Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Rizzo, Antonio (2019) A study on organic and hybrid emerging photovoltaics: modeling and reliability. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document (Thesis) - Accepted Version
5Mb

Abstract (italian or english)

Photovoltaic solar cells can be classified into three generations depending on the technology used: single junction (multi) crystalline (1G), single junction thin film (2G) and hetero-junctions (3G). Organic and hybrid solar cells belong to the 3G generation. Low temperature and typographic printing processing, tunable colors, flexibility and short payback time are but a few of the advantages these technologies possess, making organic and hybrid photovoltaics appealing in terms of both cost and architectonic integration. Despite the several advantages, organic and hybrid photovoltaics have lower efficiency, lifetime and reliability compared to inorganic technologies. Several issues must be addressed in order to improve organic/hybrid solar cells. We investigated the response of roll coated organic solar cells at different bias voltages and illumination levels to implement a detailed impedance model. We analyzed both fresh and intentionally degraded cells. The impedance spectra show different peaks evolutions, depending on the degradation of the cells. To describe the cell impedance behaviors we suggest an electrical model based on distributed elements. The main differences between fresh and degraded samples are underlined. In addition, we subjected P3HT:PCBM solar cells to electrical constant current stress and thermal storage. We identified and separated different contributions affecting the open circuit voltage and short circuit current during both stresses. A model applied to photocurrent experimental data allows the estimation of parameters such as generation, recombination, dissociation rate and nearly zero field voltage within the active layer as a function of the stress time. Extrapolated parameters show that the stress mainly affects the recombination rate of the polaron charge transfer states.
On hybrid solar cells, the anomalous electrical behavior of lead halide perovskite opto-electronic devices still prevents their full reliability. We studied the hysteresis and electric field effects on planar CH3NH3PbI3 perovskite devices, synthetized from laser-ablated precursors, by means of electrical characterizations at different scan rates and optical measurements. The aim of our investigation is to characterize the phenomena behind perovskite degradation under prolonged applied electric field. The results point to the presence of ions migrating in the perovskite when the device is biased. In order to explain the details of the mechanisms concurring to the observed behaviors, we presented a qualitative model. The same degradation dynamics occur on vertical devices, typical on perovskite solar cells. Furthermore, we subjected to both storage and thermal stress solid state solar cells based on organ-metal perovskites and using Spiro-OMeTAD as hole transport material. We applied two different sealing techniques to encapsulate the devices. We correlated the results obtained during the experiment to different degradation dynamics within the cell structure. The correlation allows us to distinguish at least two possible sources of degradation that can help understanding loss mechanisms of perovskite solar cells.
Finally, accurate determination of the lifetime of novel hybrid and organic solar cells is often rather challenging due to very dynamic behavior of such cells over time and ageing curves with shapes of varying nature. Therefore, in order to accurately and reproducibility determine the lifetime of photovoltaic (PV) devices with such a behavior a novel elaboration algorithm was developed, which enables automatic smoothing, filtering and extrapolation of the real lifetime data and reproducibility determining the lifetime parameters defined in the ISOS guiding standards. The algorithm is also capable of predicting the lifetime of devices, not tested until the end of sample life, given that there is sufficient amount of measured data points for performing reliable extrapolation of ageing curves (to a limited time frame).

Abstract (a different language)

Il fotovoltaico può essere classificato in tre generazioni a seconda della tecnologia utilizzata: singola giunzione (multi) cristallino (1G), singola giunzione film sottile (2G) ed etero-giunzione (3G). Le celle solari organiche e ibride appartengono alla 3G. Il processo di produzione tipografico a bassa temperatura, i colori personalizzabili, la flessibilità e il breve tempo di ammortamento sono solo alcuni dei vantaggi di queste tecnologie, che rendono il fotovoltaico organico e ibrido attraenti in termini di costi ed integrazione architettonica. Nonostante i vantaggi, il fotovoltaico organico/ibrido ha una minore efficienza, durata ed affidabilità rispetto alle tecnologie inorganiche. Diversi problemi devono essere risolti al fine di migliorare le celle solari organiche/ibride.
Studiando celle nuove ed intenzionalmente degradate, abbiamo studiato il comportamento a diverse polarizzazioni ed illuminazioni per implementare un modello di impedenza dettagliato. Le impedenze mostrano una diversa evoluzione dei picchi, a seconda del tipo di degradazione. Per descrivere il comportamento delle impedenze abbiamo sviluppato un modello elettrico basato su elementi distribuiti. Le principali differenze tra celle nuove e degradate sono messe in evidenza. Sottoponendo celle solari in P3HT:PCBM a stress elettrici ed in temperatura, abbiamo identificato e separato diversi contributi che influiscono sulla tensione di circuito aperto e sulla corrente di cortocircuito durante entrambi gli stress. Tramite l’uso di un modello applicato alla foto-corrente abbiamo stimato parametri come la generazione, la ricombinazione, la velocità di dissociazione in funzione del tempo di stress. I parametri estrapolati mostrano che lo stress influisce principalmente sul tasso di ricombinazione della carica polaronica.
Nelle celle solari ibride, il comportamento elettrico anomalo dei dispositivi a perovskite impedisce la loro piena affidabilità. Abbiamo studiato l'isteresi e gli effetti del campo elettrico su dispositivi planari in perovskite CH3NH3PbI3, sintetizzati a partire da precursori laser-ablati, mediante misure elettriche a differenti scan-rate e misure ottiche. Lo scopo è quello di caratterizzare i fenomeni di degrado della perovskite quando esposta all’applicazione di campo elettrico. I risultati indicano la presenza di ioni che migrano nella perovskite quando il dispositivo è polarizzato. Per spiegare nel dettaglio i meccanismi che concorrono ai comportamenti osservati, abbiamo presentato un modello qualitativo. La stessa dinamica di degradazione si verifica su dispositivi verticali, tipici delle celle solari in perovskite. Inoltre, abbiamo sottoposto celle solari in perovskite facenti uso di Spiro-OMeTAD come materiale per il trasporto di lacune a stress termico. Abbiamo applicato due diverse tecniche per sigillare ed incapsulare i dispositivi. Correlando i risultati ottenuti durante l'esperimento a differenti dinamiche all'interno delle celle, abbiamo distinto almeno due possibili cause che possono aiutare a capire i meccanismi di degrado delle celle in perovskite.
Infine, determinare in modo accurato il tempo di vita di cellule solari ibride/organiche è spesso arduo a causa del comportamento molto dinamico nel tempo e di curve di invecchiamento con forme di varia natura. Pertanto, al fine di determinare con esattezza e riproducibilità la durata di questi dispositivi fotovoltaici (PV), è stato sviluppato un nuovo algoritmo di elaborazione che consente il livellamento, il filtraggio e l'estrapolazione automatica dei parametri determinanti il tempo di vita delle celle, così come definiti nel standard ISOS. L'algoritmo è anche in grado di prevedere la durata dei dispositivi non testati fino a fine vita, fintanto che vi sia una sufficiente quantità di dati utili ad eseguire un'estrapolazione affidabile delle curve di invecchiamento.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Cester, Andrea
Ph.D. course:Ciclo 31 > Corsi 31 > INGEGNERIA DELL'INFORMAZIONE
Data di deposito della tesi:14 May 2019
Anno di Pubblicazione:14 May 2019
Key Words:Photovoltaic, Polymeric, Perovskite, Organic, Stress, Modeling, Reliability
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-INF/01 Elettronica
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Codice ID:11922
Depositato il:14 Nov 2019 13:34
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] A. des sciences (France). A. du texte, Comptes rendus hebdomadaires des séances de l’Académie des sciences / publiés... par MM. les secrétaires perpétuels, (1839). http://gallica.bnf.fr/ark:/12148/bpt6k2968p/f561.chemindefer (accessed June 4, 2018). Vai! Cerca con Google

[2] D.M. Bagnall, M. Boreland, Photovoltaic technologies, Energy Policy. 36 (2008) 4390–4396. doi:10.1016/J.ENPOL.2008.09.070. Cerca con Google

[3] W. Shockley, H.J. Queisser, Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells, J. Appl. Phys. 32 (1961) 510–519. doi:10.1063/1.1736034. Cerca con Google

[4] M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, A.W.Y. Ho-Baillie, Solar cell efficiency tables (version 52), Prog. Photovoltaics Res. Appl. 26 (2018) 427–436. doi:10.1002/pip.3040. Cerca con Google

[5] L.K. NREL, Best Research-Cell Efficiencies, 57] MA Green," Corrigendum to Sol. Cell Effic. Tables (Version 46)[Prog. Photovolt Res. Appl. 23 (2015) 1202. http://www.nrel.gov/pv/assets/images/efficiency-chart.png (accessed January 1, 2018). Vai! Cerca con Google

