Di Pellegrino, G. (2015). Impaired rapid error monitoring but intact error signaling following rostral anterior cingulate cortex lesions in humans. Frontiers in Human Neuroscience, 9(June), 339. https://doi.org/10.3389/fnhum.2015.00339 Vai! Cerca con Google

Malec, J. F., & Moessner, A. M. (2000). Self-awareness, distress, and postacute rehabilitation outcome. Rehabilitation Psychology, 45(3), 227–241. https://doi.org/10.1037/0090-5550.45.3.227 Vai! Cerca con Google

Mandolesi, L., Gelfo, F., Serra, L., Montuori, S., Polverino, A., Curcio, G., & Sorrentino, G. (2017). Environmental factors promoting neural plasticity: Insights from animal and human studies. Neural Plasticity. https://doi.org/10.1155/2017/7219461 Vai! Cerca con Google

Mannarelli, D., Pauletti, C., Grippo, A., Amantini, A., Augugliaro, V., Currà, A., … Fattapposta, F. (2015). The role of the right dorsolateral prefrontal cortex in phasic alertness: Evidence from a contingent negative variation and repetitive transcranial magnetic stimulation study. Neural Plasticity, 2015. https://doi.org/10.1155/2015/410785 Vai! Cerca con Google

Mansouri, F. A., Fehring, D. J., Feizpour, A., Gaillard, A., Rosa, M. G. P., Rajan, R., & Jaberzadeh, S. (2016). Direct current stimulation of prefrontal cortex modulates error-induced behavioral adjustments. European Journal of Neuroscience, 44(2), 1856–1869. https://doi.org/10.1111/ejn.13281 Vai! Cerca con Google

Masina, F., Di Rosa, E., & Mapelli, D. (2018a). Intra-Individual Variability of Error Awareness and Post-error Slowing in Three Different Age-Groups. Frontiers in Psychology, 9. https://doi.org/10.3389/fpsyg.2018.00902 Vai! Cerca con Google

Masina, F., Vallesi, A., Di Rosa, E., Semenzato, L., & Mapelli, D. (2018b). Possible role of dorsolateral prefrontal cortex in error awareness: Single-pulse TMS evidence. Frontiers in Neuroscience, 12(MAR). https://doi.org/10.3389/fnins.2018.00179 Vai! Cerca con Google

Mattson, M. P., Maudsley, S., & Martin, B. (2004). BDNF and 5-HT: A dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends in Neurosciences. https://doi.org/10.1016/j.tins.2004.08.001 Vai! Cerca con Google

Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: a network model of insula function. Brain Structure & Function. https://doi.org/10.1007/s00429-010-0262-0 Vai! Cerca con Google

Merton, P. A., & Morton, H. B. (1980). Stimulation of the cerebral cortex in the intact human subject. Nature, 285(5762), 227. https://doi.org/10.1038/285227a0 Vai! Cerca con Google

Milshtein-Parush, H., Frere, S., Regev, L., Lahav, C., Benbenishty, A., Ben-Eliyahu, S., … Slutsky, I. (2017). Sensory Deprivation Triggers Synaptic and Intrinsic Plasticity in the Hippocampus. Cerebral Cortex, 27(6), 3457–3470. https://doi.org/10.1093/cercor/bhx084 Vai! Cerca con Google

Ming, G. L., & Song, H. (2005). Adult neurogenesis in the mammalian central nervous system. Annual Review of Neuroscience, 28, 223–250. https://doi.org/10.1146/annurev.neuro.28.051804.101459 Vai! Cerca con Google

Ming, G. li, & Song, H. (2011). Adult Neurogenesis in the Mammalian Brain: Significant Answers and Significant Questions. Neuron. https://doi.org/10.1016/j.neuron.2011.05.001 Vai! Cerca con Google

Miniussi, C., Brignani, D., & Pellicciari, M. C. (2012). Combining transcranial electrical stimulation with electroencephalography: A multimodal approach. Clinical EEG and Neuroscience, 43(3), 184–191. https://doi.org/10.1177/1550059412444976 Vai! Cerca con Google

