Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Passarini, Chiara (2018) Performance evaluation and safety improvement of Cable Driven Robots. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document - Submitted Version
23Mb

Abstract (italian or english)

Cable Driven Robots are a new class of parallel manipulators in which rigid links are replaced by cables. They are widely suggested for applications involving wide workspaces and high payloads. Moreover, their simple and light design makes them inexpensive and reconfigurable.
However, besides all these advantages, only few examples of successful applications are present outside research laboratories. The most well known one is the cable suspended camera system in stadiums and arenas. Even if these devices are widely employed in public and crowded areas, close to or even in contact with humans, an emergency
stop in case of failure or cable breakage is not yet available.
Indeed, managing safety in cable driven robots is more difficult than in conventional manipulators with rigid links. In particular, an abrupt brake of the actuated joints is not a sufficient condition to ensure the arrest of the end effector.
The objective of this thesis is to investigate safety issues in cable driven robots and propose recovery approaches to apply in case of failure. The need of safety is proven by many examples of malfunctions or accidents involving cable camera systems around the world.
By studying the performance of cable driven robots before and after failure, new algorithms are proposed to deal with cable breakage and keep the end effector under control in emergency conditions. The first part of the thesis presents an overview of cable driven robots, including classification, modeling and performance evaluation.
The second part focuses on after failure recovery approaches. Two different strategies are proposed to lead the end effector towards a safe configuration following a feasible path and avoiding further damages. The proposed strategies are tested on a real prototype to prove their effectiveness and the experimental results are discussed in the last part of this dissertation.

Abstract (a different language)

I robot a cavi sono una classe di manipolatori innovativa nell’ambito della robotica. Risultano particolarmente vantaggiosi nei campi in cui si richiede un ampio spazio di lavoro o la capacità di sollevare carichi ingenti. Il loro design semplice e leggero li rende notevolmente economici e facilmente riconfigurabili. Nonostante gli innegabili vantaggi, i robot a cavi sono ancora scarsamente diffusi in applicazioni che esulano dalla ricerca. L’applicazione più nota e di maggior successo è probabilmente quella delle telecamere sospese, impiegate in stadi e palazzetti. Nonostante l’uso intensivo di questa tecnologia in aree pubbliche ed affollate, non è ancora presente un efficiente sistema di emergenza. Infatti, un improvviso blocco dei motori non assicura l’arresto del dispositivo, come invece accade per i robot tradizionali a membri rigidi.
Lo scopo di questa tesi è quello di analizzare le problematiche
legate alla sicurezza nei robot a cavi e proporre nuove soluzioni da attuare in caso di malfunzionamento per assicurare l’arresto dell’organo
terminale. La necessità di un’efficiente strategia per gestire i guasti è provata dai numerosi incidenti riguardanti le telecamere sospese avvenuti in tutto il mondo.
La prima parte della tesi presenta una panoramica sui robot a cavi, considerando classificazione, modellazione e valutazione delle prestazioni. Successivamente, la tesi presenta due diverse possibili strategie da attuare in caso di rottura di uno o più cavi per garantire l’arresto in sicurezza dell’organo terminale mentendo la tensione su tutti i cavi rimanenti. Le strategie verrano quindi testate considerando un prototipo di robot a cavi sospeso e planare. Seguiranno poi i risultati sperimentali nella parte finale della tesi dove verranno discusse fattibilità ed affidabilità di entrambe le strategie.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Boschetti, Giovanni
Ph.D. course:Ciclo 31 > Corsi 31 > INGEGNERIA MECCATRONICA E DELL'INNOVAZIONE MECCANICA DEL PRODOTTO
Data di deposito della tesi:11 April 2019
Anno di Pubblicazione:29 November 2018
Key Words:Cable Driven Robots, motion planning, safety, performance evaluation, failure, emergency stop
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/13 Meccanica applicata alle macchine
Struttura di riferimento:Dipartimenti > Dipartimento di Tecnica e Gestione dei Sistemi Industriali
Codice ID:11882
Depositato il:07 Nov 2019 14:30
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] Saeed Abdolshah, Damiano Zanotto, Giulio Rosati, and Sunil K Agrawal. “Optimizing stiffness and dexterity of planar adaptive cable-driven parallel robots.” In: Journal of Mechanisms and Robotics 9.3 (2017), p. 031004. Cerca con Google