[6] A. Pochettino, No Title, Acad. Lincei Rendus. 15 (1906) 355. Cerca con Google

[7] B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature. 353 (1991) 737–740. doi:10.1038/353737a0. Cerca con Google

[8] F.C. Krebs, Roll-to-roll fabrication of monolithic large-area polymer solar cells free from indium-tin-oxide, Sol. Energy Mater. Sol. Cells. 93 (2009) 1636–1641. doi:10.1016/j.solmat.2009.04.020. Cerca con Google

[9] J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S. Il Seok, Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells, Nano Lett. 13 (2013) 1764–1769. doi:10.1021/nl400349b. Cerca con Google

[10] N. Wrachien, A. Cester, D. Bari, J. Kovac, J. Jakabovic, D. Donoval, et al., Near-UV Irradiation Effects on Pentacene-Based Organic Thin Film Transistors, IEEE Trans. Nucl. Sci. 58 (2011) 2911–2917. doi:10.1109/TNS.2011.2170432. Cerca con Google

[11] D. Bari, N. Wrachien, R. Tagliaferro, T.M. Brown, A. Reale, A. Di Carlo, et al., Reliability study of dye-sensitized solar cells by means of solar simulator and white LED, Microelectron. Reliab. 52 (2012) 2495–2499. doi:10.1016/j.microrel.2012.06.061. Cerca con Google

[12] N. Robertson, Organic Photovoltaics. Mechanisms, Materials and Devices. Edited by Sam-Shajing Sun and Niyazi Serdar Sariciftci., Angew. Chemie Int. Ed. 45 (2006) 7321–7321. doi:10.1002/anie.200585423. Cerca con Google

[13] G. Calogero, P. Calandra, A. Irrera, A. Sinopoli, I. Citro, G. Di Marco., A new type of transparent and low cost counter-electrode based on platinum nanoparticles for dye-sensitized solar cells, Energy Environ. Sci. 4 (2011) 1838. doi:10.1039/c0ee00463d. Cerca con Google

[14] C.J. Brabec, S. Gowrisanker, J.J.M. Halls, D. Laird, S. Jia, S.P. Williams, Polymer-Fullerene Bulk-Heterojunction Solar Cells, Adv. Mater. 22 (2010) 3839–3856. doi:10.1002/adma.200903697. Cerca con Google

[15] E. Greul, M.L. Petrus, A. Binek, P. Docampo, T. Bein, Highly stable, phase pure Cs 2 AgBiBr 6 double perovskite thin films for optoelectronic applications, J. Mater. Chem. A. 5 (2017) 19972–19981. doi:10.1039/C7TA06816F. Cerca con Google

[16] F. Hao, C.C. Stoumpos, D.H. Cao, R.P.H. Chang, M.G. Kanatzidis, Lead-free solid-state organic–inorganic halide perovskite solar cells, Nat. Photonics. 8 (2014) 489–494. doi:10.1038/nphoton.2014.82. Cerca con Google

[17] NREL PV Efficiency chart, (n.d.). https://www.nrel.gov/pv/assets/images/efficiency-chart-20180716.jpg (accessed July 23, 2018). Vai! Cerca con Google

[18] D. Bari, N. Wrachien, R. Tagliaferro, T.M. Brown, A. Reale, A. Di Carlo, et al., Comparison between positive and negative constant current stress on dye-sensitized solar cells, Microelectron. Reliab. 53 (2013) 1804–1808. doi:10.1016/j.microrel.2013.07.093. Cerca con Google

[19] A. Rizzo, A. Cester, L. Torto, M. Barbato, N. Wrachien, N. Lago, et al., Effects of current stress and thermal storage on polymeric heterojunction P3HT:PCBM solar cell, in: IEEE Int. Reliab. Phys. Symp. Proc., Institute of Electrical and Electronics Engineers Inc., Pasadena - CA, 2016: p. 3C21-3C26. doi:10.1109/IRPS.2016.7574523. Cerca con Google

[20] A. Rizzo, L. Ortolan, S. Murrone, L. Torto, M. Barbato, N. Wrachien, et al., Effects of thermal stress on hybrid perovskite solar cells with different encapsulation techniques, in: 2017 IEEE Int. Reliab. Phys. Symp., IEEE, 2017: p. PV-1.1-PV-1.6. doi:10.1109/IRPS.2017.7936396. Cerca con Google

[21] A. Rizzo, L. Torto, N. Wrachien, M. Corazza, F.C. Krebs, S.A. Gevorgyan, et al., Application of Photocurrent Model on Polymer Solar Cells Under Forward Bias Stress, IEEE J. Photovoltaics. 6 (2016) 1542–1548. doi:10.1109/JPHOTOV.2016.2603841. Cerca con Google

[22] D. Bari, N. Wrachien, R. Tagliaferro, S. Penna, T.M. Brown, A. Reale, et al., Thermal stress effects on Dye-Sensitized Solar Cells (DSSCs), Microelectron. Reliab. 51 (2011) 1762–1766. doi:10.1016/j.microrel.2011.07.061. Cerca con Google

[23] A. Cester, A. Rizzo, A. Bazzega, N. Lago, J. Favaro, M. Barbato, et al., Effects of constant voltage and constant current stress in PCBM:P3HT solar cells, Microelectron. Reliab. 55 (2015) 1795–1799. doi:10.1016/j.microrel.2015.06.082. Cerca con Google

[24] Toshiba Corporate Research & Development Center : NEDO and Toshiba Develops World’s Largest Film-based Perovskite Photovoltaic Module -703cm2 module achieves 11.7% power conversion efficiency-, (n.d.). https://www.toshiba.co.jp/rdc/rd/detail_e/e1806_03.html (accessed July 24, 2018). Vai! Cerca con Google

[25] J.A. Christians, J.S. Manser, P. V. Kamat, Best Practices in Perovskite Solar Cell Efficiency Measurements. Avoiding the Error of Making Bad Cells Look Good, J. Phys. Chem. Lett. 6 (2015) 852–857. doi:10.1021/acs.jpclett.5b00289. Cerca con Google

[26] R. Rösch, D.M. Tanenbaum, M. Jørgensen, M. Seeland, M. Bärenklau, M. Hermenau, et al., Investigation of the degradation mechanisms of a variety of organic photovoltaic devices by combination of imaging techniques—the ISOS-3 inter-laboratory collaboration, Energy Environ. Sci. 5 (2012) 6521. doi:10.1039/c2ee03508a. Cerca con Google

[27] S. Schiefer, B. Zimmermann, S.W. Glunz, U. Würfel, Applicability of the suns-VOC method on organic solar cells, IEEE J. Photovoltaics. 4 (2014) 271–277. doi:10.1109/JPHOTOV.2013.2288527. Cerca con Google

[28] H. Shen, L. Cai, Z. Liu, W. Wu, J. Bao, Influence of the Bottom WO3 Layer on the Series Resistance in Silicon Based Solar Cells with WO3/Ag/WO3 Emitter, 32nd Eur. Photovolt. Sol. Energy Conf. Exhib. (2016) 775–779. doi:10.4229/EUPVSEC20162016-2AV.3.3. Cerca con Google

[29] M.O. Reese, S. a. Gevorgyan, M. Jørgensen, E. Bundgaard, S.R. Kurtz, D.S. Ginley, et al., Consensus stability testing protocols for organic photovoltaic materials and devices, Sol. Energy Mater. Sol. Cells. 95 (2011) 1253–1267. doi:10.1016/j.solmat.2011.01.036. Cerca con Google

[30] A. Facchetti, Polymer donor–polymer acceptor (all-polymer) solar cells, Mater. Today. 16 (2013) 123–132. doi:10.1016/J.MATTOD.2013.04.005. Cerca con Google

[31] F.C. Krebs, M. Hoesel, M. Corazza, B. Roth, M. V. Madsen, S. a. Gevorgyan, et al., Freely Available OPV-The Fast Way to Progress, Energy Technol. 1 (2013) 378–381. doi:10.1002/ente.201300057. Cerca con Google

[32] H.F. Dam, T.R. Andersen, M. V. Madsen, T.K. Mortensen, M.F. Pedersen, U. Nielsen, et al., Roll and roll-to-roll process scaling through development of a compact flexo unit for printing of back electrodes, Sol. Energy Mater. Sol. Cells. 140 (2015) 187–192. doi:10.1016/j.solmat.2015.04.007. Cerca con Google

[33] H. Hoppe, N.S. Sariciftci, Organic solar cells: An overview, J. Mater. Res. 19 (2004) 1924–1945. doi:10.1557/JMR.2004.0252. Cerca con Google