Miniussi, C., Harris, J. A., & Ruzzoli, M. (2013). Modelling non-invasive brain stimulation in cognitive neuroscience. Neuroscience and Biobehavioral Reviews. https://doi.org/10.1016/j.neubiorev.2013.06.014 Vai! Cerca con Google

Misonou, H., Mohapatra, D. P., Park, E. W., Leung, V., Zhen, D., Misonou, K., … Trimmer, J. S. (2004). Regulation of ion channel localization and phosphorylation by neuronal activity. Nature Neuroscience, 7(7), 711–718. https://doi.org/10.1038/nn1260 Vai! Cerca con Google

Montanelli, I. (1992). Il testimone (Vol. 232). (C. degli Editori, Ed.). Cerca con Google

Monte-Silva, K., Kuo, M. F., Hessenthaler, S., Fresnoza, S., Liebetanz, D., Paulus, W., & Nitsche, M. A. (2013). Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain Stimulation, 6(3), 424–432. https://doi.org/10.1016/j.brs.2012.04.011 Vai! Cerca con Google

Monte-Silva, K., Liebetanz, D., Grundey, J., Paulus, W., & Nitsche, M. a. (2010). Dosage-dependent non-linear effect of L-dopa on human motor cortex plasticity. The Journal of Physiology, 588, 3415–3424. https://doi.org/10.1113/jphysiol.2010.190181 Vai! Cerca con Google

Mora, F., Segovia, G., & del Arco, A. (2007). Aging, plasticity and environmental enrichment: Structural changes and neurotransmitter dynamics in several areas of the brain. Brain Research Reviews. https://doi.org/10.1016/j.brainresrev.2007.03.011 Vai! Cerca con Google

Moran, T. P. (2016). Anxiety and working memory capacity: A meta-analysis and narrative review. Psychological Bulletin, 142(8), 831–864. https://doi.org/10.1037/bul0000051 Vai! Cerca con Google

Munafò, M., & Neill, J. (2016). Null is beautiful: On the importance of publishing null results. Journal of Psychopharmacology, 30(7), 585–585. https://doi.org/10.1177/0269881116638813 Vai! Cerca con Google

Murphy, P. R., Robertson, I. H., Allen, D., Hester, R., & O’Connell, R. G. (2012). An electrophysiological signal that precisely tracks the emergence of error awareness. Frontiers in Human Neuroscience, 6(March), 1–16. https://doi.org/10.3389/fnhum.2012.00065 Vai! Cerca con Google

Nabavi, S., Fox, R., Proulx, C. D., Lin, J. Y., Tsien, R. Y., & Malinow, R. (2014). Engineering a memory with LTD and LTP. Nature, 511(7509), 348–352. https://doi.org/10.1038/nature13294 Vai! Cerca con Google

Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., ... & Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695-699. Cerca con Google

Nicoll, R. A. (2017). A Brief History of Long-Term Potentiation. Neuron. https://doi.org/10.1016/j.neuron.2016.12.015 Vai! Cerca con Google

Nieuwenhuis, S., Ridderinkhof, K. R., Blom, J., Band, G. P. H., & Kok, A. (2001). Error-related brain potentials are differentially related to awareness of response errors: Evidence from an antisaccade task. Psychophysiology, 38(5), 752–760. https://doi.org/10.1111/1469-8986.3850752 Vai! Cerca con Google

Niimi, M., Hashimoto, K., Kakuda, W., Miyano, S., Momosaki, R., Ishima, T., & Abo, M. (2016). Role of brain-derived neurotrophic factor in beneficial effects of repetitive transcranial magnetic stimulation for upper limb hemiparesis after stroke. PLoS ONE, 11(3). https://doi.org/10.1371/journal.pone.0152241 Vai! Cerca con Google

Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A., … Pascual-Leone, A. (2008). Transcranial direct current stimulation: State of the art 2008. Brain Stimulation, 1(3), 206–223. https://doi.org/10.1016/j.brs.2008.06.004 Vai! Cerca con Google

Nitsche, M. A., Fricke, K., Henschke, U., Schlitterlau, A., Liebetanz, D., Lang, N., … Paulus, W. (2003). Pharmacological Modulation of Cortical Excitability Shifts Induced by Transcranial Direct Current Stimulation in Humans. The Journal of Physiology, 553(1), 293–301. https://doi.org/10.1113/jphysiol.2003.049916 Vai! Cerca con Google

