Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Mohebbi, Elaheh (2019) Surface supported supramolecular architectures: an experimental and modeling study. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document
23Mb

Abstract (italian or english)

L’auto-organizzazione di molecole organiche su superfici solide è uno degli approcci più diffusi per la creazione di architetture supramolecolari supportate di dimensioni controllate e con proprietà innovative. L’uso combinato di differenti interazioni di natura non covalente adsorbato–adsorbato e adsorbato–substrato consente infatti la modulazione dell’associazione di specie distinte in modo quasi altrettanto accurato che nei sistemi biologici, fonte primaria di ispirazione per ciò che può essere realizzato artificialmente. Il consenso sull’uso d’interazioni intermolecolari estese non covalenti nell’ingegnerizzazione di nanostrutture bidimensionali supportate prive di difetti è unanime. Ciononostante, i materiali così ottenuti sono spesso fragili, incapaci di resistere a condizioni aggressive, privi di stabilità meccanica ed inefficienti nei processi di trasferimento di carica intermolecolare; sono cioè materiali inadatti per applicazioni tecnologiche. La produzione di sistemi nanostrutturati supportati con proprietà predeterminate, privi di difetti e con risvolti applicativi implica quindi la sintesi di network covalenti robusti, non caratterizzati dalle limitazioni di cui sopra. In questa tesi di dottorato si è voluta esplorare sia sperimentalmente sia teoricamente la possibilità di stabilizzare covalentemente network supramolecolari funzionali in una/due dimensioni stimolando la formazione di legami covalenti tra molecole preorganizzate su una superficie.

Abstract (a different language)

The scientific community is nowadays focused on the design and the production of nm/μm-sized systems for their relevance to nanotechnology, energy production and storage, life science and environment. Advances in high performing computing and in synthetic/characterization methods make possible devising novel rational approaches to tailor properties of low-dimensional architectures of molecular networks on inorganic substrates; i.e., to control the electron transport properties of active layers and the reactivity of selected sites. As such, the self-assembly of functional architectures on appropriate surfaces is the most promising bottom-up approach to organize and integrate single molecules on solid substrates. As a consequence of the persistent progress in computational power and multiscale material modeling, new materials are less likely to be discovered by a trial-and-error approach. This points to a paradigm shift in modeling, away from reproducing known properties of known materials and towards simulating the properties of hypothetical composites as a forerunner to get real materials with desired