[34] H.F. Dam, F.C. Krebs, Simple roll coater with variable coating and temperature control for printed polymer solar cells, Sol. Energy Mater. Sol. Cells. 97 (2012) 191–196. doi:10.1016/j.solmat.2011.08.027. Cerca con Google

[35] D. Angmo, S. a. Gevorgyan, T.T. Larsen-Olsen, R.R. Søndergaard, M. Hösel, M. Jørgensen, et al., Scalability and stability of very thin, roll-to-roll processed, large area, indium-tin-oxide free polymer solar cell modules, Org. Electron. Physics, Mater. Appl. 14 (2013) 984–994. doi:10.1016/j.orgel.2012.12.033. Cerca con Google

[36] F.C. Krebs, Air stable polymer photovoltaics based on a process free from vacuum steps and fullerenes, Sol. Energy Mater. Sol. Cells. 92 (2008) 715–726. doi:10.1016/j.solmat.2008.01.013. Cerca con Google

[37] E. Dunlop, T. Sample, G. Bardizza, A. Pozza, Analysis Based on I-V Curve Changes of Organic Photovoltaic Mini-Modules Subjected to Degradation under Different Temperature and Humidity Conditions, 29th Eur. Photovolt. Sol. Energy Conf. Exhib. (2014) 1523–1529. doi:10.4229/EUPVSEC20142014-3CO.8.1. Cerca con Google

[38] M.R. Lilliedal, A.J. Medford, M. V. Madsen, K. Norrman, F.C. Krebs, The effect of post-processing treatments on inflection points in current–voltage curves of roll-to-roll processed polymer photovoltaics, Sol. Energy Mater. Sol. Cells. 94 (2010) 2018–2031. doi:10.1016/j.solmat.2010.06.007. Cerca con Google

[39] Z.E. Ooi, T.L. Tam, A. Sellinger, J.C. deMello, Field-dependent carrier generation in bulk heterojunction solar cells, Energy Environ. Sci. 1 (2008) 300. doi:10.1039/b805435e. Cerca con Google

[40] Z.E. Ooi, R. Jin, J. Huang, Y.F. Loo, A. Sellinger, J.C. deMello, On the pseudo-symmetric current–voltage response of bulk heterojunction solar cells, J. Mater. Chem. 18 (2008) 1644. doi:10.1039/b718563d. Cerca con Google

[41] M. Limpinsel, A. Wagenpfahl, M. Mingebach, C. Deibel, V. Dyakonov, Photocurrent in bulk heterojunction solar cells, Phys. Rev. B. 81 (2010) 085203. doi:10.1103/PhysRevB.81.085203. Cerca con Google

[42] M. Glatthaar, N. Mingirulli, B. Zimmermann, T. Ziegler, R. Kern, M. Niggemann, et al., Impedance spectroscopy on organic bulk-heterojunction solar cells, Phys. Status Solidi Appl. Mater. Sci. 202 (2005) 125–127. doi:10.1002/pssa.200521149. Cerca con Google

[43] T. Kuwabara, Y. Kawahara, T. Yamaguchi, K. Takahashi, Characterization of inverted-type organic solar cells with a ZnO layer as the electron collection electrode by ac impedance spectroscopy, ACS Appl. Mater. Interfaces. 1 (2009) 2107–2110. doi:10.1021/am900446x. Cerca con Google

[44] T. Ripolles-Sanchis, A. Guerrero, J. Bisquert, G. Garcia-Belmonte, Diffusion-Recombination Determines Collected Current and Voltage in Polymer:Fullerene Solar Cells, J. Phys. Chem. C. 116 (2012) 16925–16933. doi:10.1021/jp305941f. Cerca con Google

[45] G. Perrier, R. de Bettignies, S. Berson, N. Lemaître, S. Guillerez, Impedance spectrometry of optimized standard and inverted P3HT-PCBM organic solar cells, Sol. Energy Mater. Sol. Cells. 101 (2012) 210–216. doi:10.1016/j.solmat.2012.01.013. Cerca con Google

[46] R. Sokel, Numerical analysis of transient photoconductivity in insulators, J. Appl. Phys. 53 (1982) 7414. doi:10.1063/1.330111. Cerca con Google

[47] O.E. Barcia, E. D’Elia, I. Frateur, O.R. Mattos, N. Pébère, B. Tribollet, Application of the impedance model of de Levie for the characterization of porous electrodes, Electrochim. Acta. 47 (2002) 2109–2116. doi:10.1016/S0013-4686(02)00081-6. Cerca con Google

[48] T.T. Larsen-Olsen, R.R. Søndergaard, K. Norrman, M. Jørgensen, F.C. Krebs, All printed transparent electrodes through an electrical switching mechanism: A convincing alternative to indium-tin-oxide, silver and vacuum, Energy Environ. Sci. 5 (2012) 9467. doi:10.1039/c2ee23244h. Cerca con Google

[49] M. Hösel, R.R. Søndergaard, M. Jørgensen, F.C. Krebs, Fast Inline Roll-to-Roll Printing for Indium-Tin-Oxide-Free Polymer Solar Cells Using Automatic Registration, Energy Technol. 1 (2013) 102–107. doi:10.1002/ente.201200029. Cerca con Google

[50] J. Idígoras, E. Guillén, F.J. Ramos, J.A. Anta, M.K. Nazeeruddin, S. Ahmad, Highly efficient flexible cathodes for dye sensitized solar cells to complement Pt@TCO coatings, J. Mater. Chem. A. 2 (2014) 3175. doi:10.1039/c3ta13524a. Cerca con Google

[51] Y. Kato, M.-C. Jung, M. V. Lee, Y. Qi, Electrical and optical properties of transparent flexible electrodes: Effects of UV ozone and oxygen plasma treatments, Org. Electron. 15 (2014) 721–728. doi:10.1016/j.orgel.2014.01.002. Cerca con Google

[52] a. Wagenpfahl, D. Rauh, M. Binder, C. Deibel, V. Dyakonov, S-shaped current-voltage characteristics of organic solar devices, Phys. Rev. B. 82 (2010) 1–9. doi:10.1103/PhysRevB.82.115306. Cerca con Google

[53] W. Tress, A. Petrich, M. Hummert, M. Hein, K. Leo, M. Riede, Imbalanced mobilities causing S-shaped IV curves in planar heterojunction organic solar cells, Appl. Phys. Lett. 98 (2011) 063301. doi:10.1063/1.3553764. Cerca con Google

[54] W. Tress, S. Corvers, K. Leo, M. Riede, Investigation of Driving Forces for Charge Extraction in Organic Solar Cells: Transient Photocurrent Measurements on Solar Cells Showing S-Shaped Current-Voltage Characteristics, Adv. Energy Mater. 3 (2013) 873–880. doi:10.1002/aenm.201200931. Cerca con Google

[55] C.L. Braun, Electric field assisted dissociation of charge transfer states as a mechanism of photocarrier production, J. Chem. Phys. 80 (1984) 4157–4161. doi:10.1063/1.447243. Cerca con Google

[56] L. Onsager, Initial recombination of ions, Phys. Rev. 54 (1938) 554–557. doi:10.1103/PhysRev.54.554. Cerca con Google

[57] R. de Levie, On the impedance of electrodes with rough interfaces, J. Electroanal. Chem. Interfacial Electrochem. 261 (1989) 1–9. doi:10.1016/0022-0728(89)87121-9. Cerca con Google

[58] J. Bouclé, P. Ravirajan, J. Nelson, Hybrid polymer–metal oxide thin films for photovoltaic applications, J. Mater. Chem. 17 (2007) 3141. doi:10.1039/b706547g. Cerca con Google

[59] L. Schmidt-Mende, J.L. MacManus-Driscoll, ZnO – nanostructures, defects, and devices, Mater. Today. 10 (2007) 40–48. doi:10.1016/S1369-7021(07)70078-0. Cerca con Google

[60] M.S. White, D.C. Olson, S.E. Shaheen, N. Kopidakis, D.S. Ginley, Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer, Appl. Phys. Lett. 89 (2006) 143517. doi:10.1063/1.2359579. Cerca con Google

[61] S.A. Choulis, Y. Kim, J. Nelson, D.D.C. Bradley, M. Giles, M. Shkunov, et al., High ambipolar and balanced carrier mobility in regioregular poly(3-hexylthiophene), Appl. Phys. Lett. 85 (2004) 3890. doi:10.1063/1.1805175. Cerca con Google

[62] G. Garcia-Belmonte, A. Munar, E.M. Barea, J. Bisquert, I. Ugarte, R. Pacios, Charge carrier mobility and lifetime of organic bulk heterojunctions analyzed by impedance spectroscopy, Org. Electron. Physics, Mater. Appl. 9 (2008) 847–851. doi:10.1016/j.orgel.2008.06.007. Cerca con Google