Nitsche, M. A., Jaussi, W., Liebetanz, D., Lang, N., Tergau, F., & Paulus, W. (2004). Consolidation of human motor cortical neuroplasticity by D-cycloserine. Neuropsychopharmacology, 29(8), 1573–1578. https://doi.org/10.1038/sj.npp.1300517 Vai! Cerca con Google

Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527(3), 633–639. https://doi.org/10.1111/j.1469-7793.2000.t01-1-00633.x Vai! Cerca con Google

Notebaert, W., Houtman, F., Opstal, F. Van, Gevers, W., Fias, W., & Verguts, T. (2009). Post-error slowing: An orienting account. Cognition, 111(2), 275–279. https://doi.org/10.1016/j.cognition.2009.02.002 Vai! Cerca con Google

O’Connell, R. G., Bellgrove, M. A., Dockree, P. M., Lau, A., Hester, R., Garavan, H., … Robertson, I. H. (2009). The neural correlates of deficient error awareness in attention-deficit hyperactivity disorder (ADHD). Neuropsychologia, 47(4), 1149–1159. https://doi.org/10.1016/j.neuropsychologia.2009.01.011 Vai! Cerca con Google

O’Connell, R. G., Dockree, P. M., Bellgrove, M. A., Kelly, S. P., Hester, R., Garavan, H., … Foxe, J. J. (2007). The role of cingulate cortex in the detection of errors with and without awareness: A high-density electrical mapping study. European Journal of Neuroscience, 25(8), 2571–2579. https://doi.org/10.1111/j.1460-9568.2007.05477.x Vai! Cerca con Google

O’Keefe, J., & Nadel, L. (1978). Hippocampus Physiology. The Hippocampus as a Cognitive Map, (1), 141–230. Cerca con Google

O’Reilly, R. C., & Frank, M. J. (2006). Making working memory work: A computational model of learning in the prefrontal cortex and basal ganglia. Neural Computation, 18(2), 283–328. https://doi.org/10.1162/089976606775093909 Vai! Cerca con Google

O’Shea, J., Muggleton, N. G., Cowey, A., & Walsh, V. (2004). Timing of target discrimination in human frontal eye fields. Journal of Cognitive Neuroscience, 16(6), 1060–1067. https://doi.org/10.1162/0898929041502634 Vai! Cerca con Google

Oberman, L. (2014). Repetitive Transcranial Magnetic Stimulation (rTMS) Protocols. In Transcranial Magnetic Stimulation (pp. 129–139). https://doi.org/10.1007/978-1-4939-0879-0 Vai! Cerca con Google

Obeso, I., Oliviero, A., & Jahanshahi, M. (2016). Editorial: Non-invasive brain stimulation in neurology and psychiatry. Frontiers in Neuroscience, 10(DEC). https://doi.org/10.3389/fnins.2016.00574 Vai! Cerca con Google

Olvet, D. M., & Hajcak, G. (2008). The error-related negativity (ERN) and psychopathology: Toward an endophenotype. Clinical Psychology Review. https://doi.org/10.1016/j.cpr.2008.07.003 Vai! Cerca con Google

Orr, C., & Hester, R. (2012). Error-related anterior cingulate cortex activity and the prediction of conscious error awareness. Frontiers in Human Neuroscience, 6. https://doi.org/10.3389/fnhum.2012.00177 Vai! Cerca con Google

Overbeek, T. J. M., Nieuwenhuis, S., & Ridderinkhof, K. R. (2005). Dissociable Components of Error Processing. Journal of Psychophysiology, 19(4), 319–329. https://doi.org/10.1027/0269-8803.19.4.319 Vai! Cerca con Google

Palmer, E. C., David, A. S., & Fleming, S. M. (2014). Effects of age on metacognitive efficiency. Consciousness and Cognition, 28(1), 151–160. https://doi.org/10.1016/j.concog.2014.06.007 Vai! Cerca con Google

Pascual-Leone, A., Amedi, A., Fregni, F., & Merabet, L. B. (2005). THE PLASTIC HUMAN BRAIN CORTEX. Annual Review of Neuroscience, 28(1), 377–401. https://doi.org/10.1146/annurev.neuro.27.070203.144216 Vai! Cerca con Google