[2] Saeed Abdolshah, Damiano Zanotto, Giulio Rosati, and Sunil Agrawal. “Performance evaluation of a new design of cablesuspended camera system.” In: Robotics and Automation (ICRA), 2017 IEEE International Conference on. IEEE. 2017, pp. 3728–3733. Cerca con Google

[3] James Albus, Roger Bostelman, and Nicholas Dagalakis. “The NIST robocrane.” In: Journal of Field Robotics 10.5 (1993), pp. 709–724. Cerca con Google

[4] L Barbazza, F Oscari, S Minto, and G Rosati. “Trajectory planning of a suspended cable driven parallel robot with reconfigurable end effector.” In: Robotics and Computer-Integrated Manufacturing 48 (2017), pp. 1–11. Cerca con Google

[5] C Bradford Barber, David P Dobkin, and Hannu Huhdanpaa. “The quickhull algorithm for convex hulls.” In: ACM Transactions on Mathematical Software (TOMS) 22.4 (1996), pp. 469–483. Cerca con Google

[6] Guillaume Barrette and Clément M Gosselin. “Determination of the dynamic workspace of cable-driven planar parallel mechanisms.” In: Journal of mechanical design 127.2 (2005), pp. 242–248. Cerca con Google

[7] Saeed Behzadipour and Amir Khajepour. “Time-optimal trajectory planning in cable-based manipulators.” In: IEEE Transactions on Robotics 22.3 (2006), pp. 559–563. Cerca con Google

[8] Alessandro Berti, Marc Gouttefarde, and Marco Carricato. “Dynamic recovery of cable-suspended parallel robots after a cable failure.” In: Advances in Robot Kinematics 2016. Springer, 2018, pp. 331–339. Cerca con Google

[9] Alessandro Berti, Jean-Pierre Merlet, and Marco Carricato. “Solving the direct geometrico-static problem of 3-3 cable-driven parallel robots by interval analysis: Preliminary results.” In: Cable- Driven Parallel Robots. Springer, 2013, pp. 251–268. Cerca con Google

[10] Per Henrik Borgstrom, Brett L Jordan, Gaurav S Sukhatme, Maxim A Batalin, and William J Kaiser. “Rapid computation of optimally safe tension distributions for parallel cable-driven robots.” In: IEEE Transactions on Robotics 25.6 (2009), pp. 1271–1281. Cerca con Google

[11] Paolo Boscariol, Alessandro Gasparetto, and Renato Vidoni. “Planning continuous-jerk trajectories for industrial manipulators.” In: ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers. 2012, pp. 127–136. Cerca con Google

[12] Giovanni Boschetti, Chiara Passarini, and Alberto Trevisani. “A Strategy for Moving Cable Driven Robots Safely in Case of Cable Failure.” In: Advances in Italian Mechanism Science. Springer, 2017, pp. 203–211. Cerca con Google

[13] Giovanni Boschetti and Alberto Trevisani. “Performance evaluation for cable direct driven robot.” In: ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers. 2014, V003T17A014–V003T17A014. Cerca con Google

[14] Giovanni Boschetti and Alberto Trevisani. “On the use of the wrench exertion capability as a performance index for cable driver robot.” In: Proceedings of ECCOMAS thematic conference on multibody dynamics. 2015, pp. 375–384. Cerca con Google

[15] Giovanni Boschetti and Alberto Trevisani. “Cable Robot Performance Evaluation by Wrench Exertion Capability.” In: Robotics 7.15 (2018): Kinematics and Robot Design. Cerca con Google

[16] Paul Bosscher and Imme Ebert-Uphoff. “Wrench-based analysis of cable-driven robots.” In: Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International Conference on. Vol. 5. IEEE. 2004, pp. 4950–4955. Cerca con Google

[17] Paul Bosscher, Andrew T Riechel, and Imme Ebert-Uphoff. “Wrenchfeasible workspace generation for cable-driven robots.” In: IEEE Transactions on Robotics 22.5 (2006), pp. 890–902. Cerca con Google

[18] Samuel Bouchard, Clément Gosselin, and Brian Moore. “On the Ability of a Cable-Driven Robot to Generate a Prescribed Set of Wrenches.” In: Journal of Mechanisms and Robotics 2 (2010), p. 011010. Cerca con Google