[63] P. Wagner, R. Helbig, Halleffekt und anisotropie der beweglichkeit der elektronen in ZnO, J. Phys. Chem. Solids. 35 (1974) 327–335. doi:10.1016/S0022-3697(74)80026-0. Cerca con Google

[64] U. Rössler, ed., New Data and Updates for IV-IV, III-V, II-VI and I-VII Compounds, their Mixed Crystals and Diluted Magnetic Semiconductors, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. doi:10.1007/978-3-642-14148-5. Cerca con Google

[65] D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell, et al., Electrical properties of bulk ZnO, Solid State Commun. 105 (1998) 399–401. doi:10.1016/S0038-1098(97)10145-4. Cerca con Google

[66] C. Brabec, Organic photovoltaics : materials, device physics, and manufacturing technologies, Wiley-VCH, Weinheim, 2008. Cerca con Google

[67] D. Hertel, H. Bässler, Photoconduction in amorphous organic solids., Chemphyschem. 9 (2008) 666–88. doi:10.1002/cphc.200700575. Cerca con Google

[68] M. Mingebach, C. Deibel, V. Dyakonov, Built-in potential and validity of the Mott-Schottky analysis in organic bulk heterojunction solar cells, Phys. Rev. B. 84 (2011) 153201. doi:10.1103/PhysRevB.84.153201. Cerca con Google

[69] P.P. Boix, G. Garcia-Belmonte, U. Muñecas, M. Neophytou, C. Waldauf, R. Pacios, Determination of gap defect states in organic bulk heterojunction solar cells from capacitance measurements, Appl. Phys. Lett. 95 (2009) 233302. doi:10.1063/1.3270105. Cerca con Google

[70] J. Bisquert, G. Garcia-Belmonte, A. Munar, M. Sessolo, A. Soriano, H.J. Bolink, Band unpinning and photovoltaic model for P3HT:PCBM organic bulk heterojunctions under illumination, Chem. Phys. Lett. 465 (2008) 57–62. doi:10.1016/j.cplett.2008.09.035. Cerca con Google

[71] T. Kirchartz, W. Gong, S.A. Hawks, T. Agostinelli, R.C.I. MacKenzie, Y. Yang, et al., Sensitivity of the Mott–Schottky Analysis in Organic Solar Cells, J. Phys. Chem. C. 116 (2012) 7672–7680. doi:10.1021/jp300397f. Cerca con Google

[72] J. Nelson, Diffusion-limited recombination in polymer-fullerene blends and its influence on photocurrent collection, Phys. Rev. B. 67 (2003) 155209. doi:10.1103/PhysRevB.67.155209. Cerca con Google

[73] J. Schafferhans, A. Baumann, A. Wagenpfahl, C. Deibel, V. Dyakonov, Oxygen doping of P3HT:PCBM blends: Influence on trap states, charge carrier mobility and solar cell performance, Org. Electron. 11 (2010) 1693–1700. doi:10.1016/j.orgel.2010.07.016. Cerca con Google

[74] F.C. Krebs, All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps, Org. Electron. Physics, Mater. Appl. 10 (2009) 761–768. doi:10.1016/j.orgel.2009.03.009. Cerca con Google

[75] A. Guerrero, P.P. Boix, L.F. Marchesi, T. Ripolles-Sanchis, E.C. Pereira, G. Garcia-Belmonte, Oxygen doping-induced photogeneration loss in P3HT:PCBM solar cells, Sol. Energy Mater. Sol. Cells. 100 (2012) 185–191. doi:10.1016/j.solmat.2012.01.012. Cerca con Google

[76] M. Jørgensen, K. Norrman, F.C. Krebs, Stability/degradation of polymer solar cells, Sol. Energy Mater. Sol. Cells. 92 (2008) 686–714. doi:10.1016/j.solmat.2008.01.005. Cerca con Google

[77] M. Jørgensen, K. Norrman, S. a. Gevorgyan, T. Tromholt, B. Andreasen, F.C. Krebs, Stability of polymer solar cells, Adv. Mater. 24 (2012) 580–612. doi:10.1002/adma.201104187. Cerca con Google

[78] H. Hintz, H. Peisert, H.-J. Egelhaaf, T. Chassé, Reversible and Irreversible Light-Induced p-Doping of P3HT by Oxygen Studied by Photoelectron Spectroscopy (XPS/UPS), J. Phys. Chem. C. 115 (2011) 13373–13376. doi:10.1021/jp2032737. Cerca con Google

[79] J. Zhao, A. Swinnen, G. Van Assche, J. Manca, D. Vanderzande, B. Van Mele, Phase diagram of P3HT/PCBM blends and its implication for the stability of morphology., J. Phys. Chem. B. 113 (2009) 1587–91. doi:10.1021/jp804151a. Cerca con Google

[80] B. Walker, A.B. Tamayo, X.-D. Dang, P. Zalar, J.H. Seo, A. Garcia, et al., Nanoscale Phase Separation and High Photovoltaic Efficiency in Solution-Processed, Small-Molecule Bulk Heterojunction Solar Cells, Adv. Funct. Mater. 19 (2009) 3063–3069. doi:10.1002/adfm.200900832. Cerca con Google

[81] P.G. Karagiannidis, D. Georgiou, C. Pitsalidis, A. Laskarakis, S. Logothetidis, Evolution of vertical phase separation in P3HT:PCBM thin films induced by thermal annealing, Mater. Chem. Phys. 129 (2011) 1207–1213. doi:10.1016/j.matchemphys.2011.06.007. Cerca con Google

[82] J.E. Carlé, T.R. Andersen, M. Helgesen, E. Bundgaard, M. Jorgensen, F.C. Krebs, A laboratory scale approach to polymer solar cells using one coating/printing machine, flexible substrates, no ITO, no vacuum and no spincoating, Sol. Energy Mater. Sol. Cells. 108 (2013) 126–128. doi:10.1016/j.solmat.2012.09.008. Cerca con Google

[83] N. Ćelić, E. Pavlica, M. Borovšak, J. Strle, J. Buh, J. Zavašnik, et al., Factors determining large observed increases in power conversion efficiency of P3HT:PCBM solar cells embedded with Mo6S9−xIx nanowires, Synth. Met. 212 (2016) 105–112. doi:10.1016/j.synthmet.2015.12.009. Cerca con Google

[84] D. Chen, A. Nakahara, D. Wei, D. Nordlund, T.P. Russell, P3HT/PCBM Bulk Heterojunction Organic Photovoltaics: Correlating Efficiency and Morphology, (2010). Cerca con Google

[85] V. Vohra, K. Kawashima, T. Kakara, T. Koganezawa, I. Osaka, K. Takimiya, et al., Efficient inverted polymer solar cells employing favourable molecular orientation, Nat. Photonics. 9 (2015) 403–408. doi:10.1038/nphoton.2015.84. Cerca con Google

[86] I. Etxebarria, J. Ajuria, R. Pacios, Solution-processable polymeric solar cells: A review on materials, strategies and cell architectures to overcome 10%, Org. Electron. 19 (2015) 34–60. doi:10.1016/j.orgel.2015.01.014. Cerca con Google

[87] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, J. Am. Chem. Soc. 131 (2009) 6050–6051. doi:10.1021/ja809598r. Cerca con Google

[88] W.E.I. Sha, X. Ren, L. Chen, W.C.H. Choy, The efficiency limit of CH 3 NH 3 PbI 3 perovskite solar cells, Appl. Phys. Lett. 106 (2015) 221104. doi:10.1063/1.4922150. Cerca con Google

[89] G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells, Energy Environ. Sci. 7 (2014) 982. doi:10.1039/c3ee43822h. Cerca con Google

[90] H.-J. Feng, T.R. Paudel, E.Y. Tsymbal, X.C. Zeng, Tunable Optical Properties and Charge Separation in CH 3 NH 3 Sn x Pb 1– x I 3 /TiO 2 -Based Planar Perovskites Cells, J. Am. Chem. Soc. 137 (2015) 8227–8236. doi:10.1021/jacs.5b04015. Cerca con Google

[91] Q.A. Akkerman, V. D’Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato, et al., Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions, J. Am. Chem. Soc. 137 (2015) 10276–10281. doi:10.1021/jacs.5b05602. Cerca con Google

[92] K. Hwang, Y.-S. Jung, Y.-J. Heo, F.H. Scholes, S.E. Watkins, J. Subbiah, et al., Toward Large Scale Roll-to-Roll Production of Fully Printed Perovskite Solar Cells, Adv. Mater. 27 (2015) 1241–1247. doi:10.1002/adma.201404598. Cerca con Google