Pascual-Leone, A., Dang, N., Cohen, L. G., & Brasil-Neto, J. P. (1995). Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. Journal of Neurophysiology, 74(3), 1037–1045. Cerca con Google

Patton, H. D., & Amassian, V. E. (1954). Single- and Multiple-Unit Analysis of Cortical Stage of Pyramidal Tract Activation. Journal of Neurophysiology, 17(4), 345–363. Cerca con Google

Paulus, W. (2011). Transcranial electrical stimulation (tES - tDCS; tRNS, tACS) methods. Neuropsychological Rehabilitation, 21(5), 602–617. https://doi.org/10.1080/09602011.2011.557292 Vai! Cerca con Google

Perera, T., George, M. S., Grammer, G., Janicak, P. G., Pascual-Leone, A., & Wirecki, T. S. (2016). The Clinical TMS Society Consensus Review and Treatment Recommendations for TMS Therapy for Major Depressive Disorder. Brain Stimulation, 9(3), 336–346. https://doi.org/10.1016/j.brs.2016.03.010 Vai! Cerca con Google

Pessoa, L. (2009). How do emotion and motivation direct executive control? Trends in Cognitive Sciences, 13(4), 160–166. https://doi.org/10.1016/j.tics.2009.01.006 Vai! Cerca con Google

Pessoa, L. (2010). Embedding reward signals into perception and cognition. Frontiers in Neuroscience, 4. https://doi.org/10.3389/fnins.2010.00017 Vai! Cerca con Google

Petruska, J. C., & Mendell, L. M. (2009). Nerve Growth Factor. In Encyclopedia of Neuroscience (pp. 71–78). https://doi.org/10.1016/B978-008045046-9.00672-0 Vai! Cerca con Google

Pogosyan, A., Gaynor, L. D., Eusebio, A., & Brown, P. (2009). Boosting Cortical Activity at Beta-Band Frequencies Slows Movement in Humans. Current Biology, 19(19), 1637–1641. https://doi.org/10.1016/j.cub.2009.07.074 Vai! Cerca con Google

Polanía, R., Nitsche, M. A., & Ruff, C. C. (2018). Studying and modifying brain function with non-invasive brain stimulation. Nature Neuroscience. https://doi.org/10.1038/s41593-017-0054-4 Vai! Cerca con Google

Pontifex, M. B., Scudder, M. R., Brown, M. L., O’Leary, K. C., Wu, C. T., Themanson, J. R., & Hillman, C. H. (2010). On the number of trials necessary for stabilization of error-related brain activity across the life span. Psychophysiology, 47(4), 767–773. https://doi.org/10.1111/j.1469-8986.2010.00974.x Vai! Cerca con Google

Poreisz, C., Boros, K., Antal, A., & Paulus, W. (2007). Safety aspects of transcranial direct current stimulation concerning healthy subjects. Brain Research Bulletin, 72(May), (208-14. Cerca con Google

Posner, M. I., & Presti, D. E. (1987). Selective attention and cognitive control. Trends in Neurosciences, 10(1), 13–17. https://doi.org/10.1016/0166-2236(87)90116-0 Vai! Cerca con Google

Pridmore, S., Fernandes Filho, J. a, Nahas, Z., Liberatos, C., & George, M. S. (1998). Motor threshold in transcranial magnetic stimulation: a comparison of a neurophysiological method and a visualization of movement method. The Journal of ECT. Cerca con Google

Priori, A., Hallett, M., & Rothwell, J. C. (2009). Repetitive transcranial magnetic stimulation or transcranial direct current stimulation? Brain Stimulation, 2(4), 241–245. https://doi.org/10.1016/j.brs.2009.02.004 Vai! Cerca con Google

Purpura, D. P., & McMurtry, J. G. (1965). Intracellular Activities and Evoked Potential Changes During of motor cortex. Neurophysiol, 28(1), 166–185. https://doi.org/10.1152/jn.1965.28.1.166 Vai! Cerca con Google

Rabbitt, P. (1967). Time to detect errors as a function of factors affecting choice-response time. Acta Psychologica, 27, 131–142. https://doi.org/10.1016/0001-6918(67)90053-4 Vai! Cerca con Google