[19] Marco Carricato and Jean-Pierre Merlet. “Stability analysis of underconstrained cable-driven parallel robots.” In: IEEE Transactions on Robotics 29.1 (2013), pp. 288–296. Cerca con Google

[20] Jean-François Collard and Philippe Cardou. “Computing the lowest equilibrium pose of a cable-suspended rigid body.” In: Optimization and Engineering 14.3 (2013), pp. 457–476. Cerca con Google

[21] Lawrence L Cone. “Skycam-an aerial robotic camera system.” In: Byte 10.10 (1985), p. 122. Cerca con Google

[22] Xiaowei Dai, Yuru Zhang, DangxiaoWang, and Jian Song. “Structural Characteristics of Force/Moment Polytopes of Cable Driven Parallel Mechanisms.” In: Advances in Reconfigurable Mechanisms and Robots II. Springer, 2016, pp. 1482–1493. Cerca con Google

[23] Pascal Dion-Gauvin and Clément Gosselin. “Trajectory planning for the static to dynamic transition of point-mass cablesuspended parallel mechanisms.” In: Mechanism and Machine Theory 113 (2017), pp. 158–178. Cerca con Google

[24] Claudio Fanin, Paolo Gallina, Aldo Rossi, Umberto Zanatta, and Stefano Masiero. “Nerebot: a wire-based robot for neurorehabilitation.” In: ICORR’03. HWRS-ERC. 2003, pp. 23–27. Cerca con Google

[25] Flavio Firmani, Alp Zibil, Scott B Nokleby, and Ron P Podhorodeski. “Wrench capabilities of planar parallel manipulators. Part I: Wrench polytopes and performance indices.” In: Robotica 26.06 (2008), pp. 791–802. Cerca con Google

[26] Flavio Firmani, Alp Zibil, Scott B Nokleby, and Ron P Podhorodeski. “Wrench capabilities of planar parallel manipulators. Part II: Redundancy and wrench workspace analysis.” In: Robotica 26.06 (2008), pp. 803–815. Cerca con Google

[27] Paolo Gallina and Giulio Rosati. “Manipulability of a planar wire driven haptic device.” In: Mechanism and Machine Theory 37.2 (2002), pp. 215–228. Cerca con Google

[28] Asim Ghaffar and Mahir Hassan. “Failure Analysis of Cable Based Parallel Manipulators.” In: Applied Mechanics & Materials 736 (2014). Cerca con Google

[29] Clément Gosselin. “Global planning of dynamically feasible trajectories for three-DOF spatial cable-suspended parallel robots.” In: Cable-Driven Parallel Robots. Springer, 2013, pp. 3–22. Cerca con Google

[30] Clement Gosselin and Simon Foucault. “Dynamic point-to-point trajectory planning of a two-DOF cable-suspended parallel robot.” In: IEEE Transactions on Robotics 30.3 (2014), pp. 728–736. Cerca con Google

[31] Clément Gosselin, Ping Ren, and Simon Foucault. “Dynamic trajectory planning of a two-DOF cable-suspended parallel robot.” In: Robotics and Automation (ICRA), 2012 IEEE International Conference on. IEEE. 2012, pp. 1476–1481. Cerca con Google

[32] Marc Gouttefarde and Clément M Gosselin. “Analysis of the wrench-closure workspace of planar parallel cable-driven mechanisms.” In: IEEE Transactions on Robotics 22.3 (2006), pp. 434– 445. Cerca con Google

[33] Branko Grünbaum. Convex polytopes, volume 221 of Graduate Texts in Mathematics. 2003. Cerca con Google

[34] Carl S Holland and David J Cannon. Cable array robot for material handling. US Patent 6,826,452. 2004. Cerca con Google

[35] Qimi Jiang and Vijay Kumar. “The direct kinematics of objects suspended from cables.” In: ASME 2010 international design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers. 2010, pp. 193–202. Cerca con Google

[36] Xiaoling Jiang and Clément Gosselin. “Dynamically feasible trajectories for three-DOF planar cable-suspended parallel robots.” In: ASME Paper No. DETC2014-34419 (2014). Cerca con Google

[37] Xiaoling Jiang and Clément Gosselin. “Dynamic point-to-point trajectory planning of a three-DOF cable-suspended parallel robot.” In: IEEE Transactions on Robotics 32.6 (2016), pp. 1550– 1557. Cerca con Google