[93] T.M. Schmidt, T.T. Larsen-Olsen, J.E. Carlé, D. Angmo, F.C. Krebs, Upscaling of Perovskite Solar Cells: Fully Ambient Roll Processing of Flexible Perovskite Solar Cells with Printed Back Electrodes, Adv. Energy Mater. 5 (2015) 1500569. doi:10.1002/aenm.201500569. Cerca con Google

[94] F. Matteocci, L. Cinà, F. Di Giacomo, S. Razza, A.L. Palma, A. Guidobaldi, et al., High efficiency photovoltaic module based on mesoscopic organometal halide perovskite, Prog. Photovoltaics Res. Appl. 24 (2016) 436–445. doi:10.1002/pip.2557. Cerca con Google

[95] F. Di Giacomo, V. Zardetto, A. D’Epifanio, S. Pescetelli, F. Matteocci, S. Razza, et al., Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UV-Irradiated TiO 2 Scaffolds on Plastic Substrates, Adv. Energy Mater. 5 (2015) 1401808. doi:10.1002/aenm.201401808. Cerca con Google

[96] N. Lago, A. Cester, Flexible and Organic Neural Interfaces: A Review, Appl. Sci. 7 (2017) 1292. doi:10.3390/app7121292. Cerca con Google

[97] H. Wang, D.H. Kim, Perovskite-based photodetectors: materials and devices, Chem. Soc. Rev. 46 (2017) 5204–5236. doi:10.1039/C6CS00896H. Cerca con Google

[98] J.H.L. Ngai, J.K.W. Ho, R.K.H. Chan, S.H. Cheung, L.M. Leung, S.K. So, Growth, characterization, and thin film transistor application of CH 3 NH 3 PbI 3 perovskite on polymeric gate dielectric layers, (n.d.). doi:10.1039/c7ra08699g. Cerca con Google

[99] J.R. Harwell, G.L. Whitworth, G.A. Turnbull, I.D.W. Samuel, Green Perovskite Distributed Feedback Lasers, Sci. Rep. 7 (2017) 11727. doi:10.1038/s41598-017-11569-3. Cerca con Google

[100] Q. Zhang, R. Su, W. Du, X. Liu, L. Zhao, S.T. Ha, et al., Advances in Small Perovskite-Based Lasers, Small Methods. 1 (2017) 1700163. doi:10.1002/smtd.201700163. Cerca con Google

[101] P. Liu, X. He, J. Ren, Q. Liao, J. Yao, H. Fu, Organic–Inorganic Hybrid Perovskite Nanowire Laser Arrays, ACS Nano. 11 (2017) 5766–5773. doi:10.1021/acsnano.7b01351. Cerca con Google

[102] Y. Jia, R.A. Kerner, A.J. Grede, A.N. Brigeman, B.P. Rand, N.C. Giebink, Diode-Pumped Organo-Lead Halide Perovskite Lasing in a Metal-Clad Distributed Feedback Resonator, Nano Lett. 16 (2016) 4624–4629. doi:10.1021/acs.nanolett.6b01946. Cerca con Google

[103] H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, et al., Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors, Nat. Mater. 14 (2015) 636–642. doi:10.1038/nmat4271. Cerca con Google

[104] K. Wang, Z. Gu, S. Liu, J. Li, S. Xiao, Q. Song, Formation of single-mode laser in transverse plane of perovskite microwire via micromanipulation, Opt. Lett. 41 (2016) 555. doi:10.1364/OL.41.000555. Cerca con Google

[105] S.J. Kim, J. Byun, T. Jeon, H.M. Jin, H.R. Hong, S.O. Kim, Perovskite Light-Emitting Diodes via Laser Crystallization: Systematic Investigation on Grain Size Effects for Device Performance, ACS Appl. Mater. Interfaces. 10 (2018) 2490–2495. doi:10.1021/acsami.7b15470. Cerca con Google

[106] B.R. Sutherland, E.H. Sargent, Perovskite photonic sources, Nat. Photonics. 10 (2016) 295–302. doi:10.1038/nphoton.2016.62. Cerca con Google

[107] H.J. Snaith, Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells, J. Phys. Chem. Lett. 4 (2013) 3623–3630. doi:10.1021/jz4020162. Cerca con Google

[108] G. Divitini, S. Cacovich, F. Matteocci, L. Cinà, A. Di Carlo, In situ observation of heat-induced degradation of perovskite solar cells, Nat. Energy. 1 (2016) 15012. doi:10.1038/nenergy.2015.12. Cerca con Google

[109] G. Niu, X. Guo, L. Wang, Review of recent progress in chemical stability of perovskite solar cells, J. Mater. Chem. A. 3 (2015) 8970–8980. doi:10.1039/C4TA04994B. Cerca con Google

[110] N. Wrachien, N. Lago, A. Rizzo, R. D’Alpaos, A. Stefani, G. Turatti, et al., Effects of thermal and electrical stress on DH4T-based organic thin-film-transistors with PMMA gate dielectrics, Microelectron. Reliab. 55 (2015) 1790–1794. doi:10.1016/j.microrel.2015.06.073. Cerca con Google

[111] A. Rizzo, A. Cester, N. Wrachien, N. Lago, L. Torto, M. Barbato, et al., Characterization and modeling of organic (P3HT:PCBM) solar cells as a function of bias and illumination, Sol. Energy Mater. Sol. Cells. 157 (2016) 337–345. doi:10.1016/j.solmat.2016.06.001. Cerca con Google

[112] X. Dong, X. Fang, M. Lv, Improvement of the humidity stability of organic–inorganic perovskite solar cells using ultrathin Al 2 O 3 layers prepared by atomic layer deposition, J. Mater. Chem. A. 3 (2015) 5360–5367. doi:10.1039/C4TA06128D. Cerca con Google

[113] F. Matteocci, L. Cinà, E. Lamanna, S. Cacovich, G. Divitini, P.A. Midgley, et al., Encapsulation for long-term stability enhancement of perovskite solar cells, Nano Energy. 30 (2016) 162–172. doi:10.1016/j.nanoen.2016.09.041. Cerca con Google

[114] T. Gatti, F. Lamberti, P. Topolovsek, M. Abdu-Aguye, R. Sorrentino, L. Perino, et al., Interfacial Morphology Addresses Performance of Perovskite Solar Cells Based on Composite Hole Transporting Materials of Functionalized Reduced Graphene Oxide and P3HT, Sol. RRL. 2 (2018) 1800013. doi:10.1002/solr.201800013. Cerca con Google

[115] Q. Chen, N. De Marco, Y. (Michael) Yang, T.-B. Song, C.-C. Chen, H. Zhao, et al., Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications, Nano Today. 10 (2015) 355–396. doi:10.1016/j.nantod.2015.04.009. Cerca con Google

[116] P. Fiorentin, A. Scroccaro, R. Bertani, M. Moronato, F. Simionato, A. Zaggia, Commercial TiO<inf>2</inf> P25 activation: Evaluation of efficacy in photodegration processes of different radiating sources, in: 2014 IEEE Int. Instrum. Meas. Technol. Conf. Proc., IEEE, 2014: pp. 1359–1363. doi:10.1109/I2MTC.2014.6860968. Cerca con Google

[117] P.R.F. Barnes, K. Miettunen, X. Li, A.Y. Anderson, T. Bessho, M. Gratzel, et al., Interpretation of Optoelectronic Transient and Charge Extraction Measurements in Dye-Sensitized Solar Cells, Adv. Mater. 25 (2013) 1881–1922. doi:10.1002/adma.201201372. Cerca con Google

[118] B. Hwang, J.-S. Lee, Hybrid Organic-Inorganic Perovskite Memory with Long-Term Stability in Air, Sci. Rep. 7 (2017) 673. doi:10.1038/s41598-017-00778-5. Cerca con Google

[119] S. van Reenen, M. Kemerink, H.J. Snaith, Modeling Anomalous Hysteresis in Perovskite Solar Cells, J. Phys. Chem. Lett. 6 (2015) 3808–3814. doi:10.1021/acs.jpclett.5b01645. Cerca con Google

[120] G. Richardson, S.E.J. O’Kane, R.G. Niemann, T.A. Peltola, J.M. Foster, P.J. Cameron, et al., Can slow-moving ions explain hysteresis in the current–voltage curves of perovskite solar cells?, Energy Environ. Sci. 9 (2016) 1476–1485. doi:10.1039/C5EE02740C. Cerca con Google

[121] J. Beilsten-Edmands, G.E. Eperon, R.D. Johnson, H.J. Snaith, P.G. Radaelli, Non-ferroelectric nature of the conductance hysteresis in CH 3 NH 3 PbI 3 perovskite-based photovoltaic devices, Appl. Phys. Lett. 106 (2015) 173502. doi:10.1063/1.4919109. Cerca con Google