Rabbitt, P. (1990). Age, IQ and awareness, and recall of errors. Ergonomics, 33(10–11), 1291–1305. https://doi.org/10.1080/00140139008925333 Vai! Cerca con Google

Rabbitt, P. M. (1966). Errors and error correction in choice-response tasks. Journal of Experimental Psychology, 71(2), 264–272. https://doi.org/10.1037/h0022853 Vai! Cerca con Google

Rabbitt, P. M. (1968). Three kinds of error-signalling responses in a serial choice task. The Quarterly Journal of Experimental Psychology, 20(2), 179–188. https://doi.org/10.1080/14640746808400146 Vai! Cerca con Google

Raz, N. (1997). Selective aging of the human cerebral cortex observed in vivo: differential vulnerability of the prefrontal gray matter. Cerebral Cortex, 7(3), 268–282. https://doi.org/10.1093/cercor/7.3.268 Vai! Cerca con Google

Reason, J. (1990). Human error. Human Error., 1056–1057. https://doi.org/10.1017/CBO9781139062367 Vai! Cerca con Google

Reed, A. E., & Carstensen, L. L. (2012). The theory behind the age-related positivity effect. Frontiers in Psychology, 3(SEP). https://doi.org/10.3389/fpsyg.2012.00339 Vai! Cerca con Google

Ridderinkhof, K. R. (2002). Micro- and macro-adjustments of task set: Activation and suppression in conflict tasks. Psychological Research, 66(4), 312–323. https://doi.org/10.1007/s00426-002-0104-7 Vai! Cerca con Google

Ridderinkhof, K. R., Ramautar, J. R., & Wijnen, J. G. (2009). To PEor not to PE: A P3-like ERP component reflecting the processing of response errors. Psychophysiology, 46(3), 531–538. https://doi.org/10.1111/j.1469-8986.2009.00790.x Vai! Cerca con Google

Ridding, M. C., & Rothwell, J. C. (2007). Is there a future for therapeutic use of transcranial magnetic stimulation? Nature Reviews Neuroscience. https://doi.org/10.1038/nrn2169 Vai! Cerca con Google

Robertson, E. M., Théoret, H., & Pascual-Leone, a. (2003). Studies in cognition: the problems solved and created by transcranial magnetic stimulation. Journal of Cognitive Neuroscience, 15, 948–960. https://doi.org/10.1162/089892903770007344 Vai! Cerca con Google

Robertson, I. H. (2014). A right hemisphere role in cognitive reserve. Neurobiology of Aging. https://doi.org/10.1016/j.neurobiolaging.2013.11.028 Vai! Cerca con Google

Rollnik, J. D., Schröder, C., Rodríguez-Fornells, A., Kurzbuch, A. R., Däuper, J., Möller, J., & Münte, T. F. (2004). Functional lesions and human action monitoring: Combining repetitive transcranial magnetic stimulation and event-related brain potentials. Clinical Neurophysiology, 115(1), 145–153. https://doi.org/10.1016/j.clinph.2003.05.001 Vai! Cerca con Google

Rosenberg, T., Gal-Ben-Ari, S., Dieterich, D. C., Kreutz, M. R., Ziv, N. E., Gundelfinger, E. D., & Rosenblum, K. (2014). The roles of protein expression in synaptic plasticity and memory consolidation. Frontiers in Molecular Neuroscience, 7. https://doi.org/10.3389/fnmol.2014.00086 Vai! Cerca con Google

Rossi, S., Hallett, M., Rossini, P. M., & Pascual-Leone, A. (2011). Screening questionnaire before TMS: An update. Clinical Neurophysiology, 122(8), 1686. https://doi.org/10.1016/j.clinph.2010.12.037 Vai! Cerca con Google

Rossi, S., Hallett, M., Rossini, P. M., Pascual-Leone, A., Avanzini, G., Bestmann, S., … Ziemann, U. (2009). Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clinical Neurophysiology. https://doi.org/10.1016/j.clinph.2009.08.016 Vai! Cerca con Google

Rossi, S., & Rossini, P. M. (2004). TMS in cognitive plasticity and the potential for rehabilitation. Trends in Cognitive Sciences. https://doi.org/10.1016/j.tics.2004.04.012 Vai! Cerca con Google