[38] Xin Jin, Xiang Cui, and Sunil K Agrawal. “Design of a cabledriven active leg exoskeleton (c-alex) and gait training experiments with human subjects.” In: Robotics and Automation (ICRA), 2015 IEEE International Conference on. IEEE. 2015, pp. 5578–5583. Cerca con Google

[39] Johann Lamaury and Marc Gouttefarde. “A tension distribution method with improved computational efficiency.” In: Cabledriven parallel robots. Springer, 2013, pp. 71–85. Cerca con Google

[40] Jhon Freddy Rodríguez León, Giuseppe Carbone, Daniele Cafolla, Matteo Russo, Marco Ceccarelli, and Eduardo Castillo Castañeda. “Experiences and Design of a Cable-Driven Assisting Device for Arm Motion.” In: ROMANSY 22–Robot Design, Dynamics and Control. Springer, 2019, pp. 94–101. Cerca con Google

[41] Wen Bin Lim, Guilin Yang, Song Huat Yeo, and Shabbir Kurbanhusen Mustafa. “A generic force-closure analysis algorithm for cable-driven parallel manipulators.” In: Mechanism and Machine Theory 46.9 (2011), pp. 1265–1275. Cerca con Google

[42] Lars Mikelsons, Tobias Bruckmann, Manfred Hiller, and Dieter Schramm. “A real-time capable force calculation algorithm for redundant tendon-based parallel manipulators.” In: Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on. IEEE. 2008, pp. 3869–3874. Cerca con Google

[43] Giovanni Mottola, Clement Gosselin, and Marco Carricato. “Dynamically Feasible Periodic Trajectories for Generic Spatial 3- DOF Cable-Suspended Parallel Robots.” In: Journal of Mechanisms and Robotics (). In press. Cerca con Google

[44] Giovanni Mottola, Clément Gosselin, and Marco Carricato. “Dynamically- Feasible Elliptical Trajectories for Fully Constrained 3- DOF Cable-Suspended Parallel Robots.” In: Cable-Driven Parallel Robots. Springer, 2018, pp. 219–230. Cerca con Google

[45] Rendong Nan. “Five hundred meter aperture spherical radio telescope (FAST).” In: Science in China series G 49.2 (2006), pp. 129– 148. Cerca con Google

[46] Scott B Nokleby, R Fisher, Ron P Podhorodeski, and Flavio Firmani. “Force capabilities of redundantly-actuated parallel manipulators.” In: Mechanism and machine theory 40.5 (2005), pp. 578–599. Cerca con Google

[47] Leila Notash. “Failure recovery for wrench capability of wireactuated parallel manipulators.” In: Robotica 30.6 (2012), pp. 941–950. Cerca con Google

[48] Leila Notash. “Wrench recovery for wire-actuated parallel manipulators.” In: Proceedings of robot design, dynamics and control, Romansy 19 (2013), pp. 201–208. Cerca con Google

[49] So-Ryeok Oh and Sunil Kumar Agrawal. “Cable-suspended planar parallel robots with redundant cables: Controllers with positive cable tensions.” In: IEEE International Conference on Robotics and Automation. Vol. 3. IEEE; 1999. 2003, pp. 3023–3028. Cerca con Google

[50] Cong Bang Pham, Song Huat Yeo, Guilin Yang, and I-Ming Chen. “Workspace analysis of fully restrained cable-driven manipulators.” In: Robotics and Autonomous Systems 57.9 (2009), pp. 901– 912. Cerca con Google

[51] Andreas Pott, Christian Meyer, and Alexander Verl. “Largescale assembly of solar power plants with parallel cable robots.” In: Robotics (ISR), 2010 41st International Symposium on and 2010 6th German Conference on Robotics (ROBOTIK). VDE. 2010, pp. 1– 6. Cerca con Google

[52] Andreas Pott, Hendrik Mutherich,Werner Kraus, Valentin Schmidt, Philipp Miermeister, Thomas Dietz, and Alexander Verl. “Cabledriven parallel robots for industrial applications: The ipanema system family.” In: Robotics (ISR), 2013 44th International Symposium on. IEEE. 2013, pp. 1–6. Cerca con Google