[122] Y. Shao, Y. Fang, T. Li, Q. Wang, Q. Dong, Y. Deng, et al., Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films, Energy Environ. Sci. 9 (2016) 1752–1759. doi:10.1039/C6EE00413J. Cerca con Google

[123] Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, et al., Giant switchable photovoltaic effect in organometal trihalide perovskite devices, Nat. Mater. 14 (2015) 193–198. doi:10.1038/nmat4150. Cerca con Google

[124] M. De Bastiani, G. Dell’Erba, M. Gandini, V. D’Innocenzo, S. Neutzner, A.R.S. Kandada, et al., Solar Cells: Ion Migration and the Role of Preconditioning Cycles in the Stabilization of the J - V Characteristics of Inverted Hybrid Perovskite Solar Cells (Adv. Energy Mater. 2/2016), Adv. Energy Mater. 6 (2016). doi:10.1002/aenm.201670009. Cerca con Google

[125] M. Bag, L.A. Renna, R.Y. Adhikari, S. Karak, F. Liu, P.M. Lahti, et al., Kinetics of Ion Transport in Perovskite Active Layers and Its Implications for Active Layer Stability, J. Am. Chem. Soc. 137 (2015) 13130–13137. doi:10.1021/jacs.5b08535. Cerca con Google

[126] P. Calado, A.M. Telford, D. Bryant, X. Li, J. Nelson, B.C. O’Regan, et al., Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis, Nat. Commun. 7 (2016) 13831. doi:10.1038/ncomms13831. Cerca con Google

[127] C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties., Inorg. Chem. 52 (2013) 9019–38. doi:10.1021/ic401215x. Cerca con Google

[128] Y. Kutes, L. Ye, Y. Zhou, S. Pang, B.D. Huey, N.P. Padture, Direct Observation of Ferroelectric Domains in Solution-Processed CH 3 NH 3 PbI 3 Perovskite Thin Films, J. Phys. Chem. Lett. 5 (2014) 3335–3339. doi:10.1021/jz501697b. Cerca con Google

[129] K.T. Butler, J.M. Frost, A. Walsh, Ferroelectric materials for solar energy conversion: photoferroics revisited, Energy Environ. Sci. 8 (2015) 838–848. doi:10.1039/C4EE03523B. Cerca con Google

[130] H. Guo, P. Liu, S. Zheng, S. Zeng, N. Liu, S. Hong, Re-entrant relaxor ferroelectricity of methylammonium lead iodide, Curr. Appl. Phys. 16 (2016) 1603–1606. doi:10.1016/J.CAP.2016.09.016. Cerca con Google

[131] S. Liu, F. Zheng, N.Z. Koocher, H. Takenaka, F. Wang, A.M. Rappe, Ferroelectric Domain Wall Induced Band Gap Reduction and Charge Separation in Organometal Halide Perovskites, J. Phys. Chem. Lett. 6 (2015) 693–699. doi:10.1021/jz502666j. Cerca con Google

[132] Y. Zhao, C. Liang, H. Zhang, D. Li, D. Tian, G. Li, et al., Anomalously large interface charge in polarity-switchable photovoltaic devices: an indication of mobile ions in organic–inorganic halide perovskites, Energy Environ. Sci. 8 (2015) 1256–1260. doi:10.1039/C4EE04064C. Cerca con Google

[133] J.M. Azpiroz, E. Mosconi, J. Bisquert, F. De Angelis, Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation, Energy Environ. Sci. 8 (2015) 2118–2127. doi:10.1039/C5EE01265A. Cerca con Google

[134] E. Mosconi, D. Meggiolaro, H.J. Snaith, S.D. Stranks, F. De Angelis, Light-induced annihilation of Frenkel defects in organo-lead halide perovskites, Energy Environ. Sci. 9 (2016) 3180–3187. doi:10.1039/C6EE01504B. Cerca con Google

[135] A.J. Barker, A. Sadhanala, F. Deschler, M. Gandini, S.P. Senanayak, P.M. Pearce, et al., Defect-Assisted Photoinduced Halide Segregation in Mixed-Halide Perovskite Thin Films, ACS Energy Lett. 2 (2017) 1416–1424. doi:10.1021/acsenergylett.7b00282. Cerca con Google

[136] Y. Xing, C. Sun, H.-L. Yip, G.C. Bazan, F. Huang, Y. Cao, New fullerene design enables efficient passivation of surface traps in high performance p-i-n heterojunction perovskite solar cells, Nano Energy. 26 (2016) 7–15. doi:10.1016/J.NANOEN.2016.04.057. Cerca con Google

[137] Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, J. Huang, Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process, Energy Environ. Sci. 7 (2014) 2359–2365. doi:10.1039/C4EE00233D. Cerca con Google

[138] W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A.J. Neukirch, G. Gupta, et al., Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains., Science. 347 (2015) 522–5. doi:10.1126/science.aaa0472. Cerca con Google

[139] L.K. Ono, Y. Qi, S. (Frank) Liu, Progress toward Stable Lead Halide Perovskite Solar Cells, Joule. 0 (2018). doi:10.1016/j.joule.2018.07.007. Cerca con Google

[140] J. Hu, R. Gottesman, L. Gouda, A. Kama, M. Priel, S. Tirosh, et al., Photovoltage Behavior in Perovskite Solar Cells under Light-Soaking Showing Photoinduced Interfacial Changes, ACS Energy Lett. 2 (2017) 950–956. doi:10.1021/acsenergylett.7b00212. Cerca con Google

[141] T. Gatti, E. Menna, M. Meneghetti, M. Maggini, A. Petrozza, F. Lamberti, The Renaissance of fullerenes with perovskite solar cells, Nano Energy. 41 (2017) 84–100. doi:10.1016/J.NANOEN.2017.09.016. Cerca con Google

[142] H. Yoon, S.M. Kang, J.-K. Lee, M. Choi, Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency, Energy Environ. Sci. 9 (2016) 2262–2266. doi:10.1039/C6EE01037G. Cerca con Google

[143] K. Wojciechowski, T. Leijtens, S. Siprova, C. Schlueter, M.T. Hörantner, J.T.-W. Wang, et al., C 60 as an Efficient n-Type Compact Layer in Perovskite Solar Cells, J. Phys. Chem. Lett. 6 (2015) 2399–2405. doi:10.1021/acs.jpclett.5b00902. Cerca con Google

[144] P. Topolovsek, F. Lamberti, T. Gatti, A. Cito, J.M. Ball, E. Menna, et al., Functionalization of transparent conductive oxide electrode for TiO 2 -free perovskite solar cells, J. Mater. Chem. A. 5 (2017) 11882–11893. doi:10.1039/C7TA02405C. Cerca con Google

[145] F. Lamberti, L. Litti, M. De Bastiani, R. Sorrentino, M. Gandini, M. Meneghetti, et al., High-Quality, Ligands-Free, Mixed-Halide Perovskite Nanocrystals Inks for Optoelectronic Applications, Adv. Energy Mater. 7 (2017) 1601703. doi:10.1002/aenm.201601703. Cerca con Google

[146] C. Tao, J. Van Der Velden, L. Cabau, N.F. Montcada, S. Neutzner, A.R. Srimath Kandada, et al., Fully Solution-Processed n-i-p-Like Perovskite Solar Cells with Planar Junction: How the Charge Extracting Layer Determines the Open-Circuit Voltage, Adv. Mater. 29 (2017) 1604493. doi:10.1002/adma.201604493. Cerca con Google

[147] † Vincenzo Amendola, † Gian Andrea Rizzi, ‡ and Stefano Polizzi, † Moreno Meneghetti*, Synthesis of Gold Nanoparticles by Laser Ablation in Toluene:  Quenching and Recovery of the Surface Plasmon Absorption, (2005). doi:10.1021/JP055783V. Cerca con Google

[148] J.H. Beaumont, A.J. Bourdillon, J. Bordas, Optical properties of PbI 2 and PbF 2, J. Phys. C Solid State Phys. 10 (1977) 761–771. doi:10.1088/0022-3719/10/5/018. Cerca con Google

[149] A.L. Patterson, The Diffraction of X-Rays by Small Crystalline Particles, Phys. Rev. 56 (1939) 972–977. doi:10.1103/PhysRev.56.972. Cerca con Google

[150] F. Lamberti, L. Brigo, M. Favaro, C. Luni, A. Zoso, M. Cattelan, et al., Optoelectrochemical Biorecognition by Optically Transparent Highly Conductive Graphene-Modified Fluorine-Doped Tin Oxide Substrates, ACS Appl. Mater. Interfaces. 6 (2014) 22769–22777. doi:10.1021/am506941u. Cerca con Google