Rossini, P. M., Burke, D., Chen, R., Cohen, L. G., Daskalakis, Z., Di Iorio, R., … Ziemann, U. (2015). Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application: An updated report from an I.F.C.N. Committee. Clinical Neurophysiology. https://doi.org/10.1016/j.clinph.2015.02.001 Vai! Cerca con Google

Rotenberg, A., Horvath, J. C., & Pascual-Leone, A. (2014). The Transcranial Magnetic Stimulation (TMS) device and foundational techniques. Neuromethods, 89, 3–13. https://doi.org/10.1007/978-1-4939-0879-0_1 Vai! Cerca con Google

Roth, Y., Amir, A., Levkovitz, Y., & Zangen, A. (2007). Three-dimensional distribution of the electric field induced in the brain by transcranial magnetic stimulation using figure-8 and deep H-coils. Journal of Clinical Neurophysiology : Official Publication of the American Electroencephalographic Society, 24(1), 31–38. https://doi.org/10.1097/WNP.0b013e31802fa393 Vai! Cerca con Google

Sala, C., & Segal, M. (2014). Dendritic Spines: The Locus of Structural and Functional Plasticity. Physiological Reviews, 94(1), 141–188. https://doi.org/10.1152/physrev.00012.2013 Vai! Cerca con Google

Sale, A., Berardi, N., & Maffei, L. (2014). Environment and Brain Plasticity: Towards an Endogenous Pharmacotherapy. Physiological Reviews, 94(1), 189–234. https://doi.org/10.1152/physrev.00036.2012 Vai! Cerca con Google

Salthouse, T. A. (2010). Selective review of cognitive aging. Journal of the International Neuropsychological Society : JINS, 16(5), 754–760. https://doi.org/10.1017/S1355617710000706 Vai! Cerca con Google

Sampaio-Baptista, C., & Johansen-Berg, H. (2017). White Matter Plasticity in the Adult Brain. Neuron. https://doi.org/10.1016/j.neuron.2017.11.026 Vai! Cerca con Google

Sandrini, M., Umiltà, C., & Rusconi, E. (2011). The use of transcranial magnetic stimulation in cognitive neuroscience: A new synthesis of methodological issues. Neuroscience and Biobehavioral Reviews. https://doi.org/10.1016/j.neubiorev.2010.06.005 Vai! Cerca con Google

Santangelo, G., Siciliano, M., Pedone, R., Vitale, C., Falco, F., Bisogno, R., … Trojano, L. (2015). Normative data for the Montreal Cognitive Assessment in an Italian population sample. Neurological Sciences, 36(4), 585–591. https://doi.org/10.1007/s10072-014-1995-y Vai! Cerca con Google

Schaefer, N., Rotermund, C., Blumrich, E. M., Lourenco, M. V., Joshi, P., Hegemann, R. U., … Turner, A. J. (2017). The malleable brain: plasticity of neural circuits and behavior – a review from students to students. Journal of Neurochemistry. https://doi.org/10.1111/jnc.14107 Vai! Cerca con Google

Scheffers, M. K., & Coles, M. G. H. (2000). Performance monitoring in a confusing world: Error-related brain activity, judgments of response accuracy, and types of errors. Journal of Experimental Psychology: Human Perception and Performance, 26(1), 141–151. https://doi.org/10.1037/0096-1523.26.1.141 Vai! Cerca con Google

Schlaug, G., Forgeard, M., Zhu, L., Norton, A., Norton, A., & Winner, E. (2009). Training-induced neuroplasticity in young children. In Annals of the New York Academy of Sciences (Vol. 1169, pp. 205–208). https://doi.org/10.1111/j.1749-6632.2009.04842.x Vai! Cerca con Google

Schreiber, M., Pietschmann, M., Kathmann, N., & Endrass, T. (2011). ERP correlates of performance monitoring in elderly. Brain and Cognition, 76(1), 131–139. https://doi.org/10.1016/j.bandc.2011.02.003 Vai! Cerca con Google