characteristics. The interplay among multiscale material modeling, new synthetic routes and appropriate validation experiments is crucial to design the desired behavior at each length scale. In this PhD thesis we exploited integrated methodologies to provide interpretative tools about structure and functions of organic/inorganic hybrid nanostructured materials made of molecular mono-layers deposited on technological relevant substrates, suitable for applications in strategic areas such as catalysis, artificial photosynthesis, molecular electronics-magnetism and molecular recognition.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Casarin, Maurizio
Supervisor:Casarin, Maurizio
Ph.D. course:Ciclo 31 > Corsi 31 > SCIENZE MOLECOLARI
Data di deposito della tesi:24 April 2019
Anno di Pubblicazione:01 March 2019
Key Words:Mustiscale Materials Modeling, Organic Framework, Density Functional Theory, Generalized Gradient Approximation, Scanning Tunnelling Microscopy, Metal-Organic Framework , dispersion corrections
Settori scientifico-disciplinari MIUR:Area 03 - Scienze chimiche > CHIM/03 Chimica generale e inorganica
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Chimiche
Codice ID:11889
Depositato il:08 Nov 2019 09:49
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158. Advances in Polymer Science, vol. 177, Ed. Weder, Ch., Springer, Berlin 2005. Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. J. Chem. Soc., Perkin Trans. 2, 1987, 0, S1. Ambrosch-Draxl, C.; Majewski, J.; Vogl, P.; Leising, G. Phys. Rev. B: Condens. Matter 1995, 51, 9668. Ashcroft, N. W.; Mermin, N. D. Solid state physics, Philadelphia: Holt Saunders, 1976. Baroni, S.; Giannozzi, P. American Geophysical Union, Fall Meeting 2009. Basagni, A.; Sedona, F.; Pignedoli, C. A.; Cattelan, M.; Nicolas, L.; Casarin, M.; Sambi, M. J. Am. Chem. Soc. 2015, 137, 1802. Basagni, A.; Vasseur, G.; Pignedoli, C.A.; Vilas-Varela, M.; Peña, D.; Nicolas, L.; Vitali, L.; Lobo-Checa, J.; De Oteyza, D. G.; Sedona, F.; Casarin, M.; Sambi, M. ACSNano 2016, 10, 2644. Bebensee, F.; Svane, K.; Bombis, C.; Masini, F.; Klyatskaya, S.; Besenbacher, F.; Ruben, M.; Hammer, B.; Linderoth, T. Chem. Commun. 2013, 49, 9308. Bebensee, F.; Svane, K.; Bombis, C.; Masini, F.; Klyatskaya, S.; Besenbacher, F.; Ruben, M.; Hammer, B.; Linderoth, T. Angew. Chem., Int. Ed. 2014, 53, 12955. Becke, A. D. Int. J. Quantum. Chem. 1983, 23, 1915. Becke, A. D. J. Chem. Phys. 1986, 84, 4524. Becke, A. D. J. Chem. Phys. 1988a, 88, 1053. Becke, A. D. J. Chem. Phys. 1988b, 88, 2547. Becke, A. D. Phys. Rev. A: At. Mol. Opt. Phys. 1988c, 38, 3098. Betti, M. G.; Gargiani, P.; Mariani, C.; Biagi, R.; Fujii, J.; Rossi, G.; Resta, A.; Fabris, S.; Fortuna, S.; Torrelles, X.; Kumar, M.; Pedio, M. Langmuir 2012, 28, 13232. Bloch, F. Z. Physik 1928, 52, 555. Bogani, L.; Wernsdorfer, W. Nat. Mater. 