[151] W. Ren, R. Saito, L. Gao, F. Zheng, Z. Wu, B. Liu, et al., Edge phonon state of mono- and few-layer graphene nanoribbons observed by surface and interference co-enhanced Raman spectroscopy, Phys. Rev. B. 81 (2010) 035412. doi:10.1103/PhysRevB.81.035412. Cerca con Google

[152] J.-K. Lee, J.-G. Kim, K.P.S.S. Hembram, Y.-I. Kim, B.-K. Min, Y. Park, et al., The Nature of Metastable AA’ Graphite: Low Dimensional Nano- and Single-Crystalline Forms, Sci. Rep. 6 (2016) 39624. doi:10.1038/srep39624. Cerca con Google

[153] B. Pałosz, E. Salje, Lattice parameters and spontaneous strain in AX 2 polytypes: CdI 2 , PbI 2 SnS 2 and SnSe 2, J. Appl. Crystallogr. 22 (1989) 622–623. doi:10.1107/S0021889889006916. Cerca con Google

[154] L. Romano, V. Privitera, C. (Chennupati) Jagadish, L. Romano, Defects in semiconductors, n.d. Cerca con Google

[155] M. Tommasini, C. Castiglioni, G. Zerbi, A. Barbon, M. Brustolon, A joint Raman and EPR spectroscopic study on ball-milled nanographites, Chem. Phys. Lett. 516 (2011) 220–224. doi:10.1016/J.CPLETT.2011.09.094. Cerca con Google

[156] A. Barbon, M. Brustolon, An EPR Study on Nanographites, Appl. Magn. Reson. 42 (2012) 197–210. doi:10.1007/s00723-011-0285-6. Cerca con Google

[157] G.A. Viana, R.G. Lacerda, F.L. Freire, F.C. Marques, ESR investigation of graphite-like amorphous carbon films revealing itinerant states as the ones responsible for the signal, J. Non. Cryst. Solids. 354 (2008) 2135–2137. doi:10.1016/J.JNONCRYSOL.2007.10.063. Cerca con Google

[158] G. Volonakis, F. Giustino, Ferroelectric Graphene–Perovskite Interfaces, J. Phys. Chem. Lett. 6 (2015) 2496–2502. doi:10.1021/acs.jpclett.5b01099. Cerca con Google

[159] Q. Chen, H. Zhou, T.-B. Song, S. Luo, Z. Hong, H.-S. Duan, et al., Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells, Nano Lett. 14 (2014) 4158–4163. doi:10.1021/nl501838y. Cerca con Google

[160] T. Takahashi, H. Tokailin, T. Sagawa, Angle-resolved ultraviolet photoelectron spectroscopy of the unoccupied band structure of graphite, Phys. Rev. B. 32 (1985) 8317–8324. doi:10.1103/PhysRevB.32.8317. Cerca con Google

[161] O. Leenaerts, B. Partoens, F.M. Peeters, A. Volodin, C. Van Haesendonck, The work function of few-layer graphene, J. Phys. Condens. Matter. 29 (2017) 035003. doi:10.1088/0953-8984/29/3/035003. Cerca con Google

[162] Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells, Nat. Commun. 5 (2014) 5784. doi:10.1038/ncomms6784. Cerca con Google

[163] A. Walsh, D.O. Scanlon, S. Chen, X.G. Gong, S.-H. Wei, Self-Regulation Mechanism for Charged Point Defects in Hybrid Halide Perovskites, Angew. Chemie Int. Ed. 54 (2015) 1791–1794. doi:10.1002/anie.201409740. Cerca con Google

[164] W.-J. Yin, T. Shi, Y. Yan, Unusual defect physics in CH 3 NH 3 PbI 3 perovskite solar cell absorber, Appl. Phys. Lett. 104 (2014) 063903. doi:10.1063/1.4864778. Cerca con Google

[165] A. Buin, P. Pietsch, J. Xu, O. Voznyy, A.H. Ip, R. Comin, et al., Materials Processing Routes to Trap-Free Halide Perovskites, Nano Lett. 14 (2014) 6281–6286. doi:10.1021/nl502612m. Cerca con Google

[166] M.-H. Du, Density Functional Calculations of Native Defects in CH 3 NH 3 PbI 3 : Effects of Spin–Orbit Coupling and Self-Interaction Error, J. Phys. Chem. Lett. 6 (2015) 1461–1466. doi:10.1021/acs.jpclett.5b00199. Cerca con Google

[167] D. Meggiolaro, S.G. Motti, E. Mosconi, A.J. Barker, J. Ball, C. Andrea Riccardo Perini, et al., Iodine chemistry determines the defect tolerance of lead-halide perovskites, Energy Environ. Sci. 11 (2018) 702–713. doi:10.1039/C8EE00124C. Cerca con Google

[168] V. Adinolfi, M. Yuan, R. Comin, E.S. Thibau, D. Shi, M.I. Saidaminov, et al., The In-Gap Electronic State Spectrum of Methylammonium Lead Iodide Single-Crystal Perovskites, Adv. Mater. 28 (2016) 3406–3410. doi:10.1002/adma.201505162. Cerca con Google

[169] F. Lamberti, A. Rizzo, E. Cescon, R. Sorrentino, L. Litti, J. Reguera, et al., Suppression of ionic motions in a perovskite thin film for opto-electronic applications, Submitted (2018). Cerca con Google

[170] M.G. Helander, M.T. Greiner, Z.B. Wang, Z.H. Lu, Pitfalls in measuring work function using photoelectron spectroscopy, Appl. Surf. Sci. 256 (2010) 2602–2605. doi:10.1016/J.APSUSC.2009.11.002. Cerca con Google

[171] N. Lago, A. Cester, N. Wrachien, M. Natali, S.D. Quiroga, S. Bonetti, et al., A physical-based equivalent circuit model for an organic/electrolyte interface, Org. Electron. 35 (2016) 176–185. doi:10.1016/j.orgel.2016.05.018. Cerca con Google

[172] A. Laiho, L. Herlogsson, R. Forchheimer, X. Crispin, M. Berggren, Controlling the dimensionality of charge transport in organic thin-film transistors., Proc. Natl. Acad. Sci. U. S. A. 108 (2011) 15069–73. doi:10.1073/pnas.1107063108. Cerca con Google

[173] D.A. Bernards, G.G. Malliaras, Steady-State and Transient Behavior of Organic Electrochemical Transistors, Adv. Funct. Mater. 17 (2007) 3538–3544. doi:10.1002/adfm.200601239. Cerca con Google

[174] S.B. Meier, D. Tordera, A. Pertegás, C. Roldán-Carmona, E. Ortí, H.J. Bolink, Light-emitting electrochemical cells: recent progress and future prospects, Mater. Today. 17 (2014) 217–223. doi:10.1016/J.MATTOD.2014.04.029. Cerca con Google

[175] J. Tauc, Optical properties and electronic structure of amorphous Ge and Si, Mater. Res. Bull. 3 (1968) 37–46. doi:10.1016/0025-5408(68)90023-8. Cerca con Google

[176] T. Baikie, Y. Fang, J.M. Kadro, M. Schreyer, F. Wei, S.G. Mhaisalkar, et al., Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications, J. Mater. Chem. A. 1 (2013) 5628. doi:10.1039/c3ta10518k. Cerca con Google

[177] J.R. Harwell, T.K. Baikie, I.D. Baikie, J.L. Payne, C. Ni, J.T.S. Irvine, et al., Probing the energy levels of perovskite solar cells via Kelvin probe and UV ambient pressure photoemission spectroscopy, Phys. Chem. Chem. Phys. 18 (2016) 19738–19745. doi:10.1039/C6CP02446G. Cerca con Google

[178] B.C. O’Regan, P.R.F. Barnes, X. Li, C. Law, E. Palomares, J.M. Marin-Beloqui, Optoelectronic studies of methylammonium lead iodide perovskite solar cells with mesoporous TiO2, J. Am. Chem. Soc. 137 (2015) 5087–5099. doi:10.1021/jacs.5b00761. Cerca con Google

[179] Y. Zhou, H.F. Garces, N.P. Padture, Challenges in the ambient Raman spectroscopy characterization of methylammonium lead triiodide perovskite thin films, Front. Optoelectron. 9 (2016) 81–86. doi:10.1007/s12200-016-0573-8. Cerca con Google

[180] C. Quarti, G. Grancini, E. Mosconi, P. Bruno, J.M. Ball, M.M. Lee, et al., The Raman Spectrum of the CH 3 NH 3 PbI 3 Hybrid Perovskite: Interplay of Theory and Experiment, J. Phys. Chem. Lett. 5 (2014) 279–284. doi:10.1021/jz402589q. Cerca con Google