[53] Jason Pusey, Abbas Fattah, Sunil Agrawal, and Elena Messina. “Design and workspace analysis of a 6–6 cable-suspended parallel robot.” In: Mechanism and machine theory 39.7 (2004), pp. 761– 778. Cerca con Google

[54] Rodney G Roberts, Todd Graham, and Thomas Lippitt. “On the inverse kinematics, statics, and fault tolerance of cable-suspended robots.” In: Journal of Field Robotics 15.10 (1998), pp. 581–597. Cerca con Google

[55] G Rosati, Paolo Gallina, A Rossi, and S Masiero. “Wire-based robots for upper-limb rehabilitation.” In: International Journal of Assistive Robotics and Mechatronics 7 (2006), pp. 3–10. Cerca con Google

[56] Giulio Rosati and Damiano Zanotto. “A novel perspective in the design of cable-driven systems.” In: ASME 2008 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers. 2008, pp. 617–625. Cerca con Google

[57] Giulio Rosati, Damiano Zanotto, and Sunil K Agrawal. “On the design of adaptive cable-driven systems.” In: Journal of mechanisms and robotics 3.2 (2011), p. 021004. Cerca con Google

[58] Giulio Rosati, Paolo Gallina, Stefano Masiero, and Aldo Rossi. “Design of a new 5 dof wire-based robot for rehabilitation.” In: Rehabilitation Robotics, 2005. ICORR 2005. 9th International Conference on. IEEE. 2005, pp. 430–433. Cerca con Google

[59] Giulio Rosati, Riccardo Secoli, Damiano Zanotto, Aldo Rossi, and Giovanni Boschetti. “Planar robotic systems for upper-limb post-stroke rehabilitation.” In: ASME 2008 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers. 2008, pp. 115–124. Cerca con Google

[60] Giulio Rosati, Stefano Cenci, Giovanni Boschetti, Damiano Zanotto, and Stefano Masiero. “Design of a single-dof active hand orthosis for neurorehabilitation.” In: Rehabilitation Robotics, 2009. ICORR 2009. IEEE International Conference on. IEEE. 2009, pp. 161– 166. Cerca con Google

[61] L Stocco, Septimiu E Salcudean, and Farrokh Sassani. “Mechanism design for global isotropy with applications to haptic interfaces.” In: ASME Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Dallas, TX, Nov. 1997, pp. 15– 21. Cerca con Google

[62] Alberto Trevisani. “Underconstrained planar cable-direct-driven robots: A trajectory planning method ensuring positive and bounded cable tensions.” In: Mechatronics 20.1 (2010), pp. 113– 127. Cerca con Google

[63] Alberto Trevisani. “Planning of dynamically feasible trajectories for translational, planar, and underconstrained cable-driven robots.” In: Journal of Systems Science and Complexity 26.5 (2013), pp. 695–717. Cerca con Google

[64] Alberto Trevisani, Paolo Gallina, and Robert LWilliams. “Cabledirect- driven robot (CDDR) with passive SCARA support: theory and simulation.” In: Journal of Intelligent and Robotic Systems 46.1 (2006), pp. 73–94. Cerca con Google

[65] Vineet Vashista, SK Mustafa, and Sunil K Agrawal. “Experimental studies on the human gait using a tethered pelvic assist device (t-pad).” In: Rehabilitation Robotics (ICORR), 2011 IEEE International Conference on. IEEE. 2011, pp. 1–6. Cerca con Google

[66] Robert L Williams Ii and Paolo Gallina. “Translational planar cable-direct-driven robots.” In: Journal of Intelligent and Robotic systems 37.1 (2003), pp. 69–96. Cerca con Google

[67] Tsuneo Yoshikawa. “Manipulability of robotic mechanisms.” In: The international journal of Robotics Research 4.2 (1985), pp. 3–9. Cerca con Google

[68] Damiano Zanotto, Giulio Rosati, Simone Minto, and Aldo Rossi. “Sophia-3: a semiadaptive cable-driven rehabilitation device with a tilting working plane.” In: IEEE Transactions on Robotics 30.4 (2014), pp. 974–979. Cerca con Google

[69] Alp Zibil, Flavio Firmani, Scott B Nokleby, and Ron P Podhorodeski. “An explicit method for determining the force-moment capabilities of redundantly actuated planar parallel manipulators.” In: Journal of mechanical design 129.10 (2007), pp. 1046– 1055. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record