2008, 7, 179. Born, M.; Oppenheimer, R. Ann. Phys. 1927, 84, 457. Bravais, A. J. Ecole Polytech. 1850, 19, 1. Brillouin, Léon Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences 1930, 191, 292. Bronner, C.; Björk, J.; Tegeder, P. J. Phys. Chem. C 2015, 119, 486. Bunz, U. H. F. Chem. Rev. 2000, 100, 1605. Bunz, U. H. F. Adv. Polym. Sci. 2005, 177, 1. Callaway, J.; March, N. H. Solid State Phys. 1984, 38, 135. Casari, C.S.; Tommasini, M.; Tykwinski, R.R.; Milani, A. Nanoscale 2016, 8, 4414. Ceperley, D. M.; Alder, J. B. Phys. Rev. Lett. 1980, 45, 566. Chadi, D. J.; Cohen, M. L. Phys. Rev. B: Condens. Matter 1973, 8, 5747. Chung, K. H.; Koo, B. G.; Kim, H.; Yoon, J. K.; Kim, J. H.; Kwon, Y. K.; Kahng, S. J. Phys. Chem. Chem. Phys. 2012, 14, 7304. Cirera, B.; Zhang, Y.-Q.; Klyatskaya, S.; Ruben, M.; Klappenberger, F.; Barth, J. V. ChemCatChem 2013, 5, 3281. Cirera, B.; Zhang, Y.-Q.; Björk, J.; Klyatskaya, S.; Chen, Z.; Ruben, M.; Barth, J. V.; Klappenberger, F. Nano Lett. 2014, 14, 1891. Clair, S.; Abel, M.; Porte, L. Chem. Comm. 2014, 50, 9627. Cohen, M. L.; Heine, V. Solid State Physics 1970, 24, 37. Cole, L. A.; Perdew, J. P. Phys. Rev. A: At. Mol. Opt. Phys. 1982, 25, 1265. Coleman, A. J. Rev. Mod. Phys. 1963, 35, 668. Constantin, L. A.; Pitarke, J. M.; Dobson, J. F.; Garcia-Lekue, A.; Perdew, J. P. Phys. Rev. Lett. 2008, 100, 036401. Cotts, P. M.; Swager, T. M.; Zhou, Q. Macromolecules, 1996, 29, 7323. De Pristo, A. E.; Kress, J. D. J. Chem. Phys. 1987, 86, 1425. Di Giovannantonio, M.; El Garah, M.; Lipton-Duffin, J.; Meunier,V.; Cardenas, L.; Fagot Revurat, Y.; Cossaro, A.; Verdini, A.; Perepichka, D. F.; Rosei, F.; Contini, G. ACSNano 2013, 7, 8190. Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Phys. Rev. Lett. 2004, 92, 246401. Dirac, P. A. M. Math. Proc. Cambridge 1930, 26, 376. Dmitriev, A.; Spillmann, H.; Lin, N.; Barth, J. V.; Kern, K. Angew. Chem. 2003, 115, Dong, L.; Gao, Z.; Lin, N. Prog. Surf. Sci. 2016, 91, 101. Dreuw, A.; Head-Gordon, M. J. Am. Chem. Soc. 2004, 126, 4007. Dreuw, A.; Weisman, J. L.; Head-Gordon, M. J. Chem. Phys. 2003, 119, 2943. Ecija, D.; Vijayaraghavan, S.; Auwärter, W.; Joshi, S.; Seufert, K.; Aurisicchio, C.; Bonifazi, D.; Barth, J. V. ACSNano 2012, 6, 4258. Eichhorn, J.; Heckl, W. M.; Lackinger, M. Chem. Commun. 2013, 49, 2900. Eichhorn, J.; Nieckarz, D.; Ochs, O.; Samanta, D.; Schmittel, M.; Jerzy Szabelski, P.; Lackinger, M. ACSNano 2014, 8, 7880. Ernzerhof, M.; Scuseria, G. J. Chem. Phys. 1999, 110, 5029. Evarestov, R. A.; Smirnov, V. P. Phys. Status Solidi 1983, 119, 9. Ewald, P. Ann. Phys. 1921, 369, 253. Fan, Q.; Gottfried, J. M.; Zhu, J. Acc. Chem. Res. 2015, 48, 2484. Fan, Q.; Liu, L.; Dai, J.; Wang, T.; Ju, H.; Zhao, J.; Kuttner, J.; Hilt, G.; Gottfried, J. M.; Zhu, J. ACSNano 2018, 12, 2267. Fermi, E. Rend. Accad. Naz. Lincei 1927, 6, 602. Fermi, E. Z. Physik 1928, 48, 73. Feynman, R. P. Eng. Sci. 1960, 23, 