Schulz, R., Gerloff, C., & Hummel, F. C. (2013). Non-invasive brain stimulation in neurological diseases. Neuropharmacology. https://doi.org/10.1016/j.neuropharm.2012.05.016 Vai! Cerca con Google

Seifert, S., von Cramon, D. Y., Imperati, D., Tittgemeyer, M., & Ullsperger, M. (2011). Thalamocingulate Interactions In Performance Monitoring. Journal of Neuroscience, 31(9), 3375–3383. https://doi.org/10.1523/JNEUROSCI.6242-10.2011 Vai! Cerca con Google

Sellaro, R., van Leusden, J. W. R., Tona, K.-D., Verkuil, B., Nieuwenhuis, S., & Colzato, L. S. (2015). Transcutaneous Vagus Nerve Stimulation Enhances Post-error Slowing. Journal of Cognitive Neuroscience, 27(11), 2126–2132. https://doi.org/10.1162/jocn_a_00851 Vai! Cerca con Google

Seri, B., García-Verdugo, J. M., Collado-Morente, L., McEwen, B. S., & Alvarez-Buylla, A. (2004). Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. Journal of Comparative Neurology, 478(4), 359–378. https://doi.org/10.1002/cne.20288 Vai! Cerca con Google

Shalgi, S., O’Connell, R. G., Deouell, L. Y., & Robertson, I. H. (2007). Absent minded but accurate: Delaying responses increases accuracy but decreases error awareness. Experimental Brain Research, 182(1), 119–124. https://doi.org/10.1007/s00221-007-1054-5 Vai! Cerca con Google

Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The expected value of control: An integrative theory of anterior cingulate cortex function. Neuron. https://doi.org/10.1016/j.neuron.2013.07.007 Vai! Cerca con Google

Shidara, M., & Richmond, B. J. (2002). Anterior cingulate: Single neuronal signals related to degree of reward expectancy. Science, 296(5573), 1709–1711. https://doi.org/10.1126/science.1069504 Vai! Cerca con Google

Shohamy, D., & Adcock, R. A. (2010). Dopamine and adaptive memory. Trends in Cognitive Sciences. https://doi.org/10.1016/j.tics.2010.08.002 Vai! Cerca con Google

Silvanto, J. (2013). Transcranial magnetic stimulation and vision. Handbook of Clinical Neurology, 116, 655–669. https://doi.org/10.1016/B978-0-444-53497-2.00052-8 Vai! Cerca con Google

Simões-Franklin, C., Hester, R., Shpaner, M., Foxe, J. J., & Garavan, H. (2010). Executive function and error detection: The effect of motivation on cingulate and ventral striatum activity. Human Brain Mapping, 31(3), 458–469. https://doi.org/10.1002/hbm.20879 Vai! Cerca con Google

Singh, P., Satyarthee, G., Sharma, B., Mahapatra, A., Vaghani, G., Sinha, S., … Gupta, D. (2013). Outcome of patients with traumatic head injury in infants: An institutional experience at level 1 trauma center. Journal of Pediatric Neurosciences, 8(2), 104. https://doi.org/10.4103/1817-1745.117836 Vai! Cerca con Google

Sokhadze, E. M., Baruth, J. M., Sears, L., Sokhadze, G. E., El-Baz, A. S., & Casanova, M. F. (2012). Prefrontal neuromodulation using rTMS improves error monitoring and correction function in autism. Applied Psychophysiology Biofeedback, 37(2), 91–102. https://doi.org/10.1007/s10484-012-9182-5 Vai! Cerca con Google

Spaniol, J., Schain, C., & Bowen, H. J. (2014). Reward-enhanced memory in younger and older adults. Journals of Gerontology - Series B Psychological Sciences and Social Sciences, 69(5), 730–740. https://doi.org/10.1093/geronb/gbt044 Vai! Cerca con Google

Spaniol, J., Voss, A., Bowen, H. J., & Grady, C. L. (2011). Motivational incentives modulate age differences in visual perception. Psychology and Aging, 26(4), 932–939. https://doi.org/10.1037/a0023297 Vai! Cerca con Google

Starkstein, S. E., Jorge, R., Mizrahi, R., Adrian, J., & Robinson, R. G. (2007). Insight and danger in Alzheimer’s disease. European Journal of Neurology, 14(4), 455–460. https://doi.org/10.1111/j.1468-1331.2007.01745.x Vai! Cerca con Google