[181] N.A. Davydova, J. Baran, M.K. Marchewka, H. Ratajczak, Interface vibrational modes in layered crystals with stacking faults, J. Mol. Struct. 404 (1997) 163–165. doi:10.1016/S0022-2860(96)09376-3. Cerca con Google

[182] M.Y. Khilji, W.F. Sherman, G.R. Wilkinson, Raman study of three polytypes of PbI2, J. Raman Spectrosc. 13 (1982) 127–133. doi:10.1002/jrs.1250130206. Cerca con Google

[183] J.F. Condeles, R.A. Ando, M. Mulato, Optical and structural properties of PbI2 thin films, J. Mater. Sci. 43 (2008) 525–529. doi:10.1007/s10853-007-1854-9. Cerca con Google

[184] Y. Yang, Q. Pei, Efficient blue-green and white light-emitting electrochemical cells based on poly[9,9-bis(3,6-dioxaheptyl)-fluorene-2,7-diyl], J. Appl. Phys. 81 (1998) 3294. doi:10.1063/1.364313. Cerca con Google

[185] N.N. Shlenskaya, N.A. Belich, M. Grätzel, E.A. Goodilin, A.B. Tarasov, Light-induced reactivity of gold and hybrid perovskite as a new possible degradation mechanism in perovskite solar cells, J. Mater. Chem. A. 6 (2018) 1780–1786. doi:10.1039/C7TA10217H. Cerca con Google

[186] V.W. Bergmann, Y. Guo, H. Tanaka, I.M. Hermes, D. Li, A. Klasen, et al., Local Time-Dependent Charging in a Perovskite Solar Cell, ACS Appl. Mater. Interfaces. 8 (2016) 19402–19409. doi:10.1021/acsami.6b04104. Cerca con Google

[187] I.G. Hill, A. Rajagopal, A. Kahn, Y. Hu, Molecular level alignment at organic semiconductor-metal interfaces, Appl. Phys. Lett. 73 (1998) 662. doi:10.1063/1.121940. Cerca con Google

[188] I.G. Hill, A. Kahn, Energy level alignment at interfaces of organic semiconductor heterostructures, J. Appl. Phys. 84 (1998) 5583–5586. doi:10.1063/1.368864. Cerca con Google

[189] Z. Xu, L.-M. Chen, M.-H. Chen, G. Li, Y. Yang, Energy level alignment of poly(3-hexylthiophene): [6,6]-phenyl C[sub 61] butyric acid methyl ester bulk heterojunction, Appl. Phys. Lett. 95 (2009) 013301. doi:10.1063/1.3163056. Cerca con Google

[190] L. Bertoluzzi, Cooperative kinetics of depolarization in CH 3 NH 3 PbI 3 perovskite solar cells, Energy Environ. Sci. 8 (2015) 910–915. doi:10.1039/C4EE03171G. Cerca con Google

[191] L. Hu, G. Shao, T. Jiang, D. Li, X. Lv, H. Wang, et al., Investigation of the Interaction between Perovskite Films with Moisture via in Situ Electrical Resistance Measurement, ACS Appl. Mater. Interfaces. 7 (2015) 25113–25120. doi:10.1021/acsami.5b06268. Cerca con Google

[192] O. Haillant, Accelerated weathering testing principles to estimate the service life of organic PV modules, Sol. Energy Mater. Sol. Cells. 95 (2011) 1284–1292. doi:10.1016/j.solmat.2010.08.033. Cerca con Google

[193] N. Espinosa, F.O. Lenzmann, S. Ryley, D. Angmo, M. Hösel, R.R. Søndergaard, et al., OPV for mobile applications: an evaluation of roll-to-roll processed indium and silver free polymer solar cells through analysis of life cycle, cost and layer quality using inline optical and functional inspection tools, J. Mater. Chem. A. 1 (2013) 7037. doi:10.1039/c3ta01611k. Cerca con Google

[194] C.J. Mulligan, C. Bilen, X. Zhou, W.J. Belcher, P.C. Dastoor, Levelised cost of electricity for organic photovoltaics, Sol. Energy Mater. Sol. Cells. 133 (2015) 26–31. doi:10.1016/j.solmat.2014.10.043. Cerca con Google

[195] C.J. Mulligan, M. Wilson, G. Bryant, B. Vaughan, X. Zhou, W.J. Belcher, et al., A projection of commercial-scale organic photovoltaic module costs, Sol. Energy Mater. Sol. Cells. 120 (2014) 9–17. doi:10.1016/j.solmat.2013.07.041. Cerca con Google

[196] C.J. Brabec, Organic photovoltaics: technology and market, Sol. Energy Mater. Sol. Cells. 83 (2004) 273–292. doi:10.1016/j.solmat.2004.02.030. Cerca con Google

[197] C. Powell, Y. Lawryshyn, T. Bender, Using stochastic models to determine financial indicators and technical objectives for organic solar cells, Sol. Energy Mater. Sol. Cells. 107 (2012) 236–247. doi:10.1016/j.solmat.2012.06.038. Cerca con Google

[198] F. Yan, J. Noble, J. Peltola, S. Wicks, S. Balasubramanian, Semitransparent OPV modules pass environmental chamber test requirements, Sol. Energy Mater. Sol. Cells. 114 (2012) 214–218. doi:10.1016/j.solmat.2012.09.031. Cerca con Google

[199] M. Helgesen, J.E. Carlé, G.A. dos Reis Benatto, R.R. Søndergaard, M. Jørgensen, E. Bundgaard, et al., Making Ends Meet: Flow Synthesis as the Answer to Reproducible High-Performance Conjugated Polymers on the Scale that Roll-to-Roll Processing Demands, Adv. Energy Mater. 5 (2015) 1401996. doi:10.1002/aenm.201401996. Cerca con Google

[200] M. Vilkman, P. Apilo, M. Välimäki, M. Ylikunnari, A. Bernardi, R. Po, et al., Gravure-Printed ZnO in Fully Roll-to-Roll Printed Inverted Organic Solar Cells: Optimization of Adhesion and Performance, Energy Technol. 3 (2015) 407–413. doi:10.1002/ente.201402155. Cerca con Google

[201] National Renewable Energy Laboratory, Research Cell Efficiency, (2016). http://www.nrel.gov/pv/ (accessed January 1, 2016). Vai! Cerca con Google

[202] M. Jørgensen, J.E. Carlé, R.R. Søndergaard, M. Lauritzen, N.A. Dagnæs-Hansen, S.L. Byskov, et al., The state of organic solar cells—A meta analysis, Sol. Energy Mater. Sol. Cells. 119 (2013) 84–93. doi:10.1016/j.solmat.2013.05.034. Cerca con Google

[203] S.A. Gevorgyan, A.J. Medford, E. Bundgaard, S.B. Sapkota, H.-F. Schleiermacher, B. Zimmermann, et al., An inter-laboratory stability study of roll-to-roll coated flexible polymer solar modules, Sol. Energy Mater. Sol. Cells. 95 (2011) 1398–1416. doi:10.1016/j.solmat.2011.01.010. Cerca con Google

[204] S.A. Gevorgyan, M. Corazza, M. V. Madsen, G. Bardizza, A. Pozza, H. Müllejans, et al., Interlaboratory indoor ageing of roll-to-roll and spin coated organic photovoltaic devices: Testing the ISOS tests, Polym. Degrad. Stab. 109 (2014) 162–170. doi:10.1016/j.polymdegradstab.2014.07.013. Cerca con Google

[205] M. Giannouli, V.M. Drakonakis, A. Savva, P. Eleftheriou, G. Florides, S.A. Choulis, Methods for Improving the Lifetime Performance of Organic Photovoltaics with Low-Costing Encapsulation, ChemPhysChem. 16 (2015) 1134–1154. doi:10.1002/cphc.201402749. Cerca con Google

[206] S.A. Gevorgyan, M. V. Madsen, B. Roth, M. Corazza, M. Hösel, R.R. Søndergaard, et al., Lifetime of Organic Photovoltaics: Status and Predictions, Adv. Energy Mater. 6 (2016) 1501208. doi:10.1002/aenm.201501208. Cerca con Google

[207] Outlier removal using Hampel identifier - MATLAB hampel - MathWorks Italia, (n.d.). https://it.mathworks.com/help/signal/ref/hampel.html. Vai! Cerca con Google

[208] V.J. Hodge, J. Austin, A survey of outlier detection methodologies, Artif. Intell. Rev. 22 (2004) 85–126. doi:10.1023/B:AIRE.0000045502.10941.a9. Cerca con Google

[209] H. Liu, S. Shah, W. Jiang, On-line outlier detection and data cleaning, Comput. Chem. Eng. 28 (2004) 1635–1647. doi:10.1016/j.compchemeng.2004.01.009. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record