22. Fiolhais, C.; Nogueira, F.; Marques M. (Eds.) A Primer in Density Functional Theory, Springer-Verlag Berlin, Heidelberg 2003 Fortuna, S.; Gargiani, P.; Betti, M. G.; Mariani, C.; Calzolari, A.; Modesti, S.; Fabris, S. J. Phys. Chem. C 2012, 116, 6251. Franc, G.; Gourdon, A. Phys. Chem. Chem. Phys. 2011, 13, 14283. Francis, G. P.; Payne, M. C. J. Phys.: Condens. Matter 1990, 17, 1643. Gantenbein, M.; Wang, L.; Al-jobory, A. A.; Ismael, A. K.; Lambert, C. J.; Hong, W.; Bryce, M. R. Sci. Rep. 2017, 7, 1794. Gao, H.-Y.; Wagner, H.; Zhong, D.; Franke, J.-H.; Studer, A.; Fuchs, H. Angew. Chem. Int. Ed. 2013, 52, 4024. Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793. Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I.; Dal Corso, A.; de Gironcoli, S.; Fabris, S.; Fratesi, G.; Gebauer, R.; Gerstmann, U.; Gougoussis, C.; Kokalj, A.; Lazzeri, M.; Martin-Samos, L.; Cerca con Google

74 Cerca con Google

Paulatto, L.; Sbraccia, C.; Scandolo, S.; Sclauzero, G.; Seitsonen, A. P.; Smogunov, A.; Umari, P.; Wentzcovitch, R. M. J. Phys. Condens. Matter, 2009, 21, 395502. Gilbert T. L., Phys. Rev. B: Condens. Matter 1975, 12, 2111. Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; Colonna, N.; Carnimeo, I.; Dal Corso, A.; de Gironcoli, S.; Delugas, P.; DiStasio, R. A. Jr.; Ferretti, A.; Floris, A.; Fratesi, G.; Fugallo, G.; Gebauer, R.; Gerstmann, U.; Giustino, F.; Gorni, T.; Jia, J.; Kawamura, M.; Ko, H.-Y.; Kokalj, A.; Küçükbenli, E.; Lazzeri, M.; Marsili, M.; Marzari, N.; Mauri, F.; Nguyen, N. L.; Nguyen, H.-V.; Otero-de-la-Roza, A.; Paulatto, L.; Poncé, S.; Rocca, D.; Sabatini, R.; Santra, B.; Schlipf, M.; Seitsonen, A. P.; Smogunov, A.; Timrov, I.; Thonhauser, T.; Umari, P.; Vast, N.; Wu, X.; Baroni, S. J. Phys.: Condens. Matter 2017, 29, 465901. Gill, P.; Murray, W.; Wright, M. Practical optimization, Academic Press, London, 1981. González-Moreno, R.; Sánchez-Sánchez, C.; Trelka, M.; Otero, R.; Cossaro, A.; Verdini, A.; Floreano, L.; Ruiz-Bermejo, M.; García-Lekue, A.; Martín-Gago, J. Á.; Rogero, C. J. Phys. Chem. C 2011, 115, 6849. Gottfried, J. M.; Flechtner, K.; Kretschmann, A.; Lukasczyk, T.; Steinrück, H.-P. J. Am. Chem. Soc. 2006, 128, 5644. Görling, A.; Levy, M. Phys. Rev. B: Condens. Matter 1993, 47, 105. Görling, A.; Levy, M. Phys. Rev. A: At. Mol. Opt. Phys. 1994, 50, 196. Gourdon, A. Angew. Chem. Int. Ed. 2008, 47, 6950. Grill, L.; Dyer, M.; Lafferentz, L.; Persson, M.; Peters, M. V.; Hecht, S. Nat. Nanotechnol. 2007, 2, 687. Grimme, S. J. Chem. Phys. 2006a, 124, 34108. Grimme, S. J. Comput. Chem. 2006b, 27, 1787. Gritsenko, O. V.; Schipper, P. R. T.; Baerends, E. J. Chem. Phys. Lett. 1999, 302, 199. Grumelli, D.; Wurster, B.; Stepanow, S.; Kern, K. Nat. Commun. 2013, 4, 2904. Gruning, M.; Gritsenko, O. V.; van Gisbergen, S. J. A.; Baerends, E. J. J. Chem. Phys. 2001, 114, 652. Guam, C.-Z.; Wang, D.; Wan, L.