Starns, J. J., & Ratcliff, R. (2010). The effects of aging on the speed–accuracy compromise: Boundary optimality in the diffusion model. Psychology and Aging, 25(2), 377–390. https://doi.org/10.1037/a0018022 Vai! Cerca con Google

Steffens, D. C., Wagner, H. R., Levy, R. M., Horn, K. A., & Krishnan, K. R. R. (2001). Performance feedback deficit in geriatric depression. Biological Psychiatry, 50(5), 358–363. https://doi.org/10.1016/S0006-3223(01)01165-9 Vai! Cerca con Google

Steinhauser, M., Maier, M., & Hübner, R. (2008). Modeling behavioral measures of error detection in choice tasks: response monitoring versus conflict monitoring. Journal of Experimental Psychology: Human Perception and Performance, 34(1), 158. Cerca con Google

Steinhauser, M., & Yeung, N. (2010). Decision Processes in Human Performance Monitoring. Journal of Neuroscience, 30(46), 15643–15653. https://doi.org/10.1523/JNEUROSCI.1899-10.2010 Vai! Cerca con Google

Steinmetz, H., Fürst, G., & Meyer, B. U. (1989). Craniocerebral topography within the international 10-20 system. Electroencephalography and Clinical Neurophysiology, 72(6), 499–506. https://doi.org/10.1016/0013-4694(89)90227-7 Vai! Cerca con Google

Stewart, L. M., Walsh, V., & Rothwell, J. C. (2001). Motor and phosphene thresholds: a transcrainal magnetic stimulation correlation study. Neuropsychologia, 39, 415–419. https://doi.org/10.1002/hbm.20427 Vai! Cerca con Google

Swain, R. A., Harris, A. B., Wiener, E. C., Dutka, M. V., Morris, H. D., Theien, B. E., … Greenough, W. T. (2003). Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience, 117(4), 1037–1046. https://doi.org/10.1016/S0306-4522(02)00664-4 Vai! Cerca con Google

Taupin, P. (2006). Neurogenesis and The Effect of Antidepressants. Drug Target Insights (Vol. 1). Retrieved from http://www.la-press.com/copyright.htm Vai! Cerca con Google

Tavakoli, A. V., & Yun, K. (2017). Transcranial Alternating Current Stimulation (tACS) Mechanisms and Protocols. Frontiers in Cellular Neuroscience, 11. https://doi.org/10.3389/fncel.2017.00214 Vai! Cerca con Google

Taylor, H. G., & Alden, J. (1997). Age-related differences in outcomes following childhood brain insults: an introduction and overview. Journal of the International Neuropsychological Society, 3, 555–567. Cerca con Google

Taylor, S. F., Stern, E. R., & Gehring, W. J. (2007). Neural systems for error monitoring: recent findings and theoretical perspectives. The Neuroscientist : A Review Journal Bringing Neurobiology, Neurology and Psychiatry, 13(2), 160–172. https://doi.org/10.1177/1073858406298184 Vai! Cerca con Google

Terao, Y., Ugawa, Y., Suzuki, M., Sakai, K., Hanajima, R., Gemba-Shimizu, K., & Kanazawa, I. (1997). Shortening of simple reaction time by peripheral electrical and submotor-threshold magnetic cortical stimulation. Experimental Brain Research, 115(3), 541–545. https://doi.org/10.1007/PL00005724 Vai! Cerca con Google

Themanson, J. R., Hillman, C. H., & Curtin, J. J. (2006). Age and physical activity influences on action monitoring during task switching. Neurobiology of Aging, 27(9), 1335–1345. https://doi.org/10.1016/j.neurobiolaging.2005.07.002 Vai! Cerca con Google

Thurley, K., Senn, W., & Lüscher, H.-R. (2008). Dopamine Increases the Gain of the Input-Output Response of Rat Prefrontal Pyramidal Neurons. Journal of Neurophysiology, 99(6), 2985–2997. https://doi.org/10.1152/jn.01098.2007 Vai! Cerca con Google

Thut, G., & Miniussi, C. (2009). New insights into rhythmic brain activity from TMS-EEG studies. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record