-J. Chem. Comm. 2012, 48, 2943. Gunnarsson, O.; Lundqvist, B. Phys. Rev. B: Condens. Matter 1976, 13, 4274. Günther, J. R.; Oswald, H.-R. Bull. Inst. Chem. Res., Kyoto Univ. 1975, 53, 249. Gutzler, R.; Perepichka, D. F. J. Am. Chem. Soc. 2013, 135, 16585. , N.; Mauri, F.; Mazzarello, R.; Paolini, S.; Pasquarello, A.;Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem., Int. Ed. 2006, 45, 7896. Hepburn, J.; Scoles, G.; Penco, R. Chem. Phys. Lett. 1975, 36, 451. Hohenberg, P.; Kohn, W. Phys. Rev. B.: Condens. Matter 1964, 136, 864. Joannopoulos, J. D.; Cohen, M. L. J. Phys. C 1973, 6, 1572. Jones II, L.; Schumm, J. S.; Tour, J. M. J. Org. Chem. 1997, 62, 1388. Kastner, C.; Susarova, D. K.; Jadhav, R.; Ulbricht, C.; Egbe, D. A. M.; Rathgeber, S.; Troshin, P. A.; Hoppe, H. J. Mater. Chem. 2012, 22, 15987. Kittel, C. Introduction to Solid State Physics - Eighth Edition, John Wiley & Sons, 2005. Klappenberger, F.; Hellwig, R.; Du, P.; Paintner, T.; Uphoff, M.; Zhang, L.; Lin, T.; Abedin Moghanaki, B.; Paszkiewicz, M.; Vobornik, I.; Fujii, J.; Fuhr, O.; Zhang, Y.Q.; Allegretti, F.; Ruben, M.; Barth, J. V. Small 2018, 14, 1704321. Kleinman, L.; Lee, S. Phys. Rev. B: Condens. Matter 1988, 37, 4634. Kokalj, A. J. Mol. Graphics Model 1999, 17, 176. Kokalj, A.; Causà M. Scientific visualization in computational quantum chemistry, Proceedings of High Performance Graphics Systems and Applications European, Workshop, Bologna, Italy, 2000. Kokalj, A.; Dal Corso, A.; de Gironcoli, S.; Baroni, S. Surf. Sci. 2002, 507, 62. Kovačević, N.; Kokalj, A. Corros. Sci. 2013, 73, 7. Kretschmann, A.; Walz, M.-M.; Flechtner, K.; Steinrück, H.-P.; Gottfried, J. M. Chem. Comm. 2007, 6, 568. Kubo, Y.; Nishiyabua, R.; Jamesc T. D. Chem. Comm. 2015, 51, 2005. Kudernac, T.; Lei, S.; Elemans, J. A. A. W.; De Feyter, S. Chem. Soc. Rev. 2009, 38, 402. Kumar, A.; Chhatwal, M.; Chandra Mondal, P.; Singh, V.; Kumar Singh, A.; Cristaldi, D. A.; Gupta, R. D.; Gulino, A. Chem. Comm. 2014, 50, 3783. Iikura, H.; Tsuneda, T.; Yanai, T.; Hirao, K. J. Chem. Phys. 2001, 115, 3540. Israelachvili, J. N. Intermolecular and Surface Forces, Academic, London, 1992. Jiang, J-X.; Su, F.; Trewin, A.; Wood, C. D.; Campbell, N. L.; Niu, H.; Dickinson, C.; Ganin A.Y.; Rosseinsky, M. J.; Khimyak, Y. Z.; Cooper, A. I. Angew. Chem. Int. Ed. 2007, 46, 8574. Koch, W.; Holthausen, M. C. Neural Netw. 2001, 3, 294. Kohn, W.; Sham, L. J. Phys. Rev. A: At. Mol. Opt. Phys. 1965, 140, 1133. Kristyan, S.; Pulay, P. Chem. Phys. Lett. 1994, 229, 175. Landau, L. D.; Lifshitz, E. M. Quantum Mechanics, Pergamon Press, 1965. Langreth, D. C.; Mehl, M. J. Phys. Rev. B: Condens. Matter 1983, 28, 1809. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B: Condens. Matter 1988, 37, 785. Lee, K.; Murray, É. D.; Kong, L.; Lundqvist, B. I.; Langreth, D. C. Phys. Rev. B: Condens. Matter 2010, 82, 081101. Leeuwen, R. V.; Baerends, E. J. Phys. Rev. A: At. Mol. Opt. Phys. 1994, 49, 2421. Lehn, J. M. Supramolecular Chemistry, VCH, 1995 Levy, M. Proc. Natl. Acad. Sci. USA, 1979, 76, 6062. Li, Y.; Xu, L.; Liu, H.; Li, Y. Chem. Soc. Rev. 2014, 43, 2572. Lide, D. R. CRC Handbook of Chemistry and Physics, 89th ed. (Internet Version); CRC Press/Taylor and Francis: Boca Raton, 2009. Lieb, E. H.; Simon, B. Phys. Rev. Lett. 1973, 31, 681. Lieb, E. H. Rev. Mod. Phys. 1981, 53, 603. Lipton-Duffin, J. A.; Ivasenko, O.; Perepichka, D. F.; Rosei, F. Small 2009, 5, 592. Liu, W.; Ruiz, V. G.; Zhang, G. X.; Santra, B.; Ren, X.; Scheffler, M.; Tkatchenko, A. New J. Phys. 2013, 15, 053046. Liu, C.; Yang, B.; Tyo, E.; Seifert, S.; DeBartolo, J.; von Issendorff, B.; Zapol, P.; Vajda, S.; Curtiss, L. A. J. Am. Chem. Soc. 2015, 137, 8676. Liu, J.; Chen, Q.; Xiao, L.; Shang, J.; Zhou, X.; Zhang, Y.; Wang, Y.; Shao, X.; Li, J.; Chen, W.; Xu, G. Q.; Tang, H.; Zhao, D.; Wu, K. ACSNano, 2015, 6, 6305. Lo Cicero, M.; Della Pia, A.; Riello, M.; Colazzo, L.; Sedona, F.; Betti, M. G.; Sambi, M.; De Vita, A.; Mariani, C. J. Chem. Phys. 2017, 147, 214706. Lotgering, F. K. J. Inorg. Nucl. Chem. 1959, 9, 113. London, F. W. Z. Phys. 1930, 63, 245. London, F. Trans. Faraday Soc. 1937, 33, 8b. Lovat, G.; Forrer, D.; Abadia, M.; Dominguez, M.; Casarin, M.; Rogero, C.; Vittadini, A.; Floreano, L. Nanoscale, 2017, 9, 11694. Löwdin, P. O. J. Chem. Phys. 1950, 18, 365. Lu, G.; Yang, H.; Zhu, Y.; Huggins, T.; Ren, Z. J.; Liu, Z.; Zhang, W. J. Mater. Chem. A 2015, 3, 4954. Marbach, H. Acc. Chem. Res., 2015, 48, 2649. March, N. H. Phys Lett A. 1986, 113, 476. Margenau, H. Rev. Mod. Phys. 1939, 11,1. Martin, R. E.; Diederich, F. Angew. Chem. Int. Ed. 1999, 38, 1350. Marzari, N.; Vanderbilt, D.; De Vita, A.; Payne, M. C. Phys. Rev. Lett. 1999, 82, 3296. Methfessel, M. P. A. T.; Paxton, A.T. Phys. Rev. B: Consens. Matter 1989, 40, 3616. Monkhorst, H. J.; Pack, J. D. Phys. Rev. B: Condens. Matter 1976, 13, 5188. On-Surface Synthesis. Proceedings of the International Workshop On-Surface Synthesis, École des Houches, Les Houches 25-30 May 2014. Ed. Gourdon, A., Springer International Publishing, 2016. On-Surface Synthesis II. Proceedings of the International Workshop On-Surface Synthesis, San Sebastián, 27-30 June 2016. Eds. De Oteyza, D. G.; Rogero, C., Springer International Publishing, 2018. Ortiz, M.; Yu, C.; Jin, Y.; Zhang, W. Top. Curr. Chem. (Z) 2017, 375, 69. Parr, R. G.; Yang, W. Density Funtional Theory of Atoms and Molecules, Oxford University Press NY, 1989. Pauli, W. Jr. Z. Phys. 1925, 31, 765. Pauling, L. The Nature of the Chemical Bond, Cornell University Press, 3rd edn., 1960. Perdew, J. P.; Zunger, A. Phys. Rev. B: Condens. Matter 1981, 23, 5048. Perdew, J. P. Phys. Rev. Lett. 1985, 55, 1665. Perdew, J. P.; Wang, Y. Phys. Rev. B: Condens. Matter, 1986a, 33, 8800. Perdew, J. P. Phys. Rev. B: Condens. Matter, 1986b, 33, 8822. Perdew, J. P.; Wang, Y. Phys. Rev. B: Condens. Matter, 1989, 40, 3399. Perdew, J. P.; Wang, Y. Phys. Rev. B: Condens. Matter, 1992, 45, 13244. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. Perdew, J. P.; Staroverov, V. N.; Tao, J.; Scuseria, G. E. Phys. Rev. A: At. Mol. Opt. Phys. 2008, 78, 052513. Perdew, J. P.; Ruzsinszky, A.; Constantin, L. A.; Sun, J.; Csonka, G. I. J. Chem. Theory Comput. 2009, 5, 902. Perepichka, D. F.; Rosei, F. Angew. Chem., Int. Ed. 2007, 46, 6006. Perepichka, D. F.; Rosei, F. Science 2009, 323, 216. Pham, T. A.; Song, F.; Nguyen, M.; Li, Z.; Studener, F.; Stöhr, M. Chem. – Eur. J. 2016, 22, 5937. Phillips, J. C. Phys. Rev. 1958, 112, 685. Píš, I.; Ferrighi, L.; Nguyen, T. H.; Nappini, S.; Vaghi, L.; Basagni, A.; Magnano, E.; Papagni, A.; Sedona, F.; Di Valentin, C.; Agnoli, S.; Bondino, F. J. Phys. Chem. C 2016, 120, 4909. Cerca con Google

78 Cerca con Google

Plas, J.; Ivasenko, O.; Martsinovich, N.; Lackingercd, M.; De Feyter, S. Chem. Comm. 2016, 52, 68. Polak, E. Computational methods in optimization, Academic Press, New York, 1971. Rayleigh, J. W. S. Theory of Sound. I, 2nd Ed., London: Macmillan, 1894. Riley, K. F.; Hobsonm M. P.; Bence, S. J. Mathematical Methods for Physics and Engineering, Third Edition, Cambridge University Press, 2006. Rosseinsky, M. Microporous Mesoporous Mater. 2004, 73, 15. Ruiz, V. G.; Liu, W.; Tkatchenko, A. Physical Review B: Condens. Matter 2016, 93, 035118. Sasaki, S.; Yamamoto, T.; Kanbara, T.; Morita, A. J. Polym. Sci., Part B: Polym. Phys. 1992, 30, 293. Savin, A. In Recent Developments and Applications of Modern Density Functional Theory. Ed. Seminario J. M., Elsevier, Amsterdam, 1996. Schipper, P. R. T.; Gritsenko, O. V.; Baerends, E. J. Theor. Chim. Acta. 1997, 98, 16. Schore, N. E. Chem. Rev. 1988, 88, 1081. Schrödinger, E. Ann. Phys. 1926a, 79, 109. Schrödinger, E. Ann. Phys. 1926b, 79, 361. Schrödinger, E. Ann. Phys. 1926c, 79, 489. Schrödinger, E. Ann. Phys. 1926d, 79, 734. Schrödinger, E. Ann. Phys. 1926e, 80, 437. Schrödinger, E. Phys. Rev. 1926f, 28, 1049. Schrödinger, E. Naturwissenshaften, 1926g, 14, 664. Schumm, J. S.; Pearson, D. L.; Tour, J. M. Angew. Chem. Int. Ed. 1994, 33, 1360. Slater, J. C.; Kirkwood, J. G. Phys. Rev. 1931, 37, 682. Sonogashira, K. J. Organomet. Chem. 2002, 653, 46. Steinhauser, M. O. Computational Multiscale Modeling of Fluids And Solids - Theory And Applications, Springer, 2008. Stepanow, S.; Lingenfelder, M.; Dmitriev, A.; Spillmann, H.; Delvigne, E.; Lin, N.; Deng, X.; Cai, C.; Barth, J. V.; Kern, K. Nat. Mater. 2004, 3, 229. Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Phys. Chem. 1994, 98, 11623. Stone, A. J. The Theory of Intermolecular Forces, Second Edition, Oxford University Press, 2013. Sun, Q.; Yu, X.; Bao, M.; Liu, M.; Pan, J.; Zha, Z.; Cai, L.; Ma, H.; Yuan, C.; Qiu, X.; Xu, W. Angew. Chem. Int. Ed. 2018, 57, 1. Swager, T. M. Acc. Chem. Res. 2008, 41, 1181. Szabo, A.; Ostlund, N. S. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, Dover Publications, 1996. Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Phys. Rev. Lett. 2003, 91, 146401. Teller, E. Rev. Mod. Phys. 1962, 34, 627. Tersoff, J.; Hamann, D. R. Phys. Rev. B: Condens. Matter 1985, 31, 805. Teter, M. P.; Payne, M. C.; Allan, D. C. Phys. Rev. B: Condens. Matter 1989, 40, 12255. Thomas, L. H. Proc. Cambridge Philos. Soc. 1927, 23, 542. Toffoli, D.; Stredansky, M.; Feng, Z.; Balducci, G.; Furlan, S.; Stener, M.; Ustunel, H.; Cvetko, D.; Kladnik, G.; Morgante, A.; Verdini, A.; Dri, C.; Comelli, G.; Fronzoni, G.; Cossaro, A. Chem. Sci. 2017, 8, 3789. Tonigold, K.; Grob, A. J. Chem. Phys. 2010, 132, 224701. Toyoda, K.; Hamada, I.; Lee, K.; Yanagisawa, S.; Morikawa, Y. J. Chem. Phys. 2010, 132, 134703. Tozer, D. J.; Handy, N. C. J. Chem. Phys. 1998, 109, 10180. Tran, B. V.; Pham, T. A.; Grunst, M.; Kivala, M.; Stöhr, M. Nanoscale, 2017, 9, 1805. Tschinke, V.; Ziegler, T. Can. J. Chem. 1989, 67, 460. Tsuneda, T.; Suzumura, T.; Hirao, K. J. Chem. Phys. 1999, 111, 5656. Tsuneda, T.; Hirao, K. Phys. Rev. B: Condens. Matter 2000, 62, 15527. Tsuneda, T.; Kamiya, M.; Morinaga, N.; Hirao, K. J. Chem. Phys., 2001, 114, 6505. Tsuneda T, Density Functional Theory in Quantum Chemistry, Springer Japan, 2014. van Gisbergen, S. J. A.; Kootstra, F.; Schipper, P. R. T.; Gritsenko, O. V.; Snijders, J. G.; Baerends, E. J. Phys. Rev. A: At. Mol. Opt. Phys. 1998, 57, 2556. Ullmann, F.; Bielecki, J. Chem. Ber. 1901, 34, 2174. Unsöld, A. Z. Physik 1927, 43, 563. Vanderbilt, D. Phys. Rev. B: Condens. Matter 1990, 41, 7892. Venkataraman, L.; Klare, J. E.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. Nat. Lett. 2006, 442, 904. Verdini, A.; Shinde, P.; Montanari, G. L.; Suran-Brunelli, S. T.; Caputo, M.; Di Santo, G.; Pignedoli, C. A.; Floreano, L.; Passerone, D.; Goldoni, A. Chem. Eur. J. 2016, 22, 14672. Cerca con Google

80 Cerca con Google

Vitos, L.; Ruban, A.V.; Skriver, H. L.; Kollár, J. Surf. Sci. 1998, 411, 186. Vosko, S. H.; Wilk, L.; Nusair, N. Can. J. Phys. 1980, 58, 1200. Wang, Y.; Sun, Q.; Fan, K.; Deng, J. Chem. Phys. Lett. 2001, 334, 411. Weder, C.; Sarwa, C.; Montali, A.; Bastiaansen, C.; Smith, P. Science 1998, 279, 835. Weizsäcker, C. F. Z. Phys. 1935, 96, 341. Wigner, E. Phys. Rev. 1934, 46, 1002. Williams, H. L.; Chabalowski, C. F. J. Phys. Chem. 2001, 105, 646. Yin, M. T.; Cohen, M. L. Phys. Rev. B: Condens. Matter 1982, 25, 7403. Zhang, Y.Q.; Kepčija, N.; Kleinschrodt, M.; Diller, K.; Fischer, S.; Papageorgiou, A. C.; Allegretti, F.; Björk, J.; Klyatskaya, S.; Klappenberger, F.; Ruben, M.; Barth, J. V. Nat. Commun. 2012, 3, 1286. Zhao, Y.; Truhlar, D. G. Theor. Chem. Accounts 2008, 120, 215. Ziegler, T. Chem. Rev. 1991, 